
entropy

Article

Quantitative Quality Evaluation of Software Products
by Considering Summary and Comments Entropy of
a Reported Bug

Madhu Kumari 1, Ananya Misra 2, Sanjay Misra 3,4 , Luis Fernandez Sanz 5 ,
Robertas Damasevicius 6 and V.B. Singh 1,*

1 Department of Computer Science, Delhi College of Arts and Commerce, Delhi 110023, India;
mesra.madhu@gmail.com

2 Department of Informatics, Technical University of Munich, 80333 Munich, Germany; ge25daj@mytum.de
3 Department of Computer Engineering, Atilim University, Ankara 06830, Turkey;

sanjay.misra@Covenantuniversity.edu.ng
4 Department of Electrical and Information Engineering, Covenant University, Ota,

Ogun State 112212, Nigeria
5 Department of Computer Science, University of Alcala, 28801 Madrid, Spain; luis.fernandezs@uah.es
6 Department of Software Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania;

robertas.damasevicius@ktu.lt
* Correspondence: vbsingh@dcac.du.ac.in; Tel.: +91-11-2808-1351

Received: 18 October 2018; Accepted: 6 January 2019; Published: 19 January 2019
����������
�������

Abstract: A software bug is characterized by its attributes. Various prediction models have been
developed using these attributes to enhance the quality of software products. The reporting of
bugs leads to high irregular patterns. The repository size is also increasing with enormous rate,
resulting in uncertainty and irregularities. These uncertainty and irregularities are termed as
veracity in the context of big data. In order to quantify these irregular and uncertain patterns,
the authors have appliedentropy-based measures of the terms reported in the summary and the
comments submitted by the users. Both uncertainties and irregular patterns have been taken care of
byentropy-based measures. In this paper, the authors considered that the bug fixing process does not
only depend upon the calendar time, testing effort and testing coverage, but it also depends on the
bug summary description and comments. The paper proposed bug dependency-based mathematical
models by considering the summary description of bugs and comments submitted by users in terms
of the entropy-based measures. The models were validated on different Eclipse project products.
The models proposed in the literature have different types of growth curves. The models mainly
follow exponential, S-shaped or mixtures of both types of curves. In this paper, the proposed models
were compared with the modelsfollowingexponential, S-shaped and mixtures of both types of curves.

Keywords: entropy; software reliability growth model; non-homogenous poissonprocess;
bug summary; bug comments; veracity; big data; bug dependency

1. Introduction

Software is indispensable in modern society. The development of software follows different
process models. During the last few decades, due to the exponential growth in software applications,
pressure has been mounting on the software industries to produce reliable software in a short space
of time. Consequently, software development life cycle models have shifted from the traditional
waterfall model to extreme programming and object-oriented life cycle models. In each life phase
of software development, programmers try to minimizeinherent errors by walk-through and code

Entropy 2019, 21, 91; doi:10.3390/e21010091 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-3556-9331
https://orcid.org/0000-0003-0778-0073
https://orcid.org/0000-0001-9990-1084
https://orcid.org/0000-0002-9601-7039
http://dx.doi.org/10.3390/e21010091
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/21/1/91?type=check_update&version=2

Entropy 2019, 21, 91 2 of 32

inspectionmethods.Recently, a paradigm shift has been taking place in software development due to
advancements in the communication technology which has resulted to the emergence of open source
software. The evolution of software takes place through an active participation of different users
and developers working from different geographical locations. Among the various issues raised by
users around the world one may highlight bugs, new feature introduction, and feature improvement
that needs to be incorporated in the software over a long run. Once the issues raisedare reported on
the issue tracking system, they are verified, diagnosed and then fixed. The fixing of bugs follows
different growth curves and it has been modeled quantitatively by using different software reliability
growth models. These mathematical models quantitatively evaluate the reliability level of software
in terms of the number ofbugs removed from the software.The reliability level measures the quality
of software products as it is one of theimportant software quality attributes which can be measured
and predicted [1]. To incorporate the issues arising from the use of these software products, the source
code of software isfrequentlychanged. During the changes in the source code of the software, a set of
files gets modified. These source code modifications in different files, for a given period of time, follow
a specific probability distribution. This has been quantified in [2] by applying Shannon’s entropy
proposed in [3]. This entropy measure has been used to quantify theuncertainty arising from source
code changes. In [4], the authors proposed models to predict the complexity of code changes, i.e.,
the entropy that can be diffused into the software overa period of time. The authors also proposed to
develop entropy-based models to predict the bugs that can occurin software due to code changes [5].
The entropy has also been used to predict the software code smell [6]. A review of the literature in
this regard, revealed that an NHPP-based SRGM hasbeen proposed to evaluate the reliability level
of the software in terms of the number of bugs fixed and the number remaining. The information
about the bugs remaining in the software may affect the software quality. The authors thus developed
SRGM by considering the software development environment and different environmental factors.
The SRGM is based on calendar time, testing effort and testing coverage [7–20]. In another study,
various SRGMweredevelopedby considering the dependency of bugs. The bugs are dependent in the
sense that the removal/fixing of bugs relies upon the removal of other bugs on which these bugs are
dependent [8,12,13]. During the study of SRGM, it was observed that the models developed in the
literature did not take into account the intrinsic characteristics of the bugs which were reported by
all the users from various geographical locations. The models developed in the literature was also
observed not to have addressed the diverse comments submitted by different developers in the process
of bug fixing. Until the descriptions of the bugs areclearly stated, the root cause of the problems
affecting smooth operations cannot be traced, hence the bugs cannot be appropriately fixed. It is thus
the assumption of this paper that that the fixing of the bugs correlates highly with theappropriate
identification and description of the issues associated with the bugs, as reported by the users. Across
the different latitude and longitude of the globe, users and developers report bugs for an open source
software to bug tracking systems. The size of software repositories which consists of source code,
bugs and archive communication are increasing with enormous rates. The increasing size of software
repositories and heterogeneous nature of this semi-structured data leads it to suffer from veracity
issues. Veracity is an important attribute of Big Data and refers to biases, noise, uncertainty and
distortions in data. In a recent study, authors have used Shannon’s entropy to learn from uncertainty
for big data [21]. The reporting of bugs on bug tracking systems also leads to highly irregular patterns
and it has also resulted in uncertainty. Both uncertainty and irregular patterns have been taken care by
entropy-based measures, i.e.,summary_entropy metric and comment_entropy metric.

The reporting of bugs and others issues on issue tracking systems generates software repositories.
These repositories help in software evolution. On the other hand, irregular patterns observed inthese
repositories negatively affects the software quality. Once prediction models based on machine learning
techniques and mathematical models are developed, the performance of the built in classifiers and
models could be significantly degradedif care is not taken to avoid the emergenceof irregular patterns.
In addition, where the irregular patterns are not measured, the built model’s accuracy will be degraded.

Entropy 2019, 21, 91 3 of 32

The summary attribute contains the textual description of bug reports. It plays the major role
in predicting severityand priority of newly incoming bug reports. The comments are attached to the
bug by users. The numbers of comments filed and counted are attached to a bug report. The textual
description of user comments can affect the comprehensibility of a bug report.Therefore, it assists in
fixing of a bug. Number of comments, and occurrences of terms, are the indicators of the software
quality. Figure 1 shows a bug report of bug id 139050 of BIRT products of the Eclipse project.

Entropy 2019, 21, x FOR PEER REVIEW 3 of 32

emergenceof irregular patterns. In addition, where the irregular patterns are not measured,the built
model’s accuracy will be degraded.

The summary attribute contains the textual description of bug reports. It plays the major role in
predicting severityand priority of newly incoming bug reports. The comments are attached to the
bug by users. The numbers of comments filed and counted are attached to a bug report. The textual
description of user comments can affect the comprehensibility of a bug report.Therefore, it assists in
fixing of a bug. Number of comments, and occurrences of terms, are the indicators of the software
quality.Figure 1 shows a bug report of bug id 139050 of BIRT products of the Eclipse project.

Figure 1. A part of the bug report for bug id 139050 of BIRT products of Eclipse projects with its three
comments and summary.

The authors of this paper have proposed models to predict the potential number of bugs to be
fixed over a long run in the software. To understand the effect of summary_entropy and
comment_entropy metric in the bug fixing process, the following cases have been designed:

Case 1: Prediction of latent bugs based on calendar time (month).
Case 2: Prediction of latent bugs based on summary_entropy.
Case 3: Prediction of latent bugs based on comment_entropy.

These cases are summarized as follows:

Case 1 Time vs. bugs
In this case, the software reliability growth models in [7–9,12,14,15] have
been used to predict the potential bugs lying dormant in the software.

Case 2
Summary_entropyvs.

bugs
In this case, summary_entropy based bug prediction models have
been proposed.

Case 3
Comment_entropyvs.

bugs
In this case, comment_entropy based bug prediction models have
been proposed.

The summary and comment entropy is also a function of time. Consequently, the proposed
models are alsopredicting the number of bugs in a given time window.The proposed models have
been empirically validated on different products of Eclipse project. The performance of the proposed
modelshave been validated using different performance measures, namely R2, bias, variation, mean
squared error (MSE) and root mean squared prediction error (RMSPE).

The rest of the paper is organized as follows: Section 2 discusses the data collection and model
building for bug prediction approaches. Section 3 describes the result and analysis. Section 4 deals
with related works and finally, the paper is concluded in Section 5 with future research directions.

Figure 1. A part of the bug report for bug id 139050 of BIRT products of Eclipse projects with its three
comments and summary.

The authors of this paper have proposed models to predict the potential number of bugs to be fixed
over a long run in the software. To understand the effect of summary_entropy and comment_entropy
metric in the bug fixing process, the following cases have been designed:

Case 1: Prediction of latent bugs based on calendar time (month).
Case 2: Prediction of latent bugs based on summary_entropy.
Case 3: Prediction of latent bugs based on comment_entropy.

These cases are summarized as follows:

Case 1 Time vs. bugs
In this case, the software reliability growth models in [7–9,12,14,15]
have been used to predict the potential bugs lying dormant in
the software.

Case 2
Summary_entropyvs.

bugs
In this case, summary_entropy based bug prediction models have
been proposed.

Case 3
Comment_entropyvs.

bugs
In this case, comment_entropy based bug prediction models have
been proposed.

The summary and comment entropy is also a function of time. Consequently, the proposed
models are alsopredicting the number of bugs in a given time window.The proposed models
have been empirically validated on different products of Eclipse project. The performance of the
proposed modelshave been validated using different performance measures, namely R2, bias, variation,
mean squared error (MSE) and root mean squared prediction error (RMSPE).

The rest of the paper is organized as follows: Section 2 discusses the data collection and model
building for bug prediction approaches. Section 3 describes the result and analysis. Section 4 deals
with related works and finally, the paper is concluded in Section 5 with future research directions.

Entropy 2019, 21, 91 4 of 32

2. Data Collection, Preprocessing and Model Building for Bug Prediction

2.1. Data Collection

To validate the entropy-based proposed models, the authors considered different products of the
Eclipse project [22]. The reports of the bug were taken for status as “CLOSED”, “RESOLVED” and
“VERIFIED” and resolution as “FIXED” and “WORKSFORME”. Table 1 shows the number of bug
reports in each product of the Eclipse project.

Table 1. Number of bug reports in each product of Eclipse project.

Product Number of Bugs Observation Period

BIRT 15,914 January2005–May 2018
CDT 12,438 January 2002–June 2018

Community 14,881 March 2002–June 2018
EclipseLink 9447 March 2002–June 2018

EMF 5413 September 2002–June 2018
Equinox 8066 October 2001–June 2018

Orion 7425 December 2010–June 2018
Platform 39,434 October 2001–June 2018

2.2. Extraction ofthe Terms and Its Weight Using Summary Attributes

Summary weight attribute is derived from the bug attributessubmitted by the users. To compute
the summary weight of a reported bug, the authors pre-processed the bug summary in Rapid Miner
tools with the steps Tokenization, Stop Word Removal, Stemming to base stem, Feature Reduction and
InfoGain [23].

2.3. Entropy

The primary objective of software development is to deliver high quality product at low cost.
Bug reporting on software repository system is inan irregular state. Irregularity leads to uncertainty.
The size of the software repositoriesis also growing at an enormous rate. This increased size usually
has a lot of noise and uncertainty. The representation, measurement, modeling, and processing
of uncertainty embedded throughout the data analysis process has a significant impact on the
performance of learning from software repositories. If these uncertainties and noises are not handled
properly, the performance of the learning strategy can be greatly reduced. To combine and consider
these two phenomena, the authors utilized entropy as an attribute. Entropy is used to enhance the
software project quality. In general, entropyis a measure of uncertainty in a software system. This paper
thus calculated the summary_entropy and comment_entropyfor model building using Shannon’s
entropy, where a random variable is defined by A = {a1, a2, a3, . . . , an} and its probability distribution
is P = {p1, p2, p3, . . . , pn}, the random uncertainty is measured by Shannon’sentropy, Sn is defined as:

Sn = −pi log 2pi (1)

In the case of summary_entropy, p is calculated as:

pi =
Total number o f occurence o f terms in ith bug report

Total number o f terms

In the case of comment_entropy, p is calculated as:

pi =
Number o f comments in ith bug report

Total number o f comments

Entropy 2019, 21, 91 5 of 32

In this study, the authors considered top 200 terms based on weight from the corpus of total terms.
For each bug report, efforts was made to count the summary terms found in the set of 200 top terms
and after which it was divided by the total number of terms considered in the study, i.e., 200.

2.4. Software Reliability Growth Modeling

The software reliability growth models measure the reliability growth of software in terms of
number of bugs fixed in respect of the execution of the program. The software reliability growth models
available in literature follow different types of growth curves. The growth curve may be exponential,
S-shaped or some mix of both. There is also a separate category of models which incorporate the
concept of bug dependency and followan S-shaped growth curve. The models developed in the
literature are based on either calendar time or testing effort functions. In this paper, the auhors
developed software reliability growth models based on summary and comment entropy. To validate
the performance of the proposed models, the paper comparesthe software reliability growth models
which follow exponential, S-shaped and or a mixture of both growth curves.

The block diagram of the proposed methodology is given in Figure 2.

Entropy 2019, 21, x FOR PEER REVIEW 5 of 32

2.4. Software Reliability Growth Modeling

The software reliability growth models measure the reliability growth of software in terms of
number of bugs fixed in respect of the execution of the program. The software reliability growth
models available in literature follow different types of growth curves. The growth curve may be
exponential, S-shaped or some mix of both. There is also a separate category of models which
incorporate the concept of bug dependency and followan S-shaped growth curve. The models
developed in the literature are based on either calendar time or testing effort functions. In this paper,
the auhors developed software reliability growth models based on summary and comment entropy.
To validate the performance of the proposed models, the paper comparesthe software reliability
growth models which follow exponential, S-shaped and or a mixture of both growth curves.

The block diagram of the proposed methodology is given in Figure 2.

Figure 2. Block diagram of proposed methodology.

In the following section, the paper revisits the software reliability growth models which have
been used to compare them with the proposed work.

2.4.1. Software Reliability Growth Models (Time vs. Bugs, i.e.,Case 1 in Introduction Section)

In this section, the software reliability growth models, namely G-O model [14],Yamada-delayed
S-shaped model [9], Kapur-3-stage model [15], K-G model [7], Error Dependency model [8],
Huang et al. model 1 [12] and Huang et al. model 2 [12], have all been revisited. These models have
been validated on different products of eclipse project, namely BIRT, CDT, Community, EclipseLink,
EMF, Equinox, Orion and Platform.

The models developed in the literature for this study, considered different testing and
debugging environments which resulted to the development of models with different mean value
functions. These models are based on NHPP property. x(t) described the cumulative number of bugs
detected/fixed in a time interval [0,t].

The bug detection/fixing can be described as:

()() ()(()), () ()dx t dx ty x t or g t y x t
dt dt

∝ − = − , (2)

Here, g(t) is the time dependent fixing rate of bug per remaining bug.SolvingEquation (2), we
get the following at time t=0, x(0) = 0:

Figure 2. Block diagram of proposed methodology.

In the following section, the paper revisits the software reliability growth models which have
been used to compare them with the proposed work.

2.4.1. Software Reliability Growth Models (Time vs. Bugs, i.e.,Case 1 in Introduction Section)

In this section, the software reliability growth models, namely G-O model [14],Yamada-delayed
S-shaped model [9], Kapur-3-stage model [15], K-G model [7], Error Dependency model [8], Huang
et al. model 1 [12] and Huang et al. model 2 [12], have all been revisited. These models have been
validated on different products of eclipse project, namely BIRT, CDT, Community, EclipseLink, EMF,
Equinox, Orion and Platform.

The models developed in the literature for this study, considered different testing and debugging
environments which resulted to the development of models with different mean value functions.
These models are based on NHPP property. x(t) described the cumulative number of bugs
detected/fixed in a time interval [0,t].

Entropy 2019, 21, 91 6 of 32

The bug detection/fixing can be described as:

dx(t)
dt

∝ (y − x(t)), or
dx(t)

dt
= g(t)(y − x(t)), (2)

Here, g(t) is the time dependent fixing rate of bug per remaining bug.SolvingEquation (2), we get
the following at time t = 0, x(0) = 0:

x(t) = y
(

1 − exp−
∫ t

0 g(t)dt
)

(3)

From the above Equation (3), the paper derived different mean value functions depending upon
the rate of bug fixing which are given as follows:

Model 1. G-O model [14]:

If g(t) = g, Equation (3) reduces to:

x(t) = y(1 − exp(−gt)) (4)

Model 2. Yamada-delayed S-shaped model [9]:

If g(t) = g2t
1+gt , Equation (3) reduces to:

x(t) = y(1 − (1 + gt) exp(−gt)) (5)

Model 3. Kapur-3-stage model [15]:

If g(t) = g3t2

1+gt+ g2t2
2

, Equation (3) reduces to:

x(t) = y
(

1 − (1 + gt +
g2t2

2
) exp(−gt)

)
(6)

Model 4. K-G model [7]:

If g(t) = g
(1+β exp(−gt)) , Equation(3) reduces to:

x(t) = y
(1 − exp(−gt))
(1 + β exp(−gt))

(7)

During software development, after the design phase of the software, programmers write the
code in a programming language to implement it. During the writing of codes, programmers
generate different types of errors. Some errors are independent in the sense that they can be removed
independently. This means the removal of the errors are not dependent on any other error. There
is another category of errors which are known as dependent errors whose removals are dependent
on those errors on which they are dependent on, and the fixing of these dependent bugs/errors
follow different types of debugging time lag functions denoted by θ(t). Based on these assumptions,
bug dependency models have been proposed in literature as follows [12,13]: software consists of both
dependent and independent bugs, hence, the equations for them could be written thus:

y = y1 + y2 (8)

where y1 and y2 are the number of independent and dependent bugs respectively.

Entropy 2019, 21, 91 7 of 32

Let x(t) represent the mean number of bugs removed in time [t, t + ∆t]. The fixing of independent
and dependent bugs follows an NHPP property:

x(t) = x1(t) + x2(t) (9)

In the above equation, x1(t) and x2(t) denote the mean value functions of independent and
dependent bugs fixed in a time interval. The fixing of independent bugs follows exponential growth
curves as these bugs are simple in nature and removed immediately. The following differential
equation has thus been written as follows in [14]:

dx1(t)
dt

= r × [y1 − x1(t)] (10)

Solving Equation (10), leads to obtaining the following results at time t = 0, x(0) = 0.

x1(t) = y1(1 − exp(−rt)) (11)

For the dependent bug fixing phenomenon, the following equation has be written in the following
manner [8]:

dx2(t)
dt

= c × [y2 − x2(t)]×
x1(t − θ(t))

y
(12)

In the paragraphs that follow, the authors presentthe bug dependency models as proposed
in [8,12]. The developed software reliability growth models are based on dependency of the errors and
various debugging time lag functions.

Model 5. Error Dependency Model [8]:

Here, the following took place:

y
1
= qy, and y

2
= (1 − q)y, 0 ≤ q ≤ 1 (13)

Putting the value of x1(t) from Equation (11) in Equation (12) and by taking θ(t) = 0, we get the
following:

dx2(t)
dt

= c × [y2 − x2(t)]×
y1(1 − exp(−rt))

y
(14)

Solving Equation (14) and using Equation (9), the following results were obtained at time
t = 0, x2(0) = 0:

x(t) = y
(

1 − q exp[−rt]− (1 − q) exp
[qc

r
(1 − exp[−rt])− tqc

])
(15)

Model 6. Huang et al. Model 1 [12]:

If θ(t) =
[

1
r log(1 + rt)

]
Equation (12) becomes:

dx2(t)
dt

= c × [y2 − x2(t)]×
y1(1 − (1 + rt) exp(−rt))

y
(16)

Solving Equation (16) and using Equation (9), we get the following at time t = 0, x2(0) = 0

x(t) = y
(

1 − q(1 + rt) exp[−rt]− (1 − q) exp
[

2qc
r

(1 − exp[−rt])− tqc(1 + exp[−rt])
])

(17)

Entropy 2019, 21, 91 8 of 32

Model 7. Huang et al. Model 2 [12]:

If θ(t) =
[

1
r log

(
(ψ+1)

1+ψ exp(−rt)

)]
Equation (12) becomes:

dx2(t)
dt

= c × [y2 − x2(t)]×
y1(1 − exp(−rt))
y(1 + ψ exp(−rt))

(18)

Solving Equation (14) and using Equation (9), we get the following at time t = 0, x2(0) = 0

x(t) = y

1 − q
(1 + ψ) exp[−rt]
1 + ψ exp[−rt]

− (1 − q) exp[−qtc]
(

1 + ψ

1 + ψ exp[−rt]

) qc(1+ψ)
rψ

 (19)

2.4.2. Entropy-Based Software Reliability Growth Models (Entropy Vs bugs, i.e., Case 2 and Case 3 in
the Introduction Section)

This section proposes a summary and comments of entropy metric-based software reliability
growth models in the line of the models proposed in [7–9,12,14,15]. The proposed models are based
on entropy derived from the bug summary reported by the user and comments submitted by
different developers/active users. In this section, the models based on summary and comments
have the same functional form as has been made known in the same notation for entropy variable
derived from the summary and comments, butthis paper has validated it for the both approaches,
i.e.,summary_entropyvs bugs and comment_entropyvs bugs by taking different data sets.

Let x(H(t)) be the mean value function of cumulative number of bugs fixed in entropy interval
[0, H(t)] here, entropy is a function of time window. The bug detection/fixing can thus be defined as:

dx(t)/dt
dH(t)/dt

∝ [p − x(H(t))], or
dx(t)/dt
dH(t)/dt

= k(H(t))(p − x(H(t))) (20)

where k(H(t)) is the rate of bug fixed per remaining bug at entropy value H(t).
Solving above equation with the initial conditions at t = 0, H(0) = 0 leads to thefollowing:

x(t) = p
(

1 − exp−
∫ t

0 k(H(t))d(H(t))
)

(21)

By taking different values of k(H(t)) in Equation (21), the following proposed models can be
derivedbased on these values:

Model 8:

If k(H(t)) = k Equation(21) reduces to:

x(H(t)) = p(1 − exp(−kH(t))) (22)

Model 9:

If k(H(t)) = k2 H(t)
1+kH(t) , Equation (21) reduces to:

x(H(t)) = p(1 − (1 + kH(t)) exp(−kH(t))) (23)

Model 10:

If k(H(t)) = k3 H(t)2

1+kH(t)+ k2 H(t)2
2

, Equation (21) reduces to

x(H(t)) = p

(
1 − (1 + kH(t) +

k2H(t)2

2
) exp(−kH(t))

)
(24)

Entropy 2019, 21, 91 9 of 32

Model 11:

If k(H(t)) = k
(1+δ exp(−kH(t))) , Equation (21) reduces to:

x(H(t)) = p
(1 − exp(−kH(t)))
(1 + δ exp(−kH(t)))

(25)

Let p1 and p2 be the proportion of independent and dependent software bugs lying dormant in
the software. The following equation where p is the sum of both independent and dependent bugs,
can be written:

p = p1 + p2 (26)

Let x(H(t)) represents the mean number of bugs removed in time [t, t + ∆t]. The fixing of
independent and dependent bugs follows an NHPP property:

x(H(t)) = x1(H(t)) + x2(H(t)) (27)

In the above equation, x1(H(t)) and x2(H(t)) denote the mean value functions of independent and
dependent bugs fixed in time interval [0,t].

The fixing of independent bugs follows exponential growth curves as these bugs are simple
in nature and removed immediately. The following equations could thusemerge from the
differential equation:

dx1(t)/dt
dH(t)/dt

∝ [p1 − x1(H(t))], or
dx1(t)/dt
dH(t)/dt

= l(H(t))(p1 − x1(H(t))) (28)

Solving Equation (28), The following is ensured at time t = 0, x1(H(0)) = 0

x1(H(t)) = p1(1 − exp(−lH(t))) (29)

For the dependent bug fixing phenomenon, the equations emanating from it could be written thus:

dx2(t)/d(t)
dH(t)/d(t)

= d × [p2 − x2 H(t)]× x1(H(t)− θ(H(t)))
p

(30)

In the following, the bug dependency models are presented. The developed software reliability
growth models are based on dependency of the errors and various debugging time lag functions.

Thus, the following steps are taken:

p
1
= qp, and p

2
= (1 − q)p, 0 ≤ q ≤ 1 (31)

Model 12:

Putting the value of x1(H(t)) from Equation (29) and by taking ϕ(H(0)) = 0 in Equation (30),
the following ensues:

dx2(t)/d(t)
dH(t)/d(t)

= d × [p2 − x2(H(t))]× p1(1 − exp(−lH(t)))
p

(32)

Solving Equation (32) and using Equation (27), the authors arrive at the following at time
t = 0, x2(H(0)) = 0

xH(t) = p
(

1 − q exp[−lH(t)]− (1 − q) exp
[

qd
l
(1 − exp[−lH(t)])− H(t)qd

])
(33)

The following models are developed using different debugging time lag functions.

Entropy 2019, 21, 91 10 of 32

Model 13:

If θ(H(t)) =
[

1
l log(1 + lH(t))

]
, Equation (30) reduces to:

dx2(t)/d(t)
dH(t)/d(t)

= d × [p2 − x2 H(t)]× p1(1 − (1 + lH(t)) exp(−lH(t)))
p

(34)

Solving Equation (34) and using Equation (27), the following results emerge at time
t = 0, x2(H(0)) = 0

xH(t) = p
(

1 − q(1 + lH(t)) exp[−lH(t)]− (1 − q) exp
[

2qd
k (1 − exp[−lH(t)])− H(t)qd(1 + exp[−lH(t)])

])
(35)

Model 14:

If θ(H(t)) =
[

1
l log

(
(ψ+1)

1+ψ exp(−lH(t))

)]
, Equation (30) reduces to:

dx2(t)/d(t)
dH(t)/d(t)

= d × [p2 − x2(H(t))]× p1(1 − exp(−lH(t)))
p(1 + ψ exp(−lH(t)))

(36)

Solving Equation (36) and using Equation (27), the following results emerge at time
t = 0, x2(H(0)) = 0:

xH(t) = p

1 − q
(1 + ψ) exp[−lH(t)]
1 + ψ exp[−lH(t)]

− (1 − q) exp[−qH(t)d]
(

1 + ψ

1 + ψ exp[−kH(t)]

) qd(1+ψ)
plψ

 (37)

The value of parameters for the models (model 1 to model 14) have been estimated for different
products of the Eclipse project. The values of parameters y and p give the potential number of bugs
lying dormant in the software. x(t) and x(H(t)) gives the number of bugs fixed. The differences
y − x(t) and p − x(H(t)) indicate the number of bugs still lying in the software and this quantity
determines the reliability level of the software. It is the quantitative quality measurement of the
software product. The parameter value q indicates the proportion of independent bugs. With the help
of this parameter, we can find the proportion of independent and dependent bugs still lying dormant
in software. The values of β and ψ give the nature of the growth curves. A high value indicates that
the bugs are complex and will take more time in fixing. The bug fixing rate tells us about the bug
fixing efficiency.

3. Results and Analysis

So far, the authors have validated the proposed summary_entropy and comment_entropy-based
software reliability growth models on eight datasets, namely the BIRT, CDT, Community,
EclipseLink, EMF, Equinox, Orion and Platform products of Eclipse project. In our study, we have
developed three cases, namely calendar time vs. bugs (case1), summary_entropyvsbugs(case2) and
comment_entropyvsbugs(case3). The paper identified a total number of 168 cases, i.e., eight datasets
three cases seven models. The paper has estimated the unknown parameters of the models using the
Statistical Package for Social Sciences Software (SPSS, https://www.ibm.com/products/spss-statistics) and
tabulated the results in Tables 2–9. The performance measures, namely R2, MSE, Bias, Variance and
RMSPE of all the models have been tabulated in Tables 10–17. In the performance table, the bold value
indicates the maximum value of R2 across all the cases for all the products.

https://www.ibm.com/products/spss-statistics

Entropy 2019, 21, 91 11 of 32

Table 2. Parameter Estimates for BIRT.

Models Prediction Classes Actual Bugs
Parameter Estimates

y g c q r ψ β

Model 1 Case 1

15,914

17,831 0.019 - - - - -
Model 8 Case 2 26,390 0.001 - - - - -
Model 8 Case 3 27,393 0.060 - - - - -

Model 2 Case 1 16,302 0.047 - - - - -
Model 9 Case 2 20,305 0.002 - - - - -
Model 9 Case 3 20,398 0.205 - - - - -

Model 3 Case 1 15,923 0.074 - - - - -
Model 10 Case 2 17,427 0.004 - - - - -
Model 10 Case 3 17,489 0.381 - - - - -

Model 4 Case 1 16,018 0.056 - - - - 5.473
Model 11 Case 2 26,364 0.001 - - - - 1.966
Model 11 Case 3 24,895 0.136 - - - - 2.166

Model 5 Case 1 16,230 - 0.373 0.168 0.021 - -
Model 12 Case 2 26,581 - 0.028 0.024 0.020 - -
Model 12 Case 3 22,901 - 0.561 0.202 0.183 - -

Model 6 Case 1 16,125 - 0.074 0.677 0.053 - -
Model 13 Case 2 28,425 - 0.011 0.062 0.009 - -
Model 13 Case 3 18,254 - 0.439 0.418 0.334 - -

Model 7 Case 1 16,143 - 0.180 0.321 0.035 1.000 -
Model 14 Case 2 28,485 - 0.020 0.032 0.009 0.992 -
Model 14 Case 3 28,131 - 0.617 0.117 0.244 0.000 -

Table 3. Parameter Estimates for CDT.

Models Prediction Classes Actual Bugs
Parameter Estimates

y g c q r ψ β

Model 1 Case 1

12,438

20,039 0.005 - - - - -
Model 8 Case 2 29,190 0.001 - - - - -
Model 8 Case 3 22,449 0.061 - - - - -

Model 2 Case 1 16,437 0.015 - - - - -
Model 9 Case 2 14,343 0.003 - - - - -
Model 9 Case 3 12,697 0.318 - - - - -

Model 3 Case 1 13,601 0.028 - - - - -
Model 10 Case 2 12,365 0.006 - - - - -
Model 10 Case 3 11,629 0.549 - - - - -

Model 4 Case 1 12,591 0.031 - - - - 15.207
Model 11 Case 2 18,114 0.002 - - - - 2.024
Model 11 Case 3 22,114 0.063 - - - - 0.016

Model 5 Case 1 13,907 - 0.580 0.058 0.005 - -
Model 12 Case 2 26,113 - 0.011 0.057 0.015 - -
Model 12 Case 3 24,188 - 0.094 0.476 0.120 - -

Model 6 Case 1 13,717 - 0.160 0.114 0.027 - -
Model 13 Case 2 25,343 - 0.026 0.026 0.024 - -
Model 13 Case 3 26,486 - 0.376 0.119 1.000 - -

Model 7 Case 1 20,952 - 0.206 0.030 0.035 1.00 -
Model 14 Case 2 29,598 - 0.004 0.996 0.001 0.98 -
Model 14 Case 3 22,034 - 0.069 0.918 0.067 0.00 -

Entropy 2019, 21, 91 12 of 32

Table 4. Parameter Estimates for Community.

Models Prediction Classes Actual Bugs
Parameter Estimates

y g c q r ψ β

Model 1 Case 1

14,880

18,764 0.006 - - - - -
Model 8 Case 2 21,459 0.001 - - - - -
Model 8 Case 3 25,765 0.057 - - - - -

Model 2 Case 1 36,742 0.008 - - - - -
Model 9 Case 2 15,904 0.003 - - - - -
Model 9 Case 3 16,347 0.250 - - - - -

Model 3 Case 1 20,035 0.022 - - - - -
Model 10 Case 2 13,751 0.006 - - - - -
Model 10 Case 3 13,945 0.468 - - - - -

Model 4 Case 1 25,352 0.017 - - - - 15.207
Model 11 Case 2 22,653 0.002 - - - - 1.440
Model 11 Case 3 31,681 0.079 - - - - 1.169

Model 5 Case 1 21,790 - 0.174 0.046 0.017 - -
Model 12 Case 2 21,125 - 0.009 0.129 0.004 - -
Model 12 Case 3 27,363 - 0.193 0.445 0.094 - -

Model 6 Case 1 25,043 - 0.273 0.032 0.028 - -
Model 13 Case 2 24,922 - 0.024 0.035 0.022 - -
Model 13 Case 3 26,304 - 0.237 0.233 0.472 - -

Model 7 Case 1 20,385 - 0.105 0.068 0.029 0.971 -
Model 14 Case 2 19,304 - 0.003 0.755 0.002 1.000 -
Model 14 Case 3 28,628 - 0.089 0.750 0.104 0.993 -

Table 5. Parameter Estimates for EclipseLink.

Models Prediction Classes Actual Bugs
Parameter Estimates

y g c q r ψ β

Model1 Case 1

9447

9308 0.011 - - - - -
Model 8 Case 2 15,517 0.001 - - - - -
Model 8 Case 3 15,552 0.062 - - - - -

Model 2 Case 1 11,259 0.021 - - - - -
Model 9 Case 2 13,609 0.980 - - - - -
Model 9 Case 3 10,221 0.270 - - - - -

Model 3 Case 1 8791 0.042 - - - - -
Model 10 Case 2 10,175 0.006 - - - - -
Model 10 Case 3 8814 0.498 - - - - -

Model 4 Case 1 28,848 0.008 - - - - 2.952
Model 11 Case 2 19,976 0.002 - - - - 3.756
Model 11 Case 3 19,678 0.077 - - - - 0.866

Model 5 Case 1 9469 - 0.147 0.107 0.030 - -
Model 12 Case 2 14,495 - 0.064 0.016 0.000 - -
Model 12 Case 3 10,343 - 0.746 0.254 0.210 - -

Model 6 Case 1 16,686 - 0.080 0.071 0.099 - -
Model 13 Case 2 12,320 - 0.048 0.030 0.021 - -
Model 13 Case 3 18,645 - 0.249 0.197 0.534 - -

Model 7 Case 1 9574 - 0.064 0.512 0.016 0.723 -
Model 14 Case 2 11,849 - 0.012 0.896 0.002 1.000 -
Model 14 Case 3 11,609 - 0.207 0.681 0.187 0.955 -

Entropy 2019, 21, 91 13 of 32

Table 6. Parameter Estimates for EMF.

Models Prediction Classes Actual Bugs
Parameter Estimates

y g c q r ψ β

Model1 Case 1

5413

8327 0.005 - - - - -
Model 8 Case 2 10,924 0.001 - - - - -
Model 8 Case 3 13,177 0.042 - - - - -

Model 2 Case 1 7767 0.015 - - - - -
Model 9 Case 2 7415 0.999 - - - - -
Model 9 Case 3 5913 0.288 - - - - -

Model 3 Case 1 6228 0.029 - - - - -
Model 10 Case 2 6045 0.010 - - - - -
Model 10 Case 3 5249 0.518 - - - - -

Model 4 Case 1 5173 0.053 - - - - 69.853
Model 11 Case 2 4045 0.196 - - - - 266.921
Model 11 Case 3 10,766 0.065 - - - - 0.259

Model 5 Case 1 5332 0.006 0.640 0.067 - - -
Model 12 Case 2 10,082 0.306 0.071 0.020 - - -
Model 12 Case 3 12,337 0.061 0.060 0.746 - - -

Model 6 Case 1 7457 - 0.552 0.021 0.038 - -
Model 13 Case 2 8304 - 0.006 0.432 0.008 - -
Model 13 Case 3 12,752 - 0.345 0.120 0.822 - -

Model 7 Case 1 4942 - 0.725 0.044 0.018 1.00 -
Model 14 Case 2 11,233 - 0.009 0.201 0.004 0.00 -
Model 14 Case 3 12,653 - 0.093 0.430 0.104 0.00 -

Table 7. Parameter Estimates for Equinox.

Models Prediction Classes Actual Bugs
Parameter Estimates

y g c q r ψ β

Model 1 Case 1

8066

11,515 0.009 - - - - -
Model 8 Case 2 9567 0.002 - - - - -
Model 8 Case 3 12,531 0.076 - - - - -

Model 2 Case 1 8121 0.038 - - - - -
Model 9 Case 2 10,015 0.005 - - - - -
Model 9 Case 3 9360 0.259 - - - - -

Model 3 Case 1 7749 0.062 - - - - -
Model 10 Case 2 8588 0.009 - - - - -
Model 10 Case 3 8271 0.459 - - - - -

Model 4 Case 1 7782 0.048 - - - - 6.259
Model 11 Case 2 14,583 0.002 - - - - 1.743
Model 11 Case 3 15,143 0.094 - - - - 0.961

Model 5 Case 1 7931 - 0.435 0.107 0.019 - -
Model 12 Case 2 17,575 - 0.649 0.002 0.000 - -
Model 12 Case 3 20,563 - 0.190 0.218 0.164 - -

Model 6 Case 1 8207 - 0.232 0.677 0.031 - -
Model 13 Case 2 17,900 - 0.041 0.025 0.040 - -
Model 13 Case 3 19,612 - 0.370 0.108 0.809 - -

Model 7 Case 1 7633 - 0.731 0.060 0.037 0.991 -
Model 14 Case 2 26,896 - 0.031 0.020 0.018 0.003 -
Model 14 Case 3 17,406 - 0.144 0.415 0.103 0.007 -

Entropy 2019, 21, 91 14 of 32

Table 8. Parameter Estimates for Orion.

Models Prediction Classes Actual Bugs
Parameter Estimates

y g c q r ψ β

Model 1 Case 1

7425

10,502 0.016 - - - - -
Model 8 Case 2 50,546 0.000 - - - - -
Model 8 Case 3 70,489 0.009 - - - - -

Model 2 Case 1 7573 0.058 - - - - -
Model 9 Case 2 9382 0.991 - - - - -
Model 9 Case 3 9382 0.006 - - - - -

Model 3 Case 1 7082 0.096 - - - - -
Model 10 Case 2 7813 0.011 - - - - -
Model 10 Case 3 8382 0.377 - - - - -

Model 4 Case 1 10,502 0.016 - - - - 0.000
Model 11 Case 2 6043 0.037 - - - - 1936.012
Model 11 Case 3 14,352 0.134 - - - - 3.100

Model 5 Case 1 11,633 - 0.251 0.050 0.515 - -
Model 12 Case 2 29,024 - 0.036 0.017 0.019 - -
Model 12 Case 3 17,483 - 0.253 0.388 0.068 - -

Model 6 Case 1 12,138 - 0.170 0.068 0.667 - -
Model 13 Case 2 29,752 - 0.023 0.026 0.030 - -
Model 13 Case 3 19,846 - 0.210 0.181 0.363 - -

Model 7 Case 1 10,181 - 0.022 0.687 0.023 0.00 -
Model 14 Case 2 25,198 - 0.040 0.018 0.019 0.01 -
Model 14 Case 3 21,858 - 0.201 0.233 0.123 0.38 -

Table 9. Parameter Estimates for Platform.

Models Prediction Classes Actual Bugs
Parameter Estimates

y g c q r ψ β

Model 1 Case 1

39,671

38,839 0.014 - - - - -
Model 8 Case 2 77,829 0.000 - - - - -
Model 8 Case 3 52,937 0.083 - - - - -

Model 2 Case 1 34,392 0.037 - - - - -
Model 9 Case 2 49,091 0.001 - - - - -
Model 9 Case 3 40,539 0.277 - - - - -

Model 3 Case 1 33,245 0.061 - - - - -
Model 10 Case 2 40,691 0.002 - - - - -
Model 10 Case 3 36,771 0.475 - - - - -

Model 4 Case 1 38,839 0.014 - - - - 0.000
Model 11 Case 2 65,121 0.001 - - - - 2.239
Model 11 Case 3 66,742 0.064 - - - - 0.076

Model 5 Case 1 38,193 - 0.474 0.031 0.233 - -
Model 12 Case 2 145,329 - 0.024 0.005 0.007 - -
Model 12 Case 3 66,742 - 0.076 0.164 0.064 - -

Model 6 Case 1 38,381 - 0.135 0.106 0.219 - -
Model 13 Case 2 118,171 - 0.012 0.012 0.009 - -
Model 13 Case 3 89,932 - 0.358 0.104 1.000 - -

Model 7 Case 1 37,297 - 0.268 0.760 0.017 0.88 -
Model 14 Case 2 98,807 - 0.008 0.024 0.003 0.00 -
Model 14 Case 3 70,590 - 0.087 0.549 0.104 0.00 -

Entropy 2019, 21, 91 15 of 32

Table 10. Performance Measures for BIRT.

Models Prediction Classes
Performance Measures

R2 Bias MSE Variation RMSPE

Model 1 Case 1 0.954 −163.495 1,194,892.241 1084.230 1096.488
Model 8 Case 2 0.982 −17.696 453,766.553 675.517 675.749
Model 8 Case 3 0.985 −98.599 394,474.665 622.244 630.008

Model 2 Case 1 0.982 −7.395 453,323.773 675.380 675.420
Model 9 Case 2 0.994 69.679 146,078.571 376.984 383.370
Model 9 Case 3 0.994 74.541 150,867.384 382.401 389.599

Model 3 Case 1 0.941 99.646 541,276.388 731.239 737.997
Model 10 Case 2 0.985 122.257 375,407.367 602.281 614.564
Model 10 Case 3 0.985 127.544 381,748.506 606.460 619.727

Model 4 Case 1 0.986 1.244 351,146.125 594.447 594.448
Model 11 Case 2 1.000 23.738 38,455.058 195.273 196.710
Model 11 Case 3 0.999 42.930 12,988.803 105.907 114.277

Model 5 Case 1 0.984 12.355 405,231.593 638.469 638.589
Model 12 Case 2 0.985 4.661 390,022.091 626.473 626.491
Model 12 Case 3 0.998 12.001 57,487.729 240.222 240.522

Model 6 Case 1 0.984 23.937 415,426.803 646.127 646.570
Model 13 Case 2 0.997 96.403 83,831.124 273.878 290.350
Model 13 Case 3 0.990 246.435 266,484.564 455.035 517.481

Model 7 Case 1 0.985 2.000 390,062.997 626.520 626.524
Model 14 Case 2 0.996 −163.103 105,145.596 281.141 325.027
Model 14 Case 3 0.999 51.892 33,526.995 176.151 183.636

Table 11. Performance Measures for CDT.

Models Prediction Classes
Performance Measures

R2 Bias MSE Variation RMSPE

Model 1 Case 1 0.936 −307.488 1,164,072.526 1034.178 1078.922
Model 8 Case 2 0.996 0.905 65,518.687 255.965 255.966
Model 8 Case 3 1.000 6.020 6334.770 79.363 79.591

Model 2 Case 1 0.990 −52.882 189,299.515 431.860 435.086
Model 9 Case 2 0.990 131.072 175,543.721 397.950 418.979
Model 9 Case 3 0.985 169.365 278,993.022 500.309 528.198

Model 3 Case 1 0.993 30.106 134,173.962 365.058 366.298
Model 10 Case 2 0.974 229.204 478,157.939 652.398 691.490
Model 10 Case 3 0.963 282.772 674,920.035 771.336 821.535

Model 4 Case 1 0.994 −18.394 117,906.308 342.882 343.375
Model 11 Case 2 1.000 46.601 8678.597 80.665 93.159
Model 11 Case 3 1.000 7.838 6412.712 79.695 80.079

Model 5 Case 1 0.993 −23.043 136,263.595 368.419 369.139
Model 12 Case 2 0.999 40.189 22,924.823 145.978 151.409
Model 12 Case 3 1.000 4.323 6046.042 77.636 77.756

Model 6 Case 1 0.993 25.781 127,341.016 355.916 356.849
Model 13 Case 2 0.999 26.686 30,079.843 171.370 173.435
Model 13 Case 3 0.999 63.130 24,504.164 143.244 156.538

Model 7 Case 1 0.988 −46.152 218,158.724 464.789 467.075
Model 14 Case 2 1.000 −0.397 1040.268 32.251 32.253
Model 14 Case 3 1.000 5.465 6319.237 79.306 79.494

Entropy 2019, 21, 91 16 of 32

Table 12. Performance Measures for Community.

Models Prediction Classes
Performance Measures

R2 Bias MSE Variation RMSPE

Model 1 Case 1 0.870 −377.826 2,651,431.333 1583.881 1628.322
Model 8 Case 2 0.985 38.621 280,844.882 528.539 529.948
Model 8 Case 3 0.990 −110.623 212,211.498 447.185 460.664

Model 2 Case 1 0.997 46.663 53,829.332 227.270 232.011
Model 9 Case 2 0.988 176.111 248,543.613 466.399 498.541
Model 9 Case 3 0.986 189.262 282,806.236 496.977 531.795

Model 3 Case 1 0.990 141.903 213,061.200 439.232 461.586
Model 10 Case 2 0.968 287.249 645,863.042 750.567 803.656
Model 10 Case 3 0.967 141.903 213,061.200 439.232 461.586

Model 4 Case 1 0.998 −39.074 36,042.701 185.785 189.849
Model 11 Case 2 1.000 24.461 5645.190 71.041 75.134
Model 11 Case 3 1.000 24.311 7576.764 83.581 87.045

Model 5 Case 1 0.979 −49.445 426,340.972 651.073 652.948
Model 12 Case 2 0.998 58.820 40,477.491 192.400 201.190
Model 12 Case 3 0.999 12.254 11,536.524 106.707 107.408

Model 6 Case 1 0.990 22.104 194,491.013 440.457 441.011
Model 13 Case 2 0.997 43.838 63,797.015 248.747 252.581
Model 13 Case 3 0.992 164.222 164,655.758 371.062 405.778

Model 7 Case 1 0.959 260.299 838,248.268 877.777 915.559
Model 14 Case 2 0.999 23.633 15,895.979 123.845 126.079
Model 14 Case 3 0.999 24.528 10,470.253 99.341 102.324

Table 13. Performance Measures for EclipseLink.

Models Prediction Classes
Performance Measures

R2 Bias MSE Variation RMSPE

Model 1 Case 1 0.890 −68.855 678,238.979 820.669 823.553
Model 8 Case 2 0.948 −21.774 323,428.341 568.291 568.708
Model 8 Case 3 0.987 10.891 79,180.202 281.179 281.390

Model 2 Case 1 0.934 137.527 407,579.417 623.431 638.419
Model 9 Case 2 0.988 108.322 123,830.963 334.809 351.896
Model 9 Case 3 0.985 94.631 95,383.522 293.987 308.842

Model 3 Case 1 0.898 205.498 634,357.651 769.499 796.466
Model 10 Case 2 0.958 165.170 259,656.410 482.053 509.565
Model 10 Case 3 0.961 153.624 238,577.579 463.656 488.444

Model 4 Case 1 0.969 54.919 192,514.466 435.314 438.765
Model 11 Case 2 0.997 27.387 20,699.431 141.242 143.873
Model 11 Case 3 1.000 8.512 2201.280 46.139 46.918

Model 5 Case 1 0.929 152.657 441,328.862 646.548 664.326
Model 12 Case 2 0.943 −95.121 353,611.586 586.995 594.652
Model 12 Case 3 0.992 54.938 49,197.141 214.893 221.804

Model 6 Case 1 0.950 1.184 307,477.827 554.506 554.507
Model 13 Case 2 0.955 165.150 280,454.177 503.170 529.579
Model 13 Case 3 0.993 77.748 44,252.107 195.467 210.362

Model 7 Case 1 0.940 91.341 373,154.792 603.996 610.864
Model 14 Case 2 0.957 155.151 263,713.386 489.532 513.530
Model 14 Case 3 0.996 20.478 23,867.677 153.128 154.492

Entropy 2019, 21, 91 17 of 32

Table 14. Performance Measures for EMF.

Models Prediction Classes
Performance Measures

R2 Bias MSE Variation RMSPE

Model 1 Case 1 0.867 −194.454 566,339.067 726.998 752.555
Model 8 Case 2 0.992 −5.880 34,692.570 186.167 186.259
Model 8 Case 3 0.998 9.949 9583.560 97.389 97.896

Model 2 Case 1 0.953 −95.060 199,671.668 436.618 446.846
Model 9 Case 2 0.999 25.565 4533.714 62.291 67.333
Model 9 Case 3 0.990 38.686 41,304.357 199.519 203.235

Model 3 Case 1 0.971 −69.054 124,805.672 346.464 353.278
Model 10 Case 2 0.997 32.121 13,362.272 111.043 115.595
Model 10 Case 3 0.982 47.216 74,767.394 269.329 273.436

Model 4 Case 1 0.980 −35.506 86,137.501 291.336 293.492
Model 11 Case 2 0.790 5.153 895,970.753 946.543 946.557
Model 11 Case 3 0.998 14.328 10,192.590 99.936 100.958

Model 5 Case 1 0.945 −36.387 234,715.476 483.106 484.474
Model 12 Case 2 0.987 −57.478 55,974.800 229.502 236.590
Model 12 Case 3 0.998 12.348 9539.927 96.889 97.673

Model 6 Case 1 0.966 −63.531 143,888.622 373.968 379.327
Model 13 Case 2 0.999 27.787 4036.419 57.134 63.533
Model 13 Case 3 0.997 26.620 13,777.412 114.319 117.377

Model 7 Case 1 0.931 −3.437 292,928.848 541.218 541.229
Model 14 Case 2 1.000 6.864 316.260 16.406 17.784
Model 14 Case 3 0.998 11.915 9511.022 96.794 97.524

Table 15. Performance Measures for Equinox.

Models Prediction Classes
Performance Measures

R2 Bias MSE Variation RMSPE

Model 1 Case 1 0.962 −40.095 242,895.945 491.211 492.845
Model 8 Case 2 0.956 −56.757 278,566.818 524.734 527.794
Model 8 Case 3 0.989 −6.788 68,392.382 261.431 261.519

Model 2 Case 1 0.992 13.917 51,576.341 226.677 227.104
Model 9 Case 2 0.989 87.786 72,045.729 253.652 268.413
Model 9 Case 3 0.987 91.327 81,140.316 269.814 284.851

Model 3 Case 1 0.991 63.199 59,405.042 235.395 243.731
Model 10 Case 2 0.973 145.920 171,480.372 387.541 414.102
Model 10 Case 3 0.970 152.727 193,297.437 412.277 439.656

Model 4 Case 1 0.993 9.389 45,949.640 214.153 214.359
Model 11 Case 2 1.000 14.159 1736.049 39.186 41.666
Model 11 Case 3 1.000 6.741 1489.955 38.007 38.600

Model 5 Case 1 0.993 22.176 43,161.357 206.566 207.753
Model 12 Case 2 0.993 −68.241 42,137.573 193.599 205.274
Model 12 Case 3 1.000 4.367 1152.694 33.669 33.951

Model 6 Case 1 0.994 44.660 37,420.240 188.217 193.443
Model 13 Case 2 0.997 11.406 18,191.483 134.393 134.876
Model 13 Case 3 0.997 45.049 17,913.479 126.032 133.841

Model 7 Case 1 0.991 82.876 56,042.397 221.752 236.733
Model 14 Case 2 1.000 12.361 4062.648 62.529 63.739
Model 14 Case 3 1.000 3.191 1167.919 34.025 34.175

Entropy 2019, 21, 91 18 of 32

Table 16. Performance Measures for Orion.

Models Prediction Classes
Performance Measures

R2 Bias MSE Variation RMSPE

Model 1 Case 1 0.995 18.588 23,679.888 152.756 153.883
Model 8 Case 2 0.998 −22.362 7555.096 83.994 86.920
Model 8 Case 3 0.993 −37.593 32,104.300 175.189 179.177

Model 2 Case 1 0.996 116.875 151,851.918 371.742 389.682
Model 9 Case 2 0.991 41.627 39,464.244 194.246 198.656
Model 9 Case 3 0.991 44.431 35,004.897 181.744 187.096

Model 3 Case 1 0.932 181.410 309,045.757 525.487 555.919
Model 10 Case 2 0.973 81.913 121,771.764 339.208 348.958
Model 10 Case 3 0.977 83.590 102,003.389 308.247 319.380

Model 4 Case 1 0.995 181.410 309,045.757 525.487 555.919
Model 11 Case 2 0.769 300.134 1,042,674.949 976.009 1021.115
Model 11 Case 3 1.000 4.173 2098.407 45.618 45.808

Model 5 Case 1 0.984 −2.093 17,985.360 134.093 134.110
Model 12 Case 2 1.000 −0.863 1212.484 34.810 34.821
Model 12 Case 3 0.999 6.399 2300.080 47.530 47.959

Model 6 Case 1 0.996 2.455 17,943.138 133.929 133.952
Model 13 Case 2 1.000 8.771 1822.765 41.783 42.694
Model 13 Case 3 0.995 36.389 22,420.814 145.247 149.736

Model 7 Case 1 0.995 19.784 23,315.361 151.407 152.694
Model 14 Case 2 1.000 8.032 1946.990 43.387 44.125
Model 14 Case 3 0.999 6.208 2396.167 48.555 48.951

Table 17. Performance Measures for Platform.

Models Prediction Classes
Performance Measures

R2 Bias MSE Variation RMSPE

Model1 Case 1 0.988 −60.812 1,253,249.581 1117.833 1119.486
Model 8 Case 2 0.986 −225.334 1,406,893.822 1164.525 1186.126
Model 8 Case 3 0.992 390.633 760,803.806 779.878 872.241

Model 2 Case 1 0.968 269.670 3,202,764.241 1769.193 1789.627
Model 9 Case 2 0.988 251.961 1,238,555.994 1084.007 1112.904
Model 9 Case 3 0.981 349.006 1,960,595.755 1356.020 1400.213

Model 3 Case 1 0.941 454.483 6,030,048.031 2413.192 2455.616
Model 10 Case 2 0.968 439.203 3,195,122.116 1732.692 1787.490
Model 10 Case 3 0.954 574.790 4,688,401.115 2087.587 2165.272

Model 4 Case 1 0.988 −60.812 1,253,249.581 1117.833 1119.486
Model 11 Case 2 0.999 61.744 68,204.084 253.755 261.159
Model 11 Case 3 1.000 41.716 17,430.761 125.262 132.026

Model 5 Case 1 0.988 −8.745 1,195,080.065 1093.162 1093.197
Model 12 Case 2 0.995 −14.352 124,215.189 352.149 352.442
Model 12 Case 3 0.998 −454.100 465,100.649 508.816 681.983

Model 6 Case 1 0.988 5.076 1,188,051.280 1089.966 1089.978
Model 13 Case 2 0.998 108.426 210,247.736 445.524 458.528
Model 13 Case 3 0.999 80.470 137,436.012 361.885 370.724

Model 7 Case 1 0.989 114.197 1,134,247.913 1058.871 1065.011
Model 14 Case 2 0.998 51.394 216,738.414 462.706 465.552
Model 14 Case 3 1.000 20.934 13,982.125 116.378 118.246

A comparison of case 1 and case 2, indicates that case 2 gives better performance in 44 cases while
case 1 gives only 10 cases. A comparison of both cases reveals that in two cases both cases have equal
performance. Model 13 and model 14 outperforms across all the products in case 2 in comparison with
case 1.

Entropy 2019, 21, 91 19 of 32

A comparison of case 1 and case 3, reveals that case 3 gives a better performance than case 1 in
48 cases in only eight cases for all the products of Eclipse project. Model 11, model 12, model 13 and
model 14 outperform across all the products in case 3 in comparison with case 1.

Comparing cases 2 and 3, reveals that case 3 gave better performance in 25 cases whilecase 2 gives
better performance in 20 cases. In all, in11 cases both the cases gave equal performance.

The study discovered that the models depending on calendar time, summary_entropy,
and comment_entropy performed better in 18, 64and 73 cases, respectively, out of 168 cases in terms of
various performance measures. We can conclude that the entropy-based models perform best in 137
out of 168 cases.

Summary_entropy metric-based proposed models have performed better in 78.57% cases and
Comment_entropy metric-based proposed models performed better in 85.71% cases in comparison
with time-based models. Comment_entropy-based proposed models performed better in 44.64%
cases in comparison with summary_entropy-based proposed models. The authors conclude that
entropy-based proposed models outperform in 81.55% cases. We also observed that in the cases,
where case 1 i.e., time-based models perform better, it overestimated the value of the potential number
of bugs. The authors concluded that the entropy-based proposed models (model 8 to 14) performed
significantly better in comparison with time-based models (model 1 to 7).

The results analysis arising from the table of performance measures for the different products
reviewed for the study revealed that, model 11 of case 3, model 11 of case 2 andcase 3, model 11 of
case 2, model 14 of case 3, model 14 of case 3, give the best performance for the BIRT, Community,
EclipseLink, EMF and Platform products, respectively. For the CDT and Equinox products model 11 of
case 2 and case 3, model 12 of case 2 and model 14 of case 2 and case 3, gave the best performance.
For the Orion product model 13 and model 14 of case 3 gave the best performance.

The authors have so far presented the goodness of fit curves of proposed models in Figures 3–10
for case 2 and Figures 11–18 for case 3. It was observed that the predicted values of the proposed
models were very close to the observed value. The proposed models exhibit better goodness of fit in
most of the cases in comparison with the existing models.
Entropy 2019, 21, x FOR PEER REVIEW 20 of 32

Figure 3. Goodness of fit curves of proposed models for BIRT.

Figure 4. Goodness of fit curves of proposed models for CDT.

Figure 5. Goodness of fit of curves proposed models for Community.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

16000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 3. Goodness of fit curves of proposed models for BIRT.

Entropy 2019, 21, 91 20 of 32

Entropy 2019, 21, x FOR PEER REVIEW 20 of 32

Figure 3. Goodness of fit curves of proposed models for BIRT.

Figure 4. Goodness of fit curves of proposed models for CDT.

Figure 5. Goodness of fit of curves proposed models for Community.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

16000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 4. Goodness of fit curves of proposed models for CDT.

Entropy 2019, 21, x FOR PEER REVIEW 20 of 32

Figure 3. Goodness of fit curves of proposed models for BIRT.

Figure 4. Goodness of fit curves of proposed models for CDT.

Figure 5. Goodness of fit of curves proposed models for Community.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

16000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 5. Goodness of fit of curves proposed models for Community.Entropy 2019, 21, x FOR PEER REVIEW 21 of 32

Figure 6. Goodness of fit curves of proposed models for EclipseLink.

Figure 7. Goodness of fit curves of proposed models for EMF.

Figure 8. Goodness of fit curves of proposed models for Equinox product.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

1000

2000

3000

4000

5000

6000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 6. Goodness of fit curves of proposed models for EclipseLink.

Entropy 2019, 21, 91 21 of 32

Entropy 2019, 21, x FOR PEER REVIEW 21 of 32

Figure 6. Goodness of fit curves of proposed models for EclipseLink.

Figure 7. Goodness of fit curves of proposed models for EMF.

Figure 8. Goodness of fit curves of proposed models for Equinox product.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

1000

2000

3000

4000

5000

6000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 7. Goodness of fit curves of proposed models for EMF.

Entropy 2019, 21, x FOR PEER REVIEW 21 of 32

Figure 6. Goodness of fit curves of proposed models for EclipseLink.

Figure 7. Goodness of fit curves of proposed models for EMF.

Figure 8. Goodness of fit curves of proposed models for Equinox product.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

1000

2000

3000

4000

5000

6000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 8. Goodness of fit curves of proposed models for Equinox product.Entropy 2019, 21, x FOR PEER REVIEW 22 of 32

Figure 9. Goodness of fit curves of proposed models for Orion.

Figure 10. Goodness of fit curves of proposed models for Platform.

Figure 11. Goodness of fit curves of proposed models for BIRT.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 9 131721252933374145495357616569737781

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 9. Goodness of fit curves of proposed models for Orion.

Entropy 2019, 21, 91 22 of 32

Entropy 2019, 21, x FOR PEER REVIEW 22 of 32

Figure 9. Goodness of fit curves of proposed models for Orion.

Figure 10. Goodness of fit curves of proposed models for Platform.

Figure 11. Goodness of fit curves of proposed models for BIRT.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 9 131721252933374145495357616569737781

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 10. Goodness of fit curves of proposed models for Platform.

Entropy 2019, 21, x FOR PEER REVIEW 22 of 32

Figure 9. Goodness of fit curves of proposed models for Orion.

Figure 10. Goodness of fit curves of proposed models for Platform.

Figure 11. Goodness of fit curves of proposed models for BIRT.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 9 131721252933374145495357616569737781

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 11. Goodness of fit curves of proposed models for BIRT.Entropy 2019, 21, x FOR PEER REVIEW 23 of 32

Figure 12. Goodness of fit curves of proposed models for CDT.

Figure 13. Goodness of fit curves of proposed models for Community.

Figure 14. Goodness of fit curves of proposed models for EclipseLink.

0

2000

4000

6000

8000

10000

12000

14000

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

16000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 12. Goodness of fit curves of proposed models for CDT.

Entropy 2019, 21, 91 23 of 32

Entropy 2019, 21, x FOR PEER REVIEW 23 of 32

Figure 12. Goodness of fit curves of proposed models for CDT.

Figure 13. Goodness of fit curves of proposed models for Community.

Figure 14. Goodness of fit curves of proposed models for EclipseLink.

0

2000

4000

6000

8000

10000

12000

14000

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

16000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 13. Goodness of fit curves of proposed models for Community.

Entropy 2019, 21, x FOR PEER REVIEW 23 of 32

Figure 12. Goodness of fit curves of proposed models for CDT.

Figure 13. Goodness of fit curves of proposed models for Community.

Figure 14. Goodness of fit curves of proposed models for EclipseLink.

0

2000

4000

6000

8000

10000

12000

14000

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

2000

4000

6000

8000

10000

12000

14000

16000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 14. Goodness of fit curves of proposed models for EclipseLink.Entropy 2019, 21, x FOR PEER REVIEW 24 of 32

Figure 15. Goodness of fit curves of proposed models for EMF.

Figure 16. Goodness of fit curves of proposed models for Equinox.

Figure 17. Goodness of fit curves of proposed models for Orion.

0

1000

2000

3000

4000

5000

6000

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

1000

2000

3000

4000

5000

6000

7000

8000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 15. Goodness of fit curves of proposed models for EMF.

Entropy 2019, 21, 91 24 of 32

Entropy 2019, 21, x FOR PEER REVIEW 24 of 32

Figure 15. Goodness of fit curves of proposed models for EMF.

Figure 16. Goodness of fit curves of proposed models for Equinox.

Figure 17. Goodness of fit curves of proposed models for Orion.

0

1000

2000

3000

4000

5000

6000

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

1000

2000

3000

4000

5000

6000

7000

8000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 16. Goodness of fit curves of proposed models for Equinox.

Entropy 2019, 21, x FOR PEER REVIEW 24 of 32

Figure 15. Goodness of fit curves of proposed models for EMF.

Figure 16. Goodness of fit curves of proposed models for Equinox.

Figure 17. Goodness of fit curves of proposed models for Orion.

0

1000

2000

3000

4000

5000

6000

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

0

1000

2000

3000

4000

5000

6000

7000

8000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 17. Goodness of fit curves of proposed models for Orion.Entropy 2019, 21, x FOR PEER REVIEW 25 of 32

Figure 18. Goodness of fit curves of proposed models for Platform.

4. Related Work

The proposed work in this paper deals with the mathematical modeling based on two types of
entropy: summary and comments entropy. During the evolution of the software products, a
reported bug is assigned to a contributor/developer who can fix this bug. This process is regarded as
bug triaging. Bug triaging is one of the important parts of the bug fixing process. During fixing of
bugs, it was observed that bugs lie in two categories: independent and dependent bugs.
Independent bugs are those bugs which can be fixed independently, but dependent bugs are those
whose fixing isdependent on fixing other bugs on which they are dependent. The proposed models
in this paper considered bug dependency during theprocess of fixing bugs. It is also dependent on
summary and comment entropy metrics.The authors of this paper have organized the related work
of the paper in five sections. Section 4.1 deals with bug triaging. Section 4.2 describes the summary
description and how these textual descriptions were used in developing bug severity and priority
prediction models. During the bug fixing processes, different contributors submitted the comments
which help in bug fixing. Bug comments are discussed in Section 4.3. Section 4.4 describessoftware
reliability growth models available in the literature. Section 4.5 presentshow entopyisused in
developing prediction models.

4.1.Bug Triaging

The purpose of bug triaging is to assign a bug to suitable or appropriatedevelopers. The bug
fixing process is a crucial task to reduce time and efforts. In a previousstudy [24], theauthors
demonstrated how to assign bug reports to developers automatically by using text categorization.
One such experiment was empirically validated on 15,859 bug reports of the Eclipse datasets. The
authors used machine learning techniques, aNaive Bayes classifierand obtained results with 30%
accuracy.Later on, Anvik et al. [25] extended the work of Cubranic and Murphy [24] by applying
different classification techniques namely, NB, SVM and C4.5. The empirical investigation was
conducted on 8655 bug reports for Eclipse and 9752 for Firefox. The authors achieved aprecision of
64% and 57% for the Firefox and Eclipse datasets, respectively. In [26], the authors proposed a new
approach to assist bug triagers in open source software projects, through a semi-automated bug
assignment process. Experimental results wereconducted on 5200 bug reports of the Eclipse JDT
project and achieved an average precision and recall of 90.1% and 45.5%, respectively. An attempt
has been made in [27] using a NB technique with bug assignment graphs and incremental learning.
The empirical investigation was conducted on 856,259 bug reports of the Eclipse and Mozilla
projects and achieved the prediction accuracy up to 86.09%.

An attempt has been made to propose a new approach called Bugzie for automatic bug triaging
using fuzzy sets and a cache-based automatic approach [28]. Bugzie believes that fuzzy set-software
systems are associated with every technical term. A fuzzy set is used to indicate that the developer is

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

Bu
gs

Time (in Months)

Observed Value

Model 8

Model 9

Model 10

Model 11

Model 12

Model 13

Model 14

Figure 18. Goodness of fit curves of proposed models for Platform.

4. Related Work

The proposed work in this paper deals with the mathematical modeling based on two types of
entropy: summary and comments entropy. During the evolution of the software products, a reported

Entropy 2019, 21, 91 25 of 32

bug is assigned to a contributor/developer who can fix this bug. This process is regarded as bug
triaging. Bug triaging is one of the important parts of the bug fixing process. During fixing of bugs,
it was observed that bugs lie in two categories: independent and dependent bugs. Independent
bugs are those bugs which can be fixed independently, but dependent bugs are those whose fixing
isdependent on fixing other bugs on which they are dependent. The proposed models in this paper
considered bug dependency during theprocess of fixing bugs. It is also dependent on summary and
comment entropy metrics.The authors of this paper have organized the related work of the paper in five
sections. Section 4.1 deals with bug triaging. Section 4.2 describes the summary description and how
these textual descriptions were used in developing bug severity and priority prediction models. During
the bug fixing processes, different contributors submitted the comments which help in bug fixing.
Bug comments are discussed in Section 4.3. Section 4.4 describessoftware reliability growth models
available in the literature. Section 4.5 presentshow entopyisused in developing prediction models.

4.1. Bug Triaging

The purpose of bug triaging is to assign a bug to suitable or appropriatedevelopers. The bug fixing
process is a crucial task to reduce time and efforts. In a previousstudy [24], theauthors demonstrated
how to assign bug reports to developers automatically by using text categorization. One such
experiment was empirically validated on 15,859 bug reports of the Eclipse datasets. The authors used
machine learning techniques, aNaive Bayes classifierand obtained results with 30% accuracy.Later on,
Anvik et al. [25] extended the work of Cubranic and Murphy [24] by applying different classification
techniques namely, NB, SVM and C4.5. The empirical investigation was conducted on 8655 bug reports
for Eclipse and 9752 for Firefox. The authors achieved aprecision of 64% and 57% for the Firefox and
Eclipse datasets, respectively. In [26], the authors proposed a new approach to assist bug triagers
in open source software projects, through a semi-automated bug assignment process. Experimental
results wereconducted on 5200 bug reports of the Eclipse JDT project and achieved an average precision
and recall of 90.1% and 45.5%, respectively. An attempt has been made in [27] using a NB technique
with bug assignment graphs and incremental learning. The empirical investigation was conducted on
856,259 bug reports of the Eclipse and Mozilla projects and achieved the prediction accuracy up to
86.09%.

An attempt has been made to propose a new approach called Bugzie for automatic bug triaging
using fuzzy sets and a cache-based automatic approach [28]. Bugzie believes that fuzzy set-software
systems are associated with every technical term. A fuzzy set is used to indicate that the developer is
correcting the bugs associated with each term. The value of the membership function of the fuzzy set
is obtained from the bug reports that has been corrected and updated when the newly fixed bug report
is available.

To find the most appropriate developer for newly incoming bug reports, based on the technical
terms, Bugzie combines fuzzy sets and classifies developers based on the values of member
functions.In [29], the authors proposed several techniques such as intra-fold updates and refined
classification.The experimental results were validated on 856,259 bug reports of the Mozilla and
Eclipse projects. The authors reduced the length of tossing path by the prediction accuracy of 83.62%.
Effortshave been made to develop automatic approaches to predict an appropriate developer with
admissible experience to solve the newly coming bug reports in order to reduce time, effort and
cost in bug triaging [30]. In another similar study [31], the authors proposed Markov chains using
a graph model in order to capture bug tossing history and reducing tossing events, by upto72%.
The experimental results were validated on 445,000 bug reports and achieved prediction accuracy ofup
to 23%. In [32], a semi-supervised text classification for bug triaging process was proposed. The authors
used a Naïve Bayes classifier and improved the accuracy by 6%. In a study by [33], the data scale
used for the study used werereduced by using data reduction techniques in bug assignment process.
The experimental result was validated on the Eclipse open source project which achieved 96.5%
accuracy inbug triaging, which was better than the existing work. In [34], the authors used various

Entropy 2019, 21, 91 26 of 32

reduction techniques for an effective bug triaging. The experimental result of data reduction was
validated on 600,000 bug reports of the Mozilla and Eclipse projects. In [35], the authors presented a
unified model that combineswiththe previous activity information from the developer with the location
of suspicious programs with respect to bug reporting in the form of similar functions. The authors
demonstrated how this works on more than 11,000 bug reports. The proposed work gavebetter results
in comparison withAnvik et al. [36] and Shokripour et al. [37]. Goyal and Sardana [38] proposed a new
bug triaging approach, W8Prioritizer, which is based on the priority of bug parameters. The authors
expand the study of triaging for non-reproducible (NR) bugs. When a developer encounters a problem
in reproducing a bug report, he/she marks the bug report as NR. However, some parts of these bugs
are reproduced and eventually fixed later. In order to predict the fixability of bug reports marked
as NR, a prediction model, NRFixer, has been proposed. It is evident from literature review for this
study that fixing/removal of bugs have been efficiently and automatically managed by bug triager.It is
evident from the literature survey that triaging is based on machine learning techniques and it has not
used any models which considers dependency and prediction of bugs in a time window.

4.2. Prediction Modeling Based on Bug Summary Metric

The summary attribute contains bug report descriptions. It plays the major role in prediction of
severity and priority of reported bugs. In [39], the authors presented a reliable approach to predict the
bug severity of newly incoming bug reports labeled as normal. The experimental result was conducted
on Eclipse and Mozilla datasets and gave an improved result. A classification technique based on
a text called concept profile to assess the severity levels of reported bug has been proposed in [40].
The authors evaluated and compared their approach with three classifications algorithms, namelyKNN,
NB and NBM. The empirical investigation was conducted on Eclipse and Mozilla Firefox datasets
and the evaluated result performed better. In [41], the authors proposed a text mining approach
using the NB machine learning technique for predicting the severity level of bugs. The experimental
resultswasbasedonthe Mozilla and Eclipse projects.The authors revealed that the introduction of
bi-grams can improve the accuracy, but in some cases, it can worsen it. Another attempt was made
by Chaturvediand Singh [42] to compare the performance of different machine learning techniques,
namely SVM, NB, KNN, NBM, J48 and RIPPER for predicting the bug severity level of a newly
incoming bug report.

A new way to retrieve information based on the similarity function of the BM25 document to
automatically predict the severity of reported bugs was proposed in [43]. In [44], the authors used
a NB machine learning technique with different feature selection schemes.The experimental result
was conducted on the Mozillaand Eclipse projects. Chaturvedi and Singh [45] used different machine
learning algorithms to predict the severity of newly incoming bug reports. The empirical investigation
was conducted on data of NASA from the PROMISE repository using a textual description of bug
reports. In [46], the authors predicted the severity of newly incoming bug reports by analyzing
theirtextual descriptions using text mining algorithms. The approach has been validated on the
Mozilla, Eclipse and GNOME projects. This study has been extended by Lamkanfi et al. [47] to
compare with a few other data mining algorithms such as NBM, KNN and SVM to predict bug
severity for newly incoming bug reports. The authors concluded that NBM outperforms the other data
mining algorithms.

In [48], the authors proposed a new and automated approach called SEVERityISsue assessment
(SEVERIS), which predicts the severity levels of defect reports. In [49], the authors used different
machine learning techniques, namely, Naïve Bayes, Decision Tree and Random Forest for bug priority
prediction. The authors introduced two feature setsin theclassification accuracy. The result was
validated on the Eclipse, Firefox datasets and shows that feature-set-2outperforms feature-set-1.Kanwal
et al. [50] proposed a bug priority recommender which is developed by using SVM classification
techniques. The bug priority recommender is used to automatically assign a priority level to newly
incoming bugs. The authors validated the result on platform products of the Eclipse dataset. This study

Entropy 2019, 21, 91 27 of 32

has since been extended by Kanwal et al. [51] who compared which classifier performs better in terms
of accuracy. The result shows that SVM performance is better than the Naïve Bayes for textual features
and Naïve Baiyes is better than SVM for categorical features. In [52], the authors have evaluated the
performance of different machine learning techniques, namely, Support Vector Machine (SVM), Naïve
Bayes (NB), k-Nearest Neighbor (KNN) and Neural Network (NNet) by using summary attributes to
predict the bug priority of newly incoming bug reports. The accuracy of different machine learning
techniques in predicting the priority of a reported bug within and across projects was found above
70%, except for the Naïve Bayes technique.

It is evident from the literature survey related to a summary description of a reported bug that
summary description plays an important role in bug severity prediction and hence, assist in bug
fix scheduling. In all these works, the textual description of the summary has been taken for the
study. The authors in this paper, moved a step forward and developed an entropy-based summary
description metric (summary_entropy) to develop mathematical models.

4.3. Bug Comments

During the bug fixing process, different contributors attached various comments as solutions to
fix the bug. The comments submitted by the developers/active users assisted in the bug fixing process.
The textual description of users’ comments can affect the comprehensibility of bug report, so it is
important to measure them. In [53], the authors proposed an approach to measure the textual coherence
of the user comments in bug reports. The results were validated on the Eclipse project and suggest
that the proposed measure correlates with assessments provided by software developers. Xuan et
al. [54] proposed issues recommended by the commenters as a multi-label recommendation task which
improves the cooperation between the developer and the bug content in order to see the corresponding
commenters. The recalled value was found between 41% and 75% for top-10 recommendation. In this
paperhowever, the authors haveconsidered the uncertainties associated with the number of comments
in terms of entropy and used this entropy-based bug comments metric (comment_entropy) to develop
mathematical models.

4.4. NHPP-Based Software Reliability Growth Modeling

From available literature considered for this study, it has been observed that authors have
proposed software reliability growth models that could provide quantitative indicators for a software
performance prediction. The reliability is an important quality attribute of software product [1].
An effort was made by Goel and Okumoto [14] to develop an NHPP-based model for an error removal
process. The developed model mean value function followed an exponential growth curve. Yamada et
al. [9] proposed an S-shaped model foran error removal phenomenon. The authors assumed that the
detected fault cannot be immediately removed.An attempt was made by Kapur et al. [7] to develop an
NHPP-based SRGM. In [8], the authors developed a software reliability growth model that focused on
the underlying error dependencies in software systems. A model has been proposed to take care of
faults of complex nature where they are detected, isolated and then removed [15].

A number of testing effort and testing coverage dependent SRGMs have been proposed in
the literature [16–20,49,50,52,55]. The software reliability modelsincorporatingthe dependent faults
concept with fixing time/debugging time lag have been proposed in [12]. The authors show that fault
dependency and debugging time lag-based software reliability models have an accurate prediction
capability. Singh et al. [13] proposed several SRGMs based on the power function of execution time of
the software. The authors were able to show that the proposed SRGM models based ondependent
fault and fixing time lag with execution time as a power functionprovided fairly accurate predictions.
Kapur et al. [10] proposed an SRGM by considering change-point and effort control with execution
time as a power function of time. The proposed work provides a solution to project managers toget
the desired reliability level. In [11], the authors developed a class of SRGM by considering testing
time execution as a power function. Mean Squared Error (MSE) was used as the measure of ‘goodness

Entropy 2019, 21, 91 28 of 32

of fit’. The authors show that the results are fairly accurate and close to the observed values. In [56],
the authors proposed two-dimensional SRGM, whichweredescribed as an SRGM based on testing-time
and testing-effort functions. Kapur et al. [57] proposed a two dimensional software reliability growth
model which consists of testing time and testing coverage.

In another study [58], the authors proposed a stochastic model based on an NHPP for software
failure phenomena. From the available literature on this subject, it was observed that the models
developed were based on calendar time, testing coverage and testing effort functions. In this paper
however, the authors strove to developed models based on summary and comment entropy which has
been proven to be a novel approach in the sense that, it considers bug fixing as a function of summary
and comment.

4.5. Entropy-Based Prediction Modeling

Studies in this area revealed that attempts have been made by Hassan [2] to propose code change
metrics. The empirical investigation was conducted in change history of six large open source projects.
The author shows that the proposed approach performs better in comparison to the other historical
predictions of bugs. In another study [4], the authors proposed an entropy-based modeltomeasure
the uncertainty arising due to source code changes in the software product. The experimental result
was conducted on seven components of the Mozilla project. From this premise, it was observed
that for all the components, the value of R2 was found to be more than 0.95. In another study [5],
the authors proposed an approach that predicted the potential number of bugs by considering: (i)
traditional SRGM, (ii) entropy-based models and (iii) potential bugs based on entropy. In thestudy,
it was observed that the potential complexity of code change(entropy)-based approach wasbetter.
Instudy [59], the authors proposed entropy-based software reliability analysis. The experimental result
was validated on five products of the Apache open source projects, namely Avro, Pig, Hive, jUDDI
and Whirr. In [58] the authors proposed an entropy optimized Latent Dirichlet Allocation (LDA)
approach for bug assignment. The experimental results were validated on the Eclipse JDT and Mozilla
Firefox projects and recallsofup to 84% and 58% were achieved, and precisionsof ofup to 28% and
41%, respectively. Recently, the authors developed entropy-based regression models to predict the bad
smells [6].

The complexity of code changes/entropy available in the literature is based on the code change
process of the software. In [60], a joint entropy model was used to reduce the possibility of double,
useless, and even wrong cases. Thereafter, a database was created that used a large number of
photographs. The full database-based experiment demonstrates that the model’s superiority is that
the author’s model can not only reduce the number of learning instances, but also maintain the
accuracy of the retrieval.In this paper however, the authors have developed two new metrics, i.e.,
summary_entropy and comment_entropy, based on the bug summary descriptions reported by users
and comments submitted by developers to developed bug-based SRGM.

5. Conclusions

In this study so far, efforts were made to proposed novel approach for developing software
reliability growth models. The paper considered the summary description of a bug reported by users
on a bug tracking system and the number of comments submitted by active users/developers during
the bug fixing process.The paper also quantified the value of summary description and comments in
terms of entropy which also measured the uncertainty arisingas a result of the enormous size of bug
repositories and irregularity on the bug tracking system. The authors of this paper thus developed
the models of different nature, ranging from exponential to S-shaped or mixture of both, depending
larglyon summary and comments metrics. Bug dependencies are always present in software due to
errors in code writing, misunderstanding of users requirements and faults in software architecture.
The developed models considered bug dependency with different delay-effect factors in debugging.
By this, the authors validated the proposed models on eight products of the Eclipse project, namely

Entropy 2019, 21, 91 29 of 32

BIRT, CDT, Community, EclipseLink, EMF, Equinox, Orion and Platform. The proposed models
were compared with the existing time-based models. Here, it was observed that the models based
on calendar time, summary_entropy, and comment _entropy perform better in 18, 64 and 73 cases,
respectively, out of 168 cases in terms ofthe performance measures R2, variation and RMSPE. Summary
entropy metric-based proposed modelswere observed to have performed better in 78.57%of the cases
in comparison with time-based models. Comment entropy metric-based proposed models performed
better in 85.71% cases in comparison withtime-based models.We also observed that in the cases,
where case 1, i.e., t vs. bugs performs better, it overestimated the value of the potential number of
bugs. From this premise, the authors concluded that the proposed models performed significantly
better in comparison with t vs. bugs models (model 1 to 7). It also provided an optimal value of
potential bugs. In the future, further work could be done in the area of the summary_entropy and
comment_entropymetric-based models using other project data to make it general.

Author Contributions: All authors discussed the contents of the manuscript and contributed to its preparation.
V.B.S. supervised the research and helped M.K. in every step (defining the topic, Model building and
implementation). M.K. contributed the idea, estimated the parameters and interpreted the results. S.M., A.M.,L.F.S.,
and R.D. helped in the analysis of the result, Literature review and in the writing of the manuscript. V.B.S. helped
M.K. in applying entropy concept in the proposed model.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acronyms
OSS Open Source Software
NHPP Non Homogenous Poisson Process
SPSS Statistical Package for Social Sciences
SRGM Software Reliability Growth Model
Notations
t Time

y/p
Potential number of bugs lying dormant in the software that can be fixed over a
long run

y1/p1 Number of independent bugs
y2/p2 Number of dependent bugs
x(t) Mean value function of bug detection/fixed up to time t
x1(t) Mean value function of the expected number of independent bugs
x2(t) Mean value function of the expected number of dependent bugs
g/k Rate of bug detection/fixed
r/l Rate of bug detection/fixed of independent bugs
c/d Rate of bug detection/fixed of dependent bugs
θ(t)/θ(H(t)) Delay–effect factor i.e., debugging time lag
ψ Inflection factor
q Proportion of the independent bugs
β Constant and >0
H(t) or H(t) The value of summary/comment entropy at time t be consistent writing H or H
x(H(t)) Bugs removed by cumulative entropy value H(t)
δ Constant and >0

References

1. Godbole, N.S. Software Quality Assurance: Principles and Practice; Alpha Science Intl Ltd.: Oxford, UK, 2004.
2. Hassan, A.E. Predicting bugs using the complexity of code changes. In Proceedings of the 31st International

Conference on Software Engineering, Washington, DC, USA, 16–24 May 2009; pp. 78–88.
3. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x

Entropy 2019, 21, 91 30 of 32

4. Chaturvedi, K.K.; Kapur, P.K.; Anand, S.; Singh, V.B. Predicting the complexity of code changes using entropy
based measures. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 155–164. [CrossRef]

5. Singh, V.B.; Chaturvedi, K.K.; Khatri, S.K.; Kumar, V. Bug prediction modeling using complexity of code
changes. Int. J. Syst. Assur. Eng. Manag. 2015, 6, 44–60. [CrossRef]

6. Gupta, A.; Suri, B.; Kumar, V.; Misra, S.; Blažauskas, T.; Damaševičius, R. Software Code Smell Prediction
Model Using Shannon, Rényi and Tsallis Entropies. Entropy 2018, 20, 372. [CrossRef]

7. Kapur, P.K.; Garg, R.B. A software reliability growth model for an error-removal phenomenon. Softw. Eng. J.
1992, 7, 291–294. [CrossRef]

8. Kapur, P.K.; Younes, S. Software reliability growth model with error dependency. Microelectron. Reliab. 1995,
35, 273–278. [CrossRef]

9. Yamada, S.; Ohba, M.; Osaki, S. S-shaped reliability growth modeling for software error detection. IEEE Trans.
Reliab. 1983, 32, 475–484. [CrossRef]

10. Kapur, P.K.; Singh, V.B.; Anand, S.; Yadavalli, V.S.S. Software reliability growth model with change-point
and effort control using a power function of the testing time. Int. J. Prod. Res. 2008, 46, 771–787. [CrossRef]

11. Kapur, P.K.; Gupta, A.; Yadavalli, V.S.S. Software reliability growth modeling using power function of testing
time. Int. J. Oper. Quant. Manag. 2006, 12, 127–140.

12. Huang, C.Y.; Lin, C.T. Software reliability analysis by considering fault dependency and debugging time lag.
IEEE Trans. Reliab. 2006, 55, 436–450. [CrossRef]

13. Singh, V.B.; Yadav, K.; Kapur, R.; Yadavalli, V.S.S. Considering the fault dependency concept with debugging
time lag in software reliability growth modeling using a power function of testing time. Int. J. Autom.
Comput. 2007, 4, 359–368. [CrossRef]

14. Goel, A.L.; Okumoto, K. Time-dependent error-detection rate model for software reliability and other
performance measures. IEEE Trans. Reliab. 1979, 28, 206–211. [CrossRef]

15. Kapur, P.K.; Younes, S.; Agarwala, S. Generalized Erlang software reliability growth model. Asor Bull. 1995,
14, 5–11.

16. Huang, C.Y.; Kuo, S.Y.; Chen, Y. Analysis of a software reliability growth model with logistic testing-effort
function. In Proceedings of the Eighth International Symposium on Software Reliability Engineering,
Albuquerque, NM, USA, 2–5 November 1997; pp. 378–388.

17. Yamada, S.; Ohtera, H.; Narihisa, H. Software reliability growth models with testing-effort. IEEE Trans.
Reliab. 1986, 35, 19–23. [CrossRef]

18. Huang, C.Y. Performance analysis of software reliability growth models with testing-effort and change-point.
J. Syst. Softw. 2005, 76, 181–194. [CrossRef]

19. Huang, C.Y.; Kuo, S.Y. Analysis of incorporating logistic testing-effort function into software reliability
modeling. IEEE Trans. Reliab. 2002, 51, 261–270. [CrossRef]

20. Malaiya, Y.K.; Li, M.N.; Bieman, J.M.; Karcich, R. Software reliability growth with test coverage. IEEE Trans.
Reliab. 2002, 51, 420–426. [CrossRef]

21. Wang, X.; He, Y. Learning from uncertainty for big data: Future analytical challenges and strategies. IEEE Syst.
ManCybern. Mag. 2016, 2, 26–31. [CrossRef]

22. Available online: http://bugs.eclipse.org/bugs/ (accessed on 28 June 2018).
23. Porter, M.F. An algorithm for suffix stripping. Program 1980, 14, 130–137. [CrossRef]
24. Murphy, G.; Cubranic, D. Automatic bug triage using text categorization. In Proceedings of the Sixteenth

International Conference on Software Engineering & Knowledge Engineering, Banff, AB, Canada, 20–24 June
2004; pp. 1–6.

25. Anvik, J.; Hiew, L.; Murphy, G.C. Who should fix this bug? In Proceedings of the 28th international
Conference on Software Engineering, Shanghai, China, 20–28 May 2006; pp. 361–370.

26. Moin, A.; Neumann, G. Assisting bug triage in large open source projects using approximate string matching.
In Proceedings of the 7th nternational Conference on Software Engineering Advances (ICSEA 2012), Lissabon,
Portugal, 18–23 November 2012; pp. 1–6.

27. Bhattacharya, P.; Neamtiu, I.; Shelton, C.R. Automated, highly-accurate, bug assignment using machine
learning and tossing graphs. J. Syst. Softw. 2012, 85, 2275–2292. [CrossRef]

28. Tamrawi, A.; Nguyen, T.T.; Al-Kofahi, J.M.; Nguyen, T.N. Fuzzy set and cache-based approach for bug
triaging. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, Szeged, Hungary, 5–9 September 2011; pp. 365–375.

http://dx.doi.org/10.1007/s13198-014-0226-5
http://dx.doi.org/10.1007/s13198-014-0242-5
http://dx.doi.org/10.3390/e20050372
http://dx.doi.org/10.1049/sej.1992.0030
http://dx.doi.org/10.1016/0026-2714(94)00054-R
http://dx.doi.org/10.1109/TR.1983.5221735
http://dx.doi.org/10.1080/00207540600926113
http://dx.doi.org/10.1109/TR.2006.879607
http://dx.doi.org/10.1007/s11633-007-0359-y
http://dx.doi.org/10.1109/TR.1979.5220566
http://dx.doi.org/10.1109/TR.1986.4335332
http://dx.doi.org/10.1016/j.jss.2004.04.024
http://dx.doi.org/10.1109/TR.2002.801847
http://dx.doi.org/10.1109/TR.2002.804489
http://dx.doi.org/10.1109/MSMC.2016.2557479
http://bugs.eclipse.org/bugs/
http://dx.doi.org/10.1108/eb046814
http://dx.doi.org/10.1016/j.jss.2012.04.053

Entropy 2019, 21, 91 31 of 32

29. Bhattacharya, P.; Neamtiu, I. Fine-grained incremental learning and multi-feature tossing graphs to improve
bug triaging. In Proceedings of the 2010 IEEE International Conference Software Maintenance (ICSM),
Timisoara, Romania, 12–18 September 2010; pp. 1–10.

30. Alenezi, M.; Magel, K.; Banitaan, S. Efficient Bug Triaging Using Text Mining. JSW 2013, 8, 2185–2190.
[CrossRef]

31. Jeong, G.; Kim, S.; Zimmermann, T. Improving bug triage with bug tossing graphs. In Proceedings of the the
7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, Amsterdam, The Netherlands, 24–28 August 2009; pp. 111–120.

32. Xuan, J.; Jiang, H.; Ren, Z.; Yan, J.; Luo, Z. Automatic bug triage using semi-supervised text classification.
arXiv, 2017; arXiv:1704.04769.

33. Govindasamy, V.; Akila, V.; Anjanadevi, G.; Deepika, H.; Sivasankari, G. Data reduction for bug triage using
effective prediction of reduction order techniques. In Proceedings of the 2016 International Conference on
Computation of Power, Energy Information and Commuincation (ICCPEIC), Chennai, India, 20–21 April
2016; pp. 85–90.

34. Xuan, J.; Jiang, H.; Hu, Y.; Ren, Z.; Zou, W.; Luo, Z.; Wu, X. Towards effective bug triage with software data
reduction techniques. IEEE Trans. Knowl. Data Eng. 2014, 27, 264–280. [CrossRef]

35. Tian, Y.; Wijedasa, D.; Lo, D.; Le Goues, C. Learning to rank for bug report assignee recommendation.
In Proceedings of the 2016 IEEE 24th International Conference on Program Comprehension (ICPC), Austin,
TX, USA, 16–17 May 2016; pp. 1–10.

36. Anvik, J.; Murphy, G.C. Reducing the effort of bug report triage: Recommenders for development-oriented
decisions. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2011, 20, 10. [CrossRef]

37. Shokripour, R.; Anvik, J.; Kasirun, Z.M.; Zamani, S. Why so complicated? simple term filtering and weighting
for location-based bug report assignment recommendation. In Proceedings of the 2013 10th IEEE Working
Conference on Mining Software Repositories (MSR), San Francisco, CA, USA, 18–19 May 2013; pp. 2–11.

38. Goyal, A.; Sardana, N. Efficient bug triage in issue tracking systems. In Proceedings of the Doctoral
Consortium at the 13th International Conference on Open Source Systems, Buenos Aires, Argentina, 22 May
2017; pp. 15–24.

39. Jin, K.; Dashbalbar, A.; Yang, G.; Lee, B. Improving Predictions about Bug Severity by Utilizing Bugs
Classified as Normal. Contemp. Eng. Sci. 2016, 9, 933–942. [CrossRef]

40. Zhang, T.; Yang, G.; Lee, B.; Chan, A.T. Predicting severity of bug report by mining bug repository with
concept profile. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca,
Spain, 13–17 April 2015; pp. 1553–1558.

41. Roy, N.K.S.; Rossi, B. Towards an improvement of bug severity classification. In Proceedings of the 2014
40th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA), Verona, Italy,
27–29 August 2014; pp. 269–276.

42. Chaturvedi, K.K.; Singh, V.B. An empirical comparison of machine learning techniques in predicting the
bug severity of open and closed source projects. Int. J. Open Source Softw. Process. (IJOSSP) 2012, 4, 32–59.
[CrossRef]

43. Tian, Y.; Lo, D.; Sun, C. Information retrieval based nearest neighbor classification for fine-grained bug
severity prediction. In Proceedings of the 2012 19th Working Conference on Reverse Engineering, Kingston,
ON, Canada, 15–18 October 2012; pp. 215–224.

44. Yang, C.Z.; Hou, C.C.; Kao, W.C.; Chen, X. An Empirical Study on Improving Severity Prediction of Defect
Reports using Feature Selection. In Proceedings of the 19th Asia-Pacific Software Engineering Conference,
Hong Kong, China, 4–7 December 2012; pp. 240–249.

45. Chaturvedi, K.K.; Singh, V.B. Determining Bug Severity Using Machine Learning Techniques. In Proceedings
of the 2012 CSI Sixth International Conference on Software Engineering, Indore, India, 5–7 September 2012;
pp. 1–6.

46. Lamkanfi, A.; Demeyer, S.; Giger, E.; Goethals, B. Predicting the Severity of a Reported Bug. In Proceedings of
the 2010 7th IEEE Working Conference on Mining Software Repositories, Cape Town, South Africa, 2–3 May
2010; pp. 1–10.

47. Lamkanfi, A.; Demeyer, S.; Soetens, Q.D.; Verdonck, T. Comparing Mining Algorithms for Predicting the
Severity of a Reported Bug. In Proceedings of the 2011 15th European Conference on Software Maintenance
and Reengineering, Oldenburg, Germany, 1–4 March 2011; pp. 249–258.

http://dx.doi.org/10.4304/jsw.8.9.2185-2190
http://dx.doi.org/10.1109/TKDE.2014.2324590
http://dx.doi.org/10.1145/2000791.2000794
http://dx.doi.org/10.12988/ces.2016.6695
http://dx.doi.org/10.4018/jossp.2012040103

Entropy 2019, 21, 91 32 of 32

48. Menzies, T.; Marcus, A. Automated Severity Assessment of Software Defect Reports. In Proceedings of the
2008 IEEE International Conference Software Maintenance, Beijing, China, 28 September–4 October 2008;
pp. 346–355.

49. Alenezi, M.; Banitaan, S. Bug Reports Prioritization: Which Features and Classifier to Use? In Proceedings
of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA,
4–7 December 2013; pp. 112–116.

50. Kanwal, J.; Maqbool, O. Managing open bug repositories through bug report prioritization using SVMs.
In Proceedings of the International Conference on Open-Source Systems and Technologies, Lahore, Pakistan,
22–24 December 2010.

51. Kanwal, J.; Maqbool, O. Bug prioritization to facilitate bug report triage. J. Comput. Sci. Technol. 2012, 27,
397–412. [CrossRef]

52. Sharma, M.; Bedi, P.; Chaturvedi, K.K.; Singh, V.B. Predicting the priority of a reported bug using machine
learning techniques and cross project validation. In Proceedings of the 2012 12th International Conference
on Intelligent Systems Design and Applications (ISDA), Kochi, India, 27–29 November 2012; pp. 539–545.

53. Dit, B.; Poshyvanyk, D.; Marcus, A. Measuring the semantic similarity of comments in bug reports. Proc. 1st
Stsm 2008, 8, 64.

54. Xuan, J.; Jiang, H.; Zhang, H.; Ren, Z. Developer recommendation on bug commenting: A ranking approach
for the developer crowd. Sci. China Inf. Sci. 2017, 60, 072105. [CrossRef]

55. Pham, H.; Zhang, X. NHPP software reliability and cost models with testing coverage. Eur. J. Oper. Res. 2003,
145, 443–454. [CrossRef]

56. Inoue, S.; Yamada, S. Two-dimensional software reliability measurement technologies. In Proceedings of the
2009 IEEE International Conference on Industrial Engineering and Engineering Management, Hong Kong,
China, 8–11 December 2009; pp. 223–227.

57. Kapur, P.K.; Garg, R.B.; Aggarwal, A.G.; Tandon, A. Two dimensional flexible software reliability growth
model and related release policy. In Proceedings of the 4th National Conference, INDIACom-2010,
New Delhi, India, 25–26 February 2010.

58. Zhang, W.; Cui, Y.; Yoshida, T. En-LDA: An novel approach to automatic bug report assignment with entropy
optimized latent dirichletallocation. Entropy 2017, 19, 173. [CrossRef]

59. Singh, V.B.; Sharma, M.; Pham, H. Entropy Based Software Reliability Analysis of Multi-Version Open Source
Software. IEEE Trans. Softw. Eng. 2018, 44, 1207–1223. [CrossRef]

60. Wu, H.; Li, Y.; Bi, X.; Zhang, L.; Bie, R.; Wang, Y. Joint entropy based learning model for image retrieval.
J. Vis. Commun. Image Represent. 2018, 55, 415–423. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11390-012-1230-3
http://dx.doi.org/10.1007/s11432-015-0582-8
http://dx.doi.org/10.1016/S0377-2217(02)00181-9
http://dx.doi.org/10.3390/e19050173
http://dx.doi.org/10.1109/TSE.2017.2766070
http://dx.doi.org/10.1016/j.jvcir.2018.06.021
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data Collection, Preprocessing and Model Building for Bug Prediction
	Data Collection
	Extraction ofthe Terms and Its Weight Using Summary Attributes
	Entropy
	Software Reliability Growth Modeling
	Software Reliability Growth Models (Time vs. Bugs, i.e.,Case 1 in Introduction Section)
	Entropy-Based Software Reliability Growth Models (Entropy Vs bugs, i.e., Case 2 and Case 3 in the Introduction Section)

	Results and Analysis
	Related Work
	Bug Triaging
	Prediction Modeling Based on Bug Summary Metric
	Bug Comments
	NHPP-Based Software Reliability Growth Modeling
	Entropy-Based Prediction Modeling

	Conclusions
	References

