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Abstract: This paper presents a description of the fluctuations in transfer processes in a locally
nonequilibrium medium. We obtained equations which allow the fluctuations range to be determined
for a transferred physical value. It was shown that the general method of describing fluctuations for
the processes of diffusion, heat transfer, and viscous fluid flow can be applied. It was established
that the fluctuation spectrum during the transfer processes has the character of flicker noise in the
low-frequency spectral range.
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1. Introduction

Irreversible processes, and in particular, transfer processes, are generally described in accordance
with the local equilibrium principle, stating that every small element of a medium is in the equilibrium
state, and the local entropy in this medium can be defined via the same thermodynamic variables
function as that which is correct for the whole system in equilibrium [1]. From the physical perspective,
the local equilibrium principle is valid for the cases where the chaotization period, during which
the equilibrium is established in physically infinitesimal volume, is much less than the characteristic
period needed for the process under discussion.

The description of transfer processes in a local non-equilibrium medium implies a certain finite

delay time τ0 between the moment the thermodynamic force
→
X is applied and the response in the form

of a thermodynamic flow
→
J [2,3]. The above period τ0 is equal to the chaotization time constant of

particles of the medium [4].
The transfer processes in a medium are accompanied with entropy σS production and the

generation of flicker noise [5,6]. In particular, such noise is observed in the case of the flow of
electric current in semiconductors [7,8] and in small volumes of electrolyte [9–11]. The main features
of the flicker noise are the strong time correlation and large time memory, and these distinguish it from
white noise, which occurs in equilibrium processes.

It is worth mentioning that both of the above fluctuations are of a fundamental nature and can
be observed for all processes in physical media. Thereby white noise occurs in equilibrium medium
without any irreversible processes, and flicker noise occurs in a locally nonequilibrium medium in the
presence of irreversible processes accompanied with the production of entropy.

Flicker noise can be theoretically explained within a model assuming fluctuations of kinetic
coefficients, in particular of the coefficient of viscosity with Brownian motion and diffusion,
and can be mathematically described within the theory of non-Markov random processes with
memory [12–14]. Note that in recent years the number of studies dealing with non-Markov processes
has increased. They are dedicated to the following non-Markov processes: Brownian motion [15–18],
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abnormal diffusion [19–23], relaxation of paramagnetic ions in solutions [23], electronic paramagnetic
resonance [24], entangled state of particles [25], quantum processes [26–30], turbulence [31], etc.

The aim of the present work is to develop a method for describing the transfer processes in a
locally nonequilibrium medium using the model of non-equilibrium fluctuations presented in the
work [4].

2. Transfer Processes in an Equilibrium Medium

In the following paragraphs we describe transfer processes in an equilibrium medium. Let us
take Ω as a transferred physical value. Then we can present the thermodynamic force as:

→
X = −gradΩ (1)

and thermodynamic flow as:
→
J = LΩ

→
X + δ

→
J (2)

where LΩ is a kinetic coefficient and δ
→
J is the random thermodynamic flow resulting from equilibrium

fluctuations of the medium.
It is worth mentioning that Equation (2) does not take into account the cross-coupling effects,

which are of great significance for describing transfer processes in a non-equilibrium medium [32].
The proposed description can be also applied for this more general case.

For the correlation function 〈δJiδJk〉, the values of δ
→
J can be written as:

〈δJiδJk〉 = 2δikαΩδ(t2 − t1)δ(x2 − x1)δ(y2 − y1)δ(z2 − z1) (3)

where parameters i and k correspond to coordinates x, y, z, and δik is the Kronecker delta, δii = 1,
δik|i 6=k = 0.

The physical value Ω depends on the process being described. When describing diffusion, the
relative concentration of the additive δn = n/n0 is used as the parameter Ω, the kinetic coefficient
LΩ = n0DkB, and the coefficient αΩ = LΩkB. Here kB is the Boltzmann constant, n0 is the medium’s
particle concentration, and D is the diffusion coefficient.

For the case of heat conductivity, we use medium temperature T instead of Ω, the kinetic
coefficient LΩ = λ, and the coefficient αΩ = LΩT2

0 kB. Here λ is the heat conductivity coefficient and
T0 is the medium temperature without non-equilibrium fluctuations.

For descriptions of non-contractible viscous fluid at a low Reynolds numbers, we take the velocity
v of molecules’ organized motion as the Ω value, the kinetic coefficient LΩ = η, and the coefficient
αΩ = LΩT0kB. Here η is the viscosity coefficient.

The transfer process in an equilibrium medium can be described using the following equation:

βΩ
∂Ω

∂t
+ div

→
J = 0 (4)

When describing diffusion, βΩ = n0kB, heat conductivity βΩ = c, and viscosity flow βΩ = ρ.
Here c is the heat capacity of a unit of volume of the medium; ρ is the density of the fluid.

Substitution of Equations (1) and (2) into Equation (4) gives the following:

βΩ
∂Ω

∂t
− LΩ

(
∂2Ω

∂x2 +
∂2Ω

∂y2 +
∂2Ω

∂z2

)
= − ∂

∂x
δJx −

∂

∂y
δJy −

∂

∂z
δJz (5)
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Next, we perform the Laplace transformation for the last equation using coordinates x, y, z.
We find the following:

βΩ
∂Ω̃

∂t
− LΩ

(
u2

x + u2
y + u2

z

)
Ω̃ = −uxδ J̃x − uyδ J̃y − uzδ J̃z (6)

Here Ω̃ and δ J̃x,y,z are representations of the corresponding functions Ω and δJx,y,z, and ux, uy, uz

are representations of x, y, z variables.
After the integration of the last equation, we obtain:

Ω̃
(
t, ux, uy, uz

)
= −

∫ t

−∞
exp

[
LΩ

βΩ

(
u2

x + u2
y + u2

z

)
(t− τ)

](
uxδ J̃x + uyδ J̃y + uzδ J̃z

βΩ

)
dτ. (7)

For the correlation function 〈Ω̃
(
t1, ux1, uy1, uz1

)
Ω̃
(
t2, ux2, uy2, uz2

)
〉 from Equation (7) after

integration with Equation (3), we find the following:

〈Ω̃
(
t1, ux1, uy1, uz1

)
Ω̃
(
t2, ux2, uy2, uz2

)
〉

= − 2αΩ
LΩ βΩ

ux1ux2+uy1uy2+uz1uz2

u2
x1+u2

y1+u2
z1+u2

x2+u2
y2+u2

z2
exp
[

LΩ
βΩ

(u2
x2 + u2

y2 + u2
z2)(t2

−t1)]

(8)

From Equation (8) for the dispersion of the function Ω̃
(
t1, ux1, uy1, uz1

)
, we obtain:

〈Ω̃2(t1, ux1, uy1, uz1
)
〉 = − αΩ

LΩβΩ
(9)

For the time correlation function 〈Ω̃(t1)Ω̃(t2)〉, when ux = ux1 = ux2, uy = uy1 = uy2,
uz = uz1 = uz2, we find:

〈Ω̃(t1)Ω̃(t2)〉 = −
αΩ

LΩβΩ
exp
[

LΩ

βΩ

(
u2

x + u2
y + u2

z

)
(t2 − t1)

]
(10)

Equation (10) after the inverse Laplace transformation enables us to find the correlation function
for fluctuations of the physical value Ω. For the description of diffusion, Equation (10) takes the form:

〈δñ(t1)δñ(t2)〉 = −n−1
0 exp

[
D
(

u2
x + u2

y + u2
z

)
(t2 − t1)

]
(11)

where δñ(t) gives the value of δn(t).
Hence, the description of transfer processes in an equilibrium medium is reduced to the use of

the conventional Langevin equations for a continuous medium [33].

3. Transfer Processes in a Nonequilibrium Medium

Describing transfer processes in a locally nonequilibrium medium, we use the approach given
in Reference [4] for Brownian motion. For a locally nonequilibrium medium, we write Equation (2)
as follows:

→
J = LΩ

→
X + δ

→
J + LΩ

∫ t

−∞

1√
ντ(t− τ)

∂
→
X(τ)

∂τ
dτ +

∫ t

−∞

1√
t− τ

δ
→
J σ(τ)dτ (12)

where ντ = 1/τ0 is the intensity of random fluctuations in a locally nonequilibrium medium, τ0 is the

chaotization time constant of particles of the medium, and δ
→
J σ is the random thermodynamic flow

resulting from local non-equilibrium fluctuations of the medium.
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We can write the correlation function 〈δJσiδJσk〉 of the δ
→
J σ value as:

〈δJσiδJσk〉 = 2δikγΩδ(t2 − t1)δ(x2 − x1)δ(y2 − y1)δ(z2 − z1) (13)

where for the description of diffusion we take the coefficient γΩ = LΩσS/n0, heat conductivity
γΩ = LΩT2

0 σS/n0, and viscous non-contractible fluid flow γΩ = LΩT0σS/n0. Here σS is the
entropy production for irreversible processes taking place in the medium, which can be found by the
following equation:

σS =
→
J ·
→
X = LΩX2 (14)

It should be pointed out that the second and fourth components of Equation (12) are omitted in
Equation (14), as they describe stochastic processes with zero mathematical expectation, and the third
component is missing due to its very small values at τ0 << t, when compared to the first summand.

Substitution of Equation (12) into Equation (4) enables us to obtain the equation for the description
of a transfer process in a locally nonequilibrium medium:

βΩ
∂Ω
∂t − LΩ

(
∂2Ω
∂x2 + ∂2Ω

∂y2 + ∂2Ω
∂z2

)
−LΩ

∫ t
−∞

1√
ντ(t−1)

∂
∂τ

(
∂2Ω(τ)

∂x2
+ ∂2Ω(τ)

∂y2
+ ∂2Ω(τ)

∂z2

)
dτ

= − ∂
∂x δJx − ∂

∂y δJy − ∂
∂z δJz

−
∫ t
−∞

1√
t−1

(
∂

∂x δJσx(τ) +
∂

∂y δJyσ(τ) +
∂
∂z δJσz(τ)

)
dτ

(15)

The Laplace transformation by coordinates x, y, z gives:

βΩ
∂Ω̃
∂t − LΩ(u2

x + u2
y + u2

z)Ω̃

−LΩ

∫ t
−∞

1√
ντ(t−τ)

(u2
x + u2

y + u2
z)

∂Ω̃(τ)
∂τ dτ

= −uxδ J̃x − uyδ J̃y − uzδ J̃z

−
∫ t
−∞

1√
t−τ

(
uxδ J̃σx(τ) + uyδ J̃σy(τ) + uzδ J̃σz(τ)

)
dτ

(16)

Then, if we conduct the Laplace transformation on Equation (16) by the time variable t, we obtain:(
βΩs + A

(
1 +

√
πs
ντ

))
ˆ̃Ω(s)

= −
(

uxδ ˆ̃Jx + uyδ ˆ̃Jy + uzδ ˆ̃Jz

)
−
√

π
s

(
uxδ ˆ̃Jσx + uyδ ˆ̃Jσy + uzδ ˆ̃Jσz

) (17)

where s is a representation of the time variable t, and the A parameter is equal to:

A = −LΩ

(
u2

x + u2
y + u2

z

)
(18)

Equation (17) can be represented as:

ˆ̃Ω(s) = −

(
uxδ ˆ̃Jx + uyδ ˆ̃Jy + uzδ ˆ̃Jz

)
+
√

π
s

(
uxδ ˆ̃Jσx + uyδ ˆ̃Jσy + uzδ ˆ̃Jσz

)
(

βΩs + A
(

1 +
√

πs
ντ

)) (19)

The inverse Laplace transformation by ux, uy, uz, and s allows us to obtain the equation for
fluctuations of the transported physical value Ω(t, x, y, z).

Equation (19), obtained using:

GΩ̃(ω) =
∣∣∣ ˆ̃Ω(iω)

∣∣∣2 (20)

enables us to write the equation for the two-sided spectral density of the fluctuation of the transferred
physical value GΩ̃(ω):
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GΩ̃(ω) = −
2A
(
αΩ + πγΩ

ω

)
β2

Ωω2 + A2
(

1 + πω
ντ

)
+ A

√
2πω

ντ
(βΩω + A)

(21)

When obtaining Equation (21), we took into account Equations (3) and (13) for correlation
functions of the fluctuation of flows.

If we introduce the following designations:

B =
2AαΩ

β2
Ω

(22)

fL =
A

βΩ
(23)

fσ =
γΩ

αΩ
(24)

then the spectral density GΩ̃(ω) can be represented as:

GΩ̃(ω) = −
B
(

1 + π fσ
ω

)
ω2 + f 2

L

(
1 + πω

ντ

)
+ fL

√
2πω

ντ
(ω + fL)

(25)

Figure 1 shows diagrams of the spectral density GΩ̃(ω) for different levels of non-equilibrium of
the medium, which is characterized by the value fσ.

Figure 1. Spectral density G
Ω̃(ω) for different values of fσ: 1—0 fL; 2—10−7 fL; 3—10−6 fL; 4—10−5 fL.

Clearly, in the high frequency areas they coincide with each other, and in the area of low frequency
an obvious inversely proportional increase of fluctuations with a simultaneous decrease of the
frequency ω can be observed. Moreover, the intensity of these fluctuations is linearly dependent
on the value fσ, and consequently on the production of entropy σS.

For low frequencies, when ω << A/βΩ and ω << ντ , Equation (21) takes the form:

GΩ̃(ω) = − 2αΩ

LΩ

(
u2

x + u2
y + u2

z

)(1 +
πσS

n0kBω

)
(26)

taking into account that:
γΩ

αΩ
=

σS
n0kB

(27)

The last item within the brackets of Equation (26) becomes more significant for the
following frequency:
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ω >
πσS
n0kB

=
πLΩX2

n0kB
(28)

For the case of diffusion, Equation (28) takes the form:

ω > πDX2 (29)

If diffusion takes place in the air with characteristic values of the diffusion coefficient
D = 10−5 m2s−1 and X = 1 m−1, then we have to measure the spectral density of fluctuations
of diffusing elements concentration at very low frequencies, which are close to ω ≈ 10−5 s−1, to clearly
observe flicker noise.

4. Conclusions

The method presented for the description of transfer processes in a locally nonequilibrium
medium allows us to determine the spectral density of fluctuations of a transferred physical value, as
well as to establish that its spectrum in the low-frequency range has a flicker-noise nature. The method
described can be used not only for the study of diffusion, heat conductivity, and viscosity flow
phenomena, but also for any other transfer process.

Unlike Reference [4], which analyses a case for the Brownian motion described using an
integro-differential equation with a substantial derivative, this work presents descriptions of transfer
processes in a continuum non-equilibrium medium, which is described with integro-differential
equations with partial derivatives. In this regard, the results obtained reflect the specific character of
the transfer processes described.
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