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Abstract: A series of (AlCrTiZrV)-Six-N films with different silicon contents were deposited on
monocrystalline silicon substrates by direct-current (DC) magnetron sputtering. The films were
characterized by the X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution
transmission electron microscopy (HRTEM), and nano-indentation techniques. The effects of the
silicon content on the microstructures and mechanical properties of the films were investigated.
The experimental results show that the (AlCrTiZrV)N films grow in columnar grains and present a
(200) preferential growth orientation. The addition of the silicon element leads to the disappearance
of the (200) peak, and the grain refinement of the (AlCrTiZrV)-Six-N films. Meanwhile, the reticular
amorphous phase is formed, thus developing the nanocomposite structure with the nanocrystalline
structures encapsulated by the amorphous phase. With the increase of the silicon content,
the mechanical properties first increase and then decrease. The maximal hardness and modulus of the
film reach 34.3 GPa and 301.5 GPa, respectively, with the silicon content (x) of 8% (volume percent).
The strengthening effect of the (AlCrTiZrV)-Six-N film can be mainly attributed to the formation of
the nanocomposite structure.

Keywords: (AlCrTiZrV)-Six-N films; microstructure; mechanical property; nanocomposite structure

1. Introduction

Hard coating tools are the fastest developing new techniques and have become the symbol of
modern cutting tools. Among them, the most widely-used coatings are binary and ternary systems
of traditional metal nitrides or oxides coatings, such as titanium nitrides (TiN), chromium nitrides
(CrN), etc. [1]. With the development of the coating science and technology, nanocomposite films with
better mechanical properties have become a research hotspot due to their higher mechanical properties,
thermal stability, and oxidation resistance. In 1992, Li et al. [2] first prepared TiSiN nanocomposite films
with a hardness of over 60 GPa using the physical vapor deposition (PVD), and suggested that the films
consisted of TiN and Si3N4 phases, in which TiN was crystalline, while Si3N4 was amorphous. In 2000,
Veprek et al. [3] prepared the TiSiN nanocomposite films with the superhigh hardness of 80–105 GPa,
which aroused great interest among researchers all over the world. Since then, researchers have
done a great amount of research on the preparation of nanocomposite films and their hardening
mechanism, and have proposed the widely-accepted model of nanocrystals encapsulated by the
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amorphous interfacial phase, which is named as the nc-TiN/a-Si3N4 model (nc refers to nanocrystals,
and a refers to amorphous) [4].

In 2004, Yeh et al. innovatively proposed the concept of high-entropy alloys (HEAs), and Cantor
established the equiatomic multicomponent alloys [5,6]. HEAs are a high-entropy solid-solution phase
alloy formed by five or more principal elements, each of which has an atomic concentration between
5–35 at.% (atomic percent). The HEAs are not inclined to form intermetallic compounds due to their
high-entropy effect, which tend to stabilize the simple body-centered-cubic (BCC), face-centered-cubic
(FCC), or hexagonal-close-packed (HCP) solid solution [7–12]. A large number of subsequent studies
have shown that HEAs have many superior properties than conventional alloys, such as the high
strength, great hardness, strong wear resistance, good fatigue resistance, high oxidation and corrosion
resistance [13–28]. With the development of new HEAs, studies of HEA nitride films have also
attracted the great interest of many researchers. Feng et al. [29] deposited the (ZrTaNbTiW)N films on
the substrate of the Ti6Al4V alloy by multi-target magnetron sputtering to investigate the composition,
structure, and mechanical properties of the film. They found that the (ZrTaNbTiW)N film showed
the BCC and FCC structures, and its mechanical properties were significantly greater than those
of ZrTaNbTiW films. Cheng et al. [30] deposited multi-component (AlCrTaTiZr)-Six-N films on the
monocrystalline Si substrate by reactive radio-frequency (RF) magnetron sputtering and probed the
influence of the silicon content on the structures, morphologies, and mechanical properties of the films.
The results showed that the incorporation of silicon significantly increased the oxidation resistance of
AlCrTaTiZr nitride films, but lowered their hardnesses. Tsai et al. [12] deposited the multi-component
(AlCrMoTaTi)N films with different silicon contents by reactive RF magnetron sputtering and studied
the effects of silicon contents on the nitride films. Their results showed that the incorporation of silicon
led to the lattice distortion of the films, improved the mechanical properties of the films, but reduced
the electrical properties of the films. Moreover, Tsai et al. [31] deposited the (AlCrMoTaTi)-Six-N films
on the Si substrate by the reactive RF magnetron sputtering to systematically study the effects of the
silicon content on the oxidation of the films. It was found that the oxidation resistance of the films
improved with the increase of the silicon content, which could be attributed to the existence of Al and
Si in the films.

Based on the current research situation, it can be seen that there is no clear conclusion about
the effects of the Si element on the microstructures and mechanical properties of HEA nitride films.
Therefore, this study combines the concepts of the “nanocomposite film” and “HEA nitride films”
to prepare (AlCrTiZrV)-Six-N films with different silicon contents by the reactive direct-current (DC)
magnetron sputtering. The effects of silicon contents on the microstructures and mechanical properties
of the films were systematically studied with the expectation of providing the experimental and
theoretical basis for the application of the nanocomposite HEA nitride film in the industrial field.

2. Experimental

2.1. Film Preparation

The (AlCrTiZrV)-Six-N films with different silicon contents were deposited on monocrystalline
Si (100) wafers with a size of 35 mm × 25 mm × 0.5 mm using a JPG–450 multi-target magnetron
sputtering system. The wafers were ultrasonically cleaned with the acetone and absolute ethanol for
15 min, and then dried into the sputtering chamber. The target used for sputtering is a self-made
compound target with the structure shown in Figure 1. The process of preparing the compound
target can be summarized as follows. Both the Si target and the equal-moles AlCrTiZrV target,
with the diameter of 75 mm and the purity of 99.99% (volume percent), were cut down 5 slices of
25 equal fan segments by a low speed wire electrical discharge machine (EDM). Then, keeping the
80% (volume percent) of the AlCrTiZrV target unchanged, these fan segments were assembled into the
composite target with different silicon contents by changing the number of the Si sector. For example,
the composite target shown in Figure 1 has only one Si sector, therefore the Si content (x) of the
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composite target is 4% (volume percent). According to this method, composite targets with the Si
contents (x) of 4%, 8%, 12%, and 16% can be assembled for sputtering.
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Figure 1. Schematic illustration of the AlCrTiZrVSix composite target.

The AlCrTiZrVSix compound target was controlled by a DC power supply. The base pressure
was pumped down to 3.0 × 10−4 Pa before the deposition. During the experiment, the Ar and N2

flow rates were both maintained at the 10 standard cubic centimeter per minute (sccm). The working
pressure was adjusted to 0.7 Pa, and the sputtering power was 180 W. To improve the homogeneity of
films, the substrate was rotated at a speed of 10 r/min. The deposition time was 1.5 h, and finally the
(AlCrTiZrV)-Six-N films with a thickness of about 1.8 µm were obtained.

2.2. Film Characterization and Measurement

A series of characterization and testing of the deposited (AlCrTiZrV)-Six-N films were performed.
The structural and phase analyses were conducted on the D8 Advance X-ray diffractometer (XRD,
Bruker, Germany) using the CuKα radiation (λ = 0.15406 nm) with a measurement range of 25◦

to 90◦ and the Jade software, respectively. The microstructures of the films were observed by the
Quanta FEG450 field emission environmental electron microscope (SEM, FEI, USA) and Tecnai G220
high-resolution field-emission transmission electron microscope (HRTEM, FEI, USA). The NANO
Instrument, a G200 nano indenter (Agilent, USA) with the Berkovich indenter was used to study the
mechanical properties. The loading and unloading curves were obtained by accurately recording the
change of the loading depth with the load. Then the hardness and elastic modulus were calculated by
the Oliver–Pharr model [32]. During the measurement, the loading depth was set to 100 nm, less than
1/10 of the thickness of the films, so as to eliminate the effect of the substrate on the measurements.
Each hardness or elastic modulus value was an average of at least 16 measurements.

3. Results

The XRD patterns of the (AlCrTiZrV)-Six-N films with different silicon contents are presented
in Figure 2. It can be seen that the film without the Si element shows a simple FCC structure with a
diffraction peak near 2θ = 41◦, corresponding to the reflection of the (200) crystal plane, suggesting that
an FCC-structured solid-solution phase is formed with good crystallinity, and no other complicated
intermetallic compound is developed in the films. The reason for this phenomenon is that, due to the
high-entropy effect, the HEA tends to form the stable solid-solution phase rather than intermetallic
compounds. In bulk alloys of similar compositions to AlCrTiZrV, several researchers have reported
the formation of an order B2 structure [33,34], while in this investigation, the crystal phase of the film
without Si is a disordered FCC structure. This phenomenon may contribute to the reaction of the HEA
with N2. The films form the HEA nitride rather than the simple HEA, which leads to the change of
the structure of the crystal phase. Combined with the phase analysis of the Jade software, it can be
determined that the solid-solution phase is composed of five binary nitrides from Al, Cr, Ti, Zr, and V.
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This result has been reported in previous works and proven to be thermodynamically stable due to the
high mixing entropy effect [35,36].
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Figure 2. X-ray diffraction (XRD) patterns of (AlCrTiZrV)-Six-N films with different silicon contents.

With the incorporation of Si, no obvious diffraction peak can be observed at 2θ = 41◦,
indicating that the (200) diffraction peaks of films disappear with the incorporation of Si. From the
XRD patterns of (AlCrTiZrV)-Six-N (x = 4%, 8%, 12%, and 16%) film, it can be seen that the diffraction
patterns have two diffraction peaks with low intensities at about 2θ = 37◦ and 2θ = 70◦, corresponding to
fcc (111) and (200) peaks, respectively, suggesting that the film crystallinity decreases with the
incorporation of the Si element, relative to the (AlCrTiZrV)N film, and the microstructure may be
nanocrystalline or amorphous.

Figure 3a shows that the film without the Si element grows in a columnar crystal with the growth
direction marked by the arrow. Figure 3b suggests that the (AlCrTiZrV)-Si0.08-N film exhibits the
amorphous morphology with the growth direction indicated by the arrow. In addition, with the
incorporation of Si, the diffraction peaks of the films move to high angles, as presented in Figure 2,
suggesting that the lattice parameters of the nitride phase decrease, which may be attributed to the
fact that the doped Si atoms can be dissolved into the (AlCrTiZrV)N lattice and occupy some lattice
positions. As the radius of the Si atom is smaller than that of other metal elements, the lattice parameters
of the nitride phase decrease, which has been confirmed in other studies of ternary Si-contained nitride
films [37,38]. Besides, it is clear to see the change of the lattice parameters of the nitride phase according
to the values given by Table 1.
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(AlCrTiZrV)-Six-N films: (a) (AlCrTiZrV)N; (b) (AlCrTiZrV)-Si0.08-N.
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Table 1. The values of the lattice parameters of the (AlCrTiZrV)-Six-N films. (d1 are the calculated
values according to the XRD; d2 are the measurements according to the high-resolution transmission
electron microscope (HRTEM)).

(AlCrTiZrV)-Six-N d1(nm) d2(nm)

(AlCrTiZrV)N 0.2018 0.1913
(AlCrTiZrV)-Si0.04-N 0.1631 -
(AlCrTiZrV)-Si0.08-N 0.1629 0.1652
(AlCrTiZrV)-Si0.12-N 0.1627 -
(AlCrTiZrV)-Si0.16-N 0.1624 -

The cross-sectional SEM images of the (AlCrTiZrV)-Six-N films with different silicon contents are
presented in Figure 4. It can be seen that the nitride films are well bonded to the substrates, and there is
no obvious micro-gap between them. Moreover, the nitride films are grown uniformly with thickness
of about 1.8 µm, and the surface and internal quality of the nitride films are good. All the films have
the small surface roughness and a very dense and smooth cross-sectional structure without the visible
grain feature. Table 2 shows the calculated grain-sizes values of the (AlCrTiZrV)-Six-N films with
different silicon contents according to the Scherrer’s equation. This trend indicates that the grain sizes
of the films reach the nanometer level.
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Figure 4. Cross-sectional SEM images of the (AlCrTiZrV)-Six-N films. (a) (AlCrTiZrV)N;
(b) (AlCrTiZrV)-Si0.04-N; (c) (AlCrTiZrV)-Si0.08-N; (d) (AlCrTiZrV)-Si0.12-N; (e) (AlCrTiZrV)-Si0.16-N.

Table 2. The calculated grain-sizes values of the (AlCrTiZrV)-Six-N films.

(AlCrTiZrV)-Six-N D(200) D(220)

(AlCrTiZrV)N 22.18 nm -
(AlCrTiZrV)-Si0.04-N - 5.32 nm
(AlCrTiZrV)-Si0.08-N - 4.36 nm
(AlCrTiZrV)-Si0.12-N - 3.20 nm
(AlCrTiZrV)-Si0.16-N - 2.60 nm

The cross-sectional HRTEM images of the (AlCrTiZrV)N and (AlCrTiZrV)-Si0.08-N films are
presented in Figure 5. Figure 5a,c is the microstructures of the (AlCrTiZrV)N film, in which A, B,
and C represent different crystal grains. Figure 5b,d shows the images of the (AlCrTiZrV)-Si0.08-N
film, where A, B, C, D, E, F, and G denote the nanocrystals inside the films. Figure 5e,f presents the
selected-area electron diffraction (SAED) patterns of two films. A comparison of Figure 5a,b indicates
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that the grains of the (AlCrTiZrV)N film (the areas marked by A, B, and C) are comparatively coarse,
reaching tens or hundreds of nanometers, while the grains of the (AlCrTiZrV)-Si0.08-N film (inside the
yellow dotted line) are much smaller, approximately 2–5 nm, suggesting that the incorporation of the
Si element can effectively refine the grain of the film to the nanometer level, which also confirms the
previous XRD result in Figure 2. According to Figure 5c,d, it can be seen that there is no other phase
existing between the grains of the (AlCrTiZrV)N film (on both sides of the yellow dotted line) from the
high-magnification HRTEM, and the grains’ contact directly with each other. While the grains of the
(AlCrTiZrV)-Si0.08-N film do not contact directly, and there are some reticular amorphous interfacial
phases between two grains, that is, between two yellow closed dotted lines. It is speculated that the
interfacial phase is the amorphous phase and corresponds to the amorphous projection of the XRD
pattern. For the SAED patterns images, the FCC structure with the (200) preferred orientation of the
(AlCrTiZrV)N film could be seen in Figure 5e, while the SAED patterns of the (AlCrTiZrV)-Si0.08-N
film in Figure 5f exhibit the nanocrystalline and amorphous features, which are consistent with the
XRD analysis of Figure 2.
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(a,c,e) (AlCrTiZrV)N and (b,d,f) (AlCrTiZrV)-Si0.08-N films: (a,b) low-magnification HRTEM images;
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The effects of Si contents on the mechanical properties of the (AlCrTiZrV)-Six-N films are presented
in Figure 6. The hardness and elastic modulus of the (AlCrTiZrV)N film are 30.1 GPa and 274.0 GPa,
respectively. With the incorporation of Si, the hardness and elastic modulus of the films both first
increase and then decrease. When the Si content (x) is 8%, the hardness and elastic modulus of the
film reach the maximum, which are 34.3 GPa and 301.5 GPa, respectively. As the Si content (x) further
increases to 12% or 16%, the hardness and elastic modulus of the films decrease and are lower than
those of the (AlCrTiZrV)N film. It can be seen that the incorporation of Si has a significant effect on
the mechanical properties of the films, which can be attributed to the microstructure change resulting
from the incorporation of the Si element.
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4. Discussion

4.1. The Formation of the Nanocomposite Structures

The nanocomposite film consisting of two insoluble phases presents a three-dimensional network
structure film in which the interfacial phase encapsulates the matrix phase. The difficulty for the
formation of the nanocomposite structure within the HEA nitride films lies in the remarkable mixing
entropy effect, which enhances the mutual solubility of constituent elements. As a result, the Si
atoms may be inclined to be incorporated in the crystalline lattice of the HEA nitride, rather than be
segregated as the SiNx phase, which can serve as the interfacial phase of the nanocomposite structure.

For example, Tsai et al. [30] investigated the effects of the silicon content (0–7.51 at.%) on the
(AlCrMoTaTi)N coatings by the reactive-magnetron sputtering, and no formation of the nanocomposite
structure had been reported. In particular, the formation of the SiNx phase was not observed
even after the Si content was increased to 7.51 at.%. They attributed the extended solubility of Si
to the high entropy effect. Lin et al. [39] reported the formation of the nanocomposite structure
in the (AlCrTaTiZr)SiN coatings produced by the reactive RF-magnetron sputtering, and found
that the nanocrystalline phase is elongated, rather than equiaxed, which is a typical feature of the
nanocomposite films. Moreover, the lattice can be observed within the denoted “amorphous regions”,
suggesting the probable crystallized feature in these regions. More importantly, the composition
distribution had not been provided in these investigations, making it difficult to verify the phase
segregation within the coatings.

Compared with the above results, in this investigation, through the high-magnification HRTEM
image shown in Figure 5d, the equiaxed regions (the areas marked by A, B, C, D, and E) exhibit
an ordered lattice structure, which is the HEA nitride phase, while the areas between two yellow
closed dotted lines present an amorphous structure, which is the interfacial phase. Meanwhile,
no lattice structure is observed in the amorphous region, indicating that the nanocomposite structure
forms within the film resulting from the phase separation between the HEA nitride matrix and SiNx

interfacial phase. Moreover, according to the studies of Prochazka [40], the a-Si3N4 phase has the
limited solubility in FCC nitrides, and the thermodynamically-driven phase separation will occur
during the deposition, which may be the possible reason why the nanocomposite structures could
form in the (AlCrTiZrV)-Six-N films. Figure 7 is the schematic diagram of nanocomposite structures
of the (AlCrTiZrV)-Six-N films, in which the (AlCrTiZrV)N matrix phase is a nano-equiaxed crystal,
and the SiNx interfacial phase is a network amorphous phase.
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4.2. The Strengthening Mechanism of the (AlCrTiZrV)-Six-N Films

The mechanical properties of the films are improved with the proper addition of the Si element,
which can be attributed to the microstructure change due to the Si incorporation. The reasons for
improving their mechanical properties can be specifically discussed as follows.

According to the theory of solid-solution hardening [41], the incorporation of the Si element can
improve the mechanical properties by causing the lattice distortion of the nitride films. To some extent,
Table 1 shows that the incorporation of the Si element causes the lattice distortion of the nitride films.
However, compared with the nitride film without Si, the mechanical properties of the nitride films
with the high Si content are lower, indicating that the solid-solution strengthening is not the major
factor in changing the mechanical properties of the nitride films.

From the classical Hall–Petch relationship [42]:

H = H0 + kHPd−1/2, (1)

where H0 is the intrinsic hardness of the (AlCrTiZrV)N, d is the average grain size, and kHP is the
Hall-Petch coefficient of (AlCrTiZrV)N. The reduction of the grain size could lead to the strengthening
effect of the HEA-nitride film. According to the HRTEM analysis, it can be seen that with the
incorporation of the Si element, the grain sizes of the nitride films significantly decreases to the
nanometer scale. Besides, Table 2 shows that the grain sizes of the (AlCrTiZrV)-Six-N films reduce with
the incorporation of the Si element. Therefore, the effect of the fine-grained strengthening improves
the mechanical properties of the nitride films to some extent. However, from the previous analysis,
the mechanical properties of the nitride films with the low Si content increase, while the properties with
the high Si content further decrease, that is, when the grain sizes reach a minimum, the mechanical
properties of the nitride films are worst, suggesting that the fine-grained strengthening mechanism is
not the main factor in strengthening the film.

From the HRTEM images and relevant analysis, the nanocomposite structure forms within
the HEA nitride films. Combining the strengthening mechanism of the nanocomposite film
(nc-TiN/a-Si3N4 model) [4,43,44], with the incorporation of Si, there are many equiaxed crystals
with the nanometer size formed in the films, leading to the fact that the generation or multiplication
of dislocations cannot happen within the films. At the same time, the thickness of the amorphous
interfacial phases formed between the nanocrystals is small, and the crack is difficult to expand in
the interfacial phases. Hence, the nitride films present a superhardness effect, and the mechanical
properties are improved. Moreover, the quantity of the interfacial phases increases with the increase
of the Si content, which makes the grains more refined (as shown in Table 2) and, therefore,
effectively strengthens the film. Patscheider et al. [44] pointed out that the hardness of nanocomposite
films peaks at the common minimum of the grain size of the crystalline phase and the grain separation
by the amorphous phase. Namely, two conditions have to be fulfilled to achieve the maximum
hardness for the nanocomposite film: the nanocrystals are approximately 5 nm in size and the mean
distance has to be very small, about a few nanometers. Therefore, as shown in Table 2 and Figure 5d,
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when the average grain size of the crystalline phase is 4.36 nm, and the thickness of the amorphous
interfacial phase is approximately 0.5–2 nm, the mechanical properties of the nitride films are the best.

However, if the interfacial phase thickness is too large, the hardness is mainly governed by
the properties of the amorphous interfacial phase [44]. In this investigation, when the Si content is
8%, the thickness of the amorphous interfacial phase in the film could reach 2 nm. Because of the
phase separation driven by thermodynamics, the (AlCrTiZrV)N matrix phase and the SiNx interfacial
phase are incompatible with each other. The Si only exists in the amorphous region. Thus, when the
Si content is above 8%, the thickness of the amorphous interfacial phase will be 3–4 nm or even
thicker. While at this time, the grain size of the crystalline phase is only 2–3 nm or even smaller,
the hardness of the nitride film is mainly governed by the properties of the amorphous interfacial
phase. This trend means that the hardness of the film approaches that of SiNx. The SiNx phase is softer
than the (AlCrTiZrV)N phase; meanwhile, the crack can expand within the amorphous interfacial
phase due to the thickening of the interface, thus leading to the decrease of the mechanical properties.
Hence, the mechanical properties of the films with the high Si content are lower than those of the
film without Si. Therefore, it is believed that the nanocomposite structure is the main reason for the
improvement of the mechanical properties of the HEA nitride films.

Due to the limitation of characterization techniques, however, it is difficult to accurately predict the
strengthening effect from the nanocomposite structure in this investigation. As a result, more research
should be carried out on the phase-segregation behavior of the Si-containing HEA nitride films to
help investigate the strengthening behavior of nanocomposite structures by the advanced techniques,
such as atom probe tomography. The relevant modeling and simulations are also needed.

5. Conclusions

(i) The (AlCrTiZrV)N film is a solid-solution phase with the FCC structure and has a (200)
preferential orientation. With the incorporation of the Si element, the (200) diffraction peak of
(AlCrTiZrV)-Six-N films disappeared.

(ii) The (AlCrTiZrV)N film grows with a columnar crystal-growth mode. After the Si
element is incorporated, the (AlCrTiZrV)-Six-N films exhibit an amorphous fracture morphology.
Moreover, the incorporation of the Si element effectively refines the grains of the nitride films,
forming nanocrystals with a size of about 2–5 nm, and a large number of amorphous interfacial
phases form simultaneously.

(iii) The nanocomposite structure is formed within the (AlCrTiZrV)-Six-N films with the
incorporation of the Si element, and the mechanical properties are improved. When the Si content (x)
is 8%, the hardness and elastic modulus of the (AlCrTiZrV)-Six-N films reach 34.3 GPa and 301.5 GPa,
respectively. However, the further increase of the Si content will result in the deterioration of the
mechanical properties of the (AlCrTiZrV)-Six-N films.
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