
entropy

Article

On the Relation between Topological Entropy and
Restoration Entropy

Christoph Kawan

Fakultät für Informatik und Mathematik, Universität Passau, Innstraße 33, 94032 Passau, Germany;
christoph.kawan@uni-passau.de; Tel.: +49-(0)85-1509-3363

Received: 28 November 2018; Accepted: 20 December 2018; Published: 23 December 2018
����������
�������

Abstract: In the context of state estimation under communication constraints, several notions of
dynamical entropy play a fundamental role, among them: topological entropy and restoration entropy.
In this paper, we present a theorem that demonstrates that for most dynamical systems, restoration
entropy strictly exceeds topological entropy. This implies that robust estimation policies in general
require a higher rate of data transmission than non-robust ones. The proof of our theorem is quite
short, but uses sophisticated tools from the theory of smooth dynamical systems.
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1. Introduction

This paper compares two notions of entropy that are relevant in the context of state estimation
under communication constraints. Since the work of Savkin [1], it has been well known that the
topological entropy of a dynamical system characterizes the smallest rate of information above
which an estimator, receiving its state information at the corresponding rate, is able to generate
a state estimate of arbitrary precision. Topological entropy is a quantity that has been studied in
the mathematical field of dynamical systems since the 1960s and has turned out to be a useful
tool for solving many theoretical and practical problems, cf. the survey [2] and the monograph [3].
A big drawback of this notion in the context of state estimation is that topological entropy is highly
discontinuous with respect to the dynamical system under consideration in any reasonable topology,
cf. [4]. As a consequence, estimation policies based on topological entropy are likely to suffer from
a lack of robustness. Additionally, topological entropy is very hard to compute or estimate. There
are only few numerical approaches that potentially work for multi-dimensional systems, cf. [5–8],
and each of them has its drawbacks and restrictions.

A possible remedy for these problems is provided in the works [9,10] of Matveev and Pogromsky.
One of the main ideas in these papers is to replace the topological entropy as a figure-of-merit for the
necessary rate of data transmission with a possibly larger quantity, named restoration entropy, which
describes the smallest data rate above which a more robust form of state estimation can be achieved
(called regular observability in [9,10]).

Looking at one of the simplest types of nonlinear dynamical systems, namely Anosov
diffeomorphisms, the main result of the paper at hand demonstrates that for most dynamical systems,
we have to expect that the restoration entropy strictly exceeds the topological entropy. That is,
to achieve a state estimation objective that is more robust with respect to perturbations, one has to
pay the price of using a channel that allows for a larger rate of data transmission. More specifically,
our result shows that the equality of topological and restoration entropy implies a great amount of
uniformity in the dynamical system under consideration, which can be expressed in terms of the
unstable Lyapunov exponents at each point, whose sum essentially has to be a constant. Such a property
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can easily be destroyed by a small perturbation, showing that arbitrarily close to the given system,
we find systems whose restoration entropy strictly exceeds their topological entropy. Since Anosov
diffeomorphisms are considered as a paradigmatic class of chaotic dynamical systems, this property
can be expected for a much larger class of systems.

To prove our result, we need a number of high-level concepts and results from the theory of
topological, measurable, and smooth dynamical systems. This includes the concepts of topological
and metric pressure, Lyapunov exponents, SRB measures, and uniform hyperbolicity.

For further reading on the topic of state estimation under communication constraints, we refer
the reader to [1,9–14] and the references given therein.

The structure of this paper is as follows: In Section 2, we collect all necessary definitions and
results from the theory of dynamical systems. Section 3 introduces the concept of restoration entropy
and explains its operational meaning in the context of estimation under communication constraints.
In Section 4, we prove our main result and provide some interpretation and an example. Finally,
Section 5 contains some concluding remarks.

2. Tools from Dynamical Systems

Notation: By Z, we denote the set of all integers, by N the set of positive integers,
and N0 := {0} ∪ N. All logarithms are taken to the base two. If M is a Riemannian manifold,
we write | · | for the induced norm on any tangent space Tx M, x ∈ M. The notation ‖ · ‖ is reserved for
operator norms. We write clA and intA for the closure and the interior of a set A in a metric space,
respectively. Finally, the notation A ⊂ B (A subset of B) does not exclude the case A = B.

In this paper, we use several sophisticated results from the theory of dynamical systems,
in particular from smooth ergodic theory. In the following, we try to explain these results without
going too much into technical details.

Let T : X → X be a continuous map on a compact metric space (X, d). Via its iterates:

T0 := idX , Tn+1 := T ◦ Tn, n = 0, 1, 2, . . .

the map T generates a discrete-time dynamical system on X with associated orbits {Tn(x)}n∈N0 , x ∈ X.
We call the pair (X, T) a topological dynamical system (TDS).

2.1. Entropy and Pressure

Let (X, T) be a TDS. The topological entropy htop(T) measures the total exponential complexity of
the orbit structure of (X, T) in terms of the maximal numbers of finite-time orbits that are
distinguishable w.r.t. to a finite resolution. One amongst different possible formal definitions is
as follows. For n ∈ N and ε > 0, a set E ⊂ X is called (n, ε, T)-separated if for any x, y ∈ E with x 6= y,
we have:

d(Ti(x), Ti(y)) ≥ ε for at least one 0 ≤ i < n.

That is, we can distinguish any two points in E at a resolution of ε by looking at their length-n
finite-time orbits. By the compactness of X, there is a uniform upper bound on the cardinality of any
(n, ε, T)-separated set. Writing r(n, ε, T) for the maximal possible cardinality,

htop(T) := lim
ε↓0

lim sup
n→∞

1
n

log r(n, ε, T).

This definition is due to Bowen [15] and (independently) Dinaburg [16]. However, it should be
noted that the first definition of topological entropy, given by Adler, Konheim, and McAndrew [17],
was in terms of open covers of X and was modeled in strict analogy to the metric (= measure−theoretic)
entropy defined earlier by Kolmogorov and Sinai [18,19].



Entropy 2019, 21, 7 3 of 14

To define metric entropy, one additionally needs a Borel probability measure µ on X that is
preserved by T in the sense that µ(A) = µ(T−1(A)) for every Borel set A. By the theorem of
Krylov–Bogolyubov, every continuous map on a compact space admits at least one such measure,
cf. [20], Theorem 4.1.1. We writeMT for the set of all T-invariant Borel probability measures. For any
finite measurable partition P of X, we define the entropy of T on P by:

hµ(T;P) := lim
n→∞

1
n

Hµ

(n−1∨
i=0

T−iP
)

.

Here,
∨

denotes the join operation. That is,
∨n−1

i=0 T−iP is the partition of X whose elements are
all intersections of the form P0 ∩ T−1(P1) ∩ . . . ∩ T−n+1(Pn−1) with Pi ∈ P . Moreover, Hµ(·) denotes
the Shannon entropy of a partition, i.e., Hµ(Q) = −∑Q∈Q µ(Q) log µ(Q) for any finite partition Q.
The metric entropy of T w.r.t. µ is then defined by:

hµ(T) := sup
P

hµ(T;P),

the supremum taken over all finite measurable partitions P of X (replacing measurable partitions with
open covers and Shannon entropy with the logarithm of the cardinality of a minimal finite subcover,
the same construction yields the topological entropy as defined in [17]).

To understand the meaning of hµ, note that Hµ(Q) is the average amount of uncertainty as
one attempts to predict the partition element to which a randomly-chosen point belongs. Hence,
hµ(T) measures the average uncertainty per iteration in guessing the partition element of a typical
length-n orbit.

The variational principle for entropy states that:

htop(T) = sup
µ∈MT

hµ(T), (1)

where the supremum is not necessarily a maximum. This variational principle can be regarded as a
quantitative version of the theorem of Krylov–Bogolyubov.

Another concept (of which entropy is a special case) used in dynamical systems and inspired by
ideas in thermodynamics is pressure. In this context, any continuous function φ : X → R, also called
a potential or an observable, gives rises to the metric pressure of T w.r.t. φ for a given µ ∈ MT ,
defined as:

Pµ(T, φ) := hµ(T) +
∫

φdµ.

To define an associated notion of topological pressure, put Snφ(x) := ∑n−1
i=0 φ(Ti(x)) and:

R(n, ε, φ; T) := sup
{

∑
x∈E

2Snφ(x) : E ⊂ X is (n, ε, T)-separated
}

.

Then, the topological pressure of T w.r.t. φ is given by:

Ptop(T, φ) := lim
ε↓0

lim sup
n→∞

1
n

log R(n, ε, φ; T).

The associated variational principle, first proven in [21], reads:

Ptop(T, φ) = sup
µ∈MT

Pµ(T, φ), (2)

which includes (1) as a special case (simply put φ = 0).
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2.2. Subadditive Cocycles

Let T : X → X be a map. A subadditive cocycle over (X, T) is a sequence ( fn)n∈N0 of functions
fn : X → R satisfying:

fn+m(x) ≤ fn(x) + fm(Tn(x)), ∀n, m ∈ N0, x ∈ X.

If equality holds in this relation, we call ( fn)n∈N0 an additive cocycle over (X, T).
If X has the structure of a probability space with a σ-algebra F and a probability measure µ on F ,

T is measurable, and µ is T-invariant, we speak of a measurable subadditive cocycle provided that all
fn are measurable. In the context of a TDS (X, T), we speak of a continuous subadditive cocycle if all
fn are continuous.

The most fundamental result about subadditive cocycles is Kingman’s subadditive ergodic
theorem, cf. [3], Theorem 2.1.4:

Theorem 1. Let T : X → X be a measure-preserving map on a probability space (X,F , µ) and ( fn)n∈N0 a
measurable subadditive cocycle over (X, T) such that each fn is integrable. Then, the limit:

lim
n→∞

1
n

fn(x)

exists for µ-almost every x ∈ X. If, additionally, µ is ergodic, then the limit is constant with:

lim
n→∞

1
n

fn(x) = lim
n→∞

1
n

∫
fndµ. (3)

Observe that the limit on the right-hand side of (3) always exists by Fekete’s subadditivity lemma
(see [3], Fact 2.1.1), because the sequence an :=

∫
fndµ is subadditive, i.e., an+m ≤ an + am. Kingman’s

theorem can, in particular, be applied if (X, T) is a TDS, µ ∈ MT , and ( fn)n∈N0 is a continuous
subadditive cocycle.

Now, we consider again a TDS (X, T) and a continuous subadditive cocycle ( fn)n∈N0 over (X, T).
We define the extremal growth rate of ( fn) by:

β[( fn)] := sup
x∈X

lim sup
n→∞

1
n

fn(x).

The following result is well known and can be found in [22], Theorem A.3, for instance:

Lemma 1. Let ( fn)n∈N0 be a continuous subadditive cocycle over a TDS (X, T). Then:

β[( fn)] = sup
µ∈MT

inf
n>0

1
n

∫
fndµ = inf

n>0
sup
x∈X

1
n

fn(x) = inf
n>0

sup
µ∈MT

1
n

∫
fndµ.

Here, all infima can be replaced with limits. Moreover, every supremum is attained.

2.3. Lyapunov Exponents, SRB Measures, and Pesin’s Formula

To describe the long-term dynamical behavior of smooth systems, the notion of Lyapunov
exponents is crucial. Given a C1-diffeomorphism T : M→ M on a compact Riemannian manifold M,
the Lyapunov exponent at x ∈ M in direction 0 6= v ∈ Tx M is the number:

λ(x, v) := lim
n→∞

1
n

log |DTn(x)v|,

provided that the limit exists. Lyapunov exponents measure how fast nearby solutions diverge from
each other. The most general result on their existence and their properties is the multiplicative ergodic
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theorem (MET), also known as Oseledets theorem, cf. [23,24]. We need the following version of the
theorem (which is not the most general):

Theorem 2. Let T : M → M be a C1-diffeomorphism of a compact Riemannian manifold M and µ ∈ MT .
Then, there exists a Borel set Ω ⊂ M with µ(Ω) = 1 and T(Ω) = Ω such that the following holds: for every
x ∈ Ω, there exist numbers λ1(x) > . . . > λr(x)(x), and the tangent space at x splits into linear subspaces as:

Tx M = E1(x)⊕ · · · ⊕ Er(x)(x)

such that the following properties hold:

(i) For every 0 6= v ∈ Ei(x), we have:

lim
n→±∞

1
n

log |DTn(x)v| = λi(x).

(ii) The functions r(·), dim Ei(·), and λi(·) are measurable and constant along orbits. Moreover,

DT(x)Ei(x) = Ei(T(x)), i = 1, . . . , r(x).

(iii) For every x ∈ Ω, the limit:
Λx := lim

n→∞
(DTn(x)∗DTn(x))1/2n

exists, and the different eigenvalues of Λx are 2λ1(x), . . . , 2λr(x)(x) (here, DTn(x)∗ denotes the adjoint of
DTn(x)).

Typically, a given map has a huge number of associated invariant measures. To obtain a good
description of the global dynamical behavior, one has to select specific invariant measures that
determine the behavior of the system on a large set of initial states. In this context, the notion of
an SRB measure (Sinai–Ruelle–Bowen measure) comes into play. An SRB measure is a measure
with at least one positive Lyapunov exponent almost everywhere, having absolutely continuous
conditional measures on unstable manifolds. We are not going to give a technical definition of the
latter property. Instead, we state the following celebrated theorem due to Ledrappier and Young [25],
which characterizes this property in terms of metric entropy. Here, we use the short-cut:

λ+(x) :=
r(x)

∑
i=1

max{0, λi(x)dim Ei(x)}

for the sum of all positive Lyapunov exponents at a point x ∈ Ω, counted with multiplicities.

Theorem 3. Let T : M → M be a C2-diffeomorphism of a compact manifold M and µ ∈ MT . Then,
the formula:

hµ(T) =
∫

λ+dµ (4)

holds if and only if µ has absolutely continuous conditional measures on unstable manifolds.

Additionally, note that for any C1-diffeomorphism T and any µ ∈ MT , the inequality:

hµ(T) ≤
∫

λ+dµ (5)

holds, which is known as Ruelle’s inequality or Ruelle–Margulis inequality [26] (Formula (4) was first
proven by Pesin for smooth invariant measures).
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2.4. Anosov Diffeomorphisms

One of the simplest classes of smooth dynamical systems with complicated dynamical behavior
is the class of Anosov diffeomorphisms. In this paper, we use these systems for two reasons. First,
they have positive topological entropy, and second, they are very well understood and there are many
tools available to describe their properties.

Let M be a compact Riemannian manifold. A C1-diffeomorphism T : M→ M is called an Anosov
diffeomorphism if there exists a splitting:

Tx M = Eu
x ⊕ Es

x, ∀x ∈ M

into linear subspaces such that the following conditions are satisfied:

(A1) DT(x)Eu
x = Eu

T(x) and DT(x)Es
x = Es

T(x) for all x ∈ M.

(A2) There are constants c ≥ 1 and λ ∈ (0, 1), so that, for all x ∈ M and n ∈ N0,

|DTn(x)v| ≤ cλn|v| for all v ∈ Es
x,

|DT−n(x)v| ≤ cλn|v| for all v ∈ Eu
x .

From (A1) and (A2), it automatically follows that Es
x and Eu

x vary continuously with x, cf. [20],
Proposition 6.4.4. The existence of a splitting as above is also known as uniform hyperbolicity.

The simplest examples of Anosov diffeomorphisms are hyperbolic linear torus automorphisms,
i.e., maps on the n-dimensional torus Tn = Rn/Zn of the form:

TA(x) = Ax (mod Zn), TA : Tn → Tn,

where A ∈ Zn×n is an integer matrix satisfying |det A| = 1 and |λ| 6= 1 for all eigenvalues λ of A.
Observe that the assumption |det A| = 1 guarantees that TA is invertible with inverse T−1

A = TA−1

(because A−1 also has integer entries) and at the same time implies that TA is area-preserving. That is,
the normalized Lebesgue measure on Tn is an element ofMTA . The assumption on the eigenvalues of
A together with the fact that the derivative DTA(x) at any point x ∈ Tn can be identified with A itself
implies the Anosov Properties (A1) and (A2).

It is well known that Anosov diffeomorphisms are structurally stable, i.e., any sufficiently small
C1-perturbation Tε of an Anosov diffeomorphism T : M → M is also an Anosov diffeomorphism,
which is topologically conjugate to T, see [20], Proposition 6.4.6 and Corollary 18.2.2. That is,
there exists a homeomorphism h : M→ M, so that:

h−1 ◦ Tε ◦ h = T.

If we assume that T is an arbitrary Anosov diffeomorphism of the torus, the existence of a unique
entropy-maximizing measure µ follows. That is, µ is the unique element ofMT satisfying:

htop(T) = hµ(T).

This follows from a combination of results that can be found in Katok and Hasselblatt [20], namely
Theorem 20.3.7, Proposition 18.6.5, Theorem 18.3.9, and Corollary 6.4.10. The entropy-maximizing
measure µ is also known as the Bowen-measure.

In this context, also the notion of topological mixing is important. An Anosov diffeomorphism
(or simply a continuous map) T : M → M is called topologically mixing if for any two nonempty
open sets A, B ⊂ M, there exists an integer N such that Tn(A) ∩ B 6= ∅ for all n ≥ N. In particular,
all Anosov diffeomorphisms on Tn are topologically mixing ([20], Proposition 18.6.5).
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3. State Estimation and Restoration Entropy

The notion of restoration entropy was introduced in [10] for systems given by ODEs on Rn.
However, it is immediately clear from the definition that restoration entropy can be defined for any
continuous map on a compact metric space as follows. Let T : X → X be a continuous map on a metric
space (X, d) and K ⊂ X a compact set with T(K) ⊂ K. For every x ∈ X, n ∈ N and ε > 0, let p(n, x, ε)

denote the smallest number of ε-balls needed to cover the image Tn(Bε(x) ∩ K). If the map is not clear
from the context, we also write p(n, x, ε; T). Then:

hres(T|K) := lim
n→∞

1
n

lim sup
ε↓0

sup
x∈X

log p(n, x, ε).

The existence of the limit in n follows from the subadditivity of the sequence an := lim supε↓0
supx∈X log p(n, x, ε) (using Fekete’s lemma). If we assume that T is a C1-diffeomorphism of a compact
Riemannian manifold, the numbers p(n, x, ε) can be estimated in terms of the unstable singular
values of DTn(x). This is related to the simple fact that the image of a ball under a linear map
(in our case, the local linear approximation DTn(x) to Tn) is an ellipsoid with semi-axes of lengths
proportional to the singular values. This leads to the following result, proven in [10], Theorem 11,
for continuous-time systems. The proof carries over to discrete-time systems on Riemannian manifolds
without any problem.

Theorem 4. Let T : M→ M be a C1-diffeomorphism of a d-dimensional Riemannian manifold M and K ⊂ M
a forward-invariant compact set of T with clK = cl(intK). Then:

hres(T|K) = lim
n→∞

1
n

max
x∈K

d

∑
i=1

max{0, log αi(n, x)},

where α1(n, x) ≥ . . . ≥ αd(n, x) denote the singular values of DTn(x).

For the analysis of hres, based on the above formula, the following observations are crucial:

• We have

d

∑
i=1

max{0, log αi(n, x)} = log
d

∏
i=1

max{1, log αi(n, x)} = log ‖DTn(x)∧‖,

where DTn(x)∧ denotes the linear map induced by DTn(x) between the full exterior algebras of
the tangent spaces Tx M and TTn(x)M, respectively; see [27], Chapter I, Proposition 7.4.2.

• The sequence fn(x) := log ‖DTn(x)∧‖, fn : M → R, is a continuous subadditive cocycle over
(K, T|K), since:

fn+m(x) = log ‖DTn+m(x)∧‖ = log ‖DTm(Tn(x))∧DTn(x)∧‖
≤ log

(
‖DTm(Tn(x))∧‖ · ‖DTn(x)∧‖

)
= log ‖DTn(x)∧‖+ log ‖DTm(Tn(x))∧‖ = fn(x) + fm(Tn(x)).

Alternatively, this follows from Horn’s inequality for singular values; see [27], Chapter I,
Proposition 2.3.1.

In the following, we explain the operational meaning of the quantity hres(T|K).
Consider the dynamical system given by:

xt+1 = T(xt), x0 ∈ K, t = 0, 1, 2, . . . (6)
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Suppose that a sensor, fully observing the state xt, sends its data to an encoder. At the sampling
times t = 0, 1, 2, . . ., the encoder sends a signal et through a noise-free discrete channel to a decoder
(without transmission delay). The decoder acts as an observer of the system, trying to reconstruct the
state from the received data. We write x̂t for the estimate generated by the observer at time t. Moreover,
we assume that we start with an initial estimate x̂0 ∈ K of a specified accuracy.

WithM denoting the coding alphabet, the encoder and the observer are described by mappings:

et = Ct(x0, x1, . . . , xt; x̂0, δ), Ct : Kt+1 × K×R>0 →M,

and:
x̂t = Et(e0, e1, . . . , et; x̂0, δ), Et :Mt+1 × K×R>0 → X.

The argument δ corresponds to the initial error at time zero, i.e., d(x0, x̂0) ≤ δ. In particular, we assume
that both the encoder and the observer are given the data x̂0 and δ.

We assume that the channel can transmit at least b−(r) and at most b+(r) bits in any time
interval of length r. The capacity of the channel is then defined by:

C := lim
r→∞

b−(r)
r

= lim
r→∞

b+(r)
r

,

assuming that these limits exist and coincide.
We consider the following two observation objectives:

(O1) The observer observes the system with exactness ε > 0 if there exists δ = δ(ε, K), so that x0, x̂0 ∈ K
with d(x0, x̂0) ≤ δ implies:

sup
t≥0

d(xt, x̂t) ≤ ε.

(O2) The observer regularly observes the system if there exist G, δ∗ > 0, so that for all δ ∈ (0, δ∗) and
x0, x̂0 ∈ K with d(x0, x̂0) ≤ δ,

sup
t≥0

d(xt, x̂t) ≤ Gδ.

We say that the system is:

• observable on K over a channel of capacity C if for every ε > 0, an observer exists that observes
the system with exactness ε over this channel;

• regularly observable on K over a channel of capacity C if there exists an observer that regularly
observes the system over this channel.

Then, we have the following data-rate theorem, cf. [9], Theorem 8, and [10], Theorem 9.

Theorem 5. The smallest channel capacity C0, so that System (6) is:

• observable on K over every channel of capacity C > C0 is given by:

C0 = htop(T|K).

• regularly observable on K over every channel of capacity C > C0 is given by:

C0 = hres(T|K).

Since regular observability implies observability, it is clear that:

htop(T|K) ≤ hres(T|K).
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As already pointed out in the Introduction, the quantity htop(·) is highly discontinuous w.r.t. the
dynamical system. Moreover, the corresponding data-rate theorem has the disadvantage that the
final error ε may be much larger than the initial error δ, which cannot happen in the case of regular
observability. From Theorem 4 in combination with Lemma 1, one sees that in the smooth case,
hres is an infimum over functions that are continuous w.r.t. T in the C1-topology. This implies at least
upper semicontinuity. Hence, we can expect that coding and estimation strategies based on restoration
entropy enjoy better properties than those based on topological entropy.

4. Results

Before we present our main result, we prove two lemmas, which are of independent interest.

Lemma 2. Let T : M → M be a C2-diffeomorphism on a compact Riemannian manifold M. Then, for any
µ ∈ MT , we have: ∫

λ+dµ = lim
n→∞

1
n

∫
log ‖DTn(x)∧‖dµ(x).

Proof. Let d = dim M. First observe that we have the identity:

‖DTn(x)∧‖ = max
{

1, max
1≤k≤d

k

∏
i=1

αi(n, x)
}

,

where α1(n, x) ≥ . . . ≥ αd(n, x) are the singular values of DTn(x), see [27], Chapter I, Proposition 7.4.2. Hence,

log ‖DTn(x)∧‖ = max
{

0, max
1≤k≤d

k

∑
i=1

log αi(n, x)
}

.

The maximum over k is clearly attained when k is the maximal number such that αi(n, x) > 1 for
all 1 ≤ i ≤ k. Hence,

log ‖DTn(x)∧‖ = max
{

0, ∑
αi(n,x)>1

log αi(n, x)
}

.

The numbers αi(n, x) are the eigenvalues of An(x) := (DTn(x)∗DTn(x))1/2. Theorem 2 states
that An(x)1/n → Λx for µ-almost every x ∈ M and the logarithms of the eigenvalues of Λx are the
Lyapunov exponents at x. Since eigenvalues depend continuously on the matrix, it follows that:

lim
n→∞

1
n

log ‖DTn(x)∧‖ = λ+(x) µ-a.e.

and consequently ∫
λ+dµ =

∫
lim

n→∞

1
n

log ‖DTn(x)∧‖dµ(x).

Applying the theorem of dominated convergence then yields the result.

Lemma 3. Let T : M → M be a C2-diffeomorphism on a compact Riemannian manifold M such that
htop(T) = hres(T). Then, if T has an entropy-maximizing measure µ∗, it follows that:

hµ∗(T) =
∫

λ+dµ∗.

Proof. Assume to the contrary that hµ∗(T) <
∫

λ+dµ∗ (using Ruelle’s inequality (5)). Then, Lemma 2 implies:

htop(T) = hµ∗(T) <
∫

λ+dµ∗ = lim
n→∞

1
n

∫
log ‖DTn(x)∧‖dµ∗(x).
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According to Theorem 4 and the subsequent observation, an application of Lemma 1 yields:

hres(T) = sup
µ∈MT

lim
n→∞

1
n

∫
log ‖DTn(x)∧‖dµ(x).

Combining these observations gives htop(T) < hres(T), in contradiction to our assumption.

Now, we are in a position to state our main result.

Theorem 6. Let T : M→ M be a topologically mixing C2-Anosov diffeomorphism on a compact Riemannian
manifold M such that htop(T) = hres(T). Then, the unique entropy-maximizing measure µ∗ ∈ MT is an SRB
measure. Moreover, the function:

µ 7→
∫

λ+dµ, MT → R≥0

is constant.

Proof. First note that the existence and uniqueness of an entropy-maximizing measure µ∗ follows
from [20], Theorem 20.3.7, Theorem 18.3.9, and Corollary 6.4.10. Here, the assumption that T is
topologically mixing is crucial. By the preceding lemma combined with Theorem 3, we already know
that µ∗ has absolutely continuous conditional measures on unstable manifolds. Since an Anosov
diffeomorphism has positive Lyapunov exponents everywhere (where they exist), attained in all
directions of the unstable subspace Eu

x , it follows that µ∗ is an SRB measure.
Now, let µ ∈ MT be chosen arbitrarily. Due to the invariance of µ, we have:

∫
log |det DT(x)|Eu

x
|dµ(x) =

∫ 1
n

n−1

∑
i=0

log |det DT(Ti(x))|Eu
Ti(x)
|dµ(x)

=
∫ 1

n
log |det DTn(x)|Eu

x
|dµ(x)

for every n ∈ N, implying:∫
λ+dµ =

∫
lim

n→∞

1
n

log |det DTn(x)|Eu
x
|dµ(x)

= lim
n→∞

∫ 1
n

log |det DTn(x)|Eu
x
|dµ(x) =

∫
log |det DT(x)|Eu

x
|dµ(x),

where we use Kingman’s subadditive ergodic theorem, applied to the continuous additive cocycle
fn(x) := log |det DTn(x)|Eu

x
| (n ∈ N0), and the theorem of dominated convergence. Observe that the

function JuT(x) := log |det DT(x)|Eu
x
| is continuous (using the fact that x 7→ Eu

x is continuous). Hence,
we can consider the affine function:

αµ : R→ R, αµ(t) := Pµ(T,−tJuT) = hµ(T)− t
∫

λ+dµ.

The variational principle (2) for pressure tells us that:

Ptop(−tJuT) = sup
µ∈MT

αµ(t), ∀t ∈ R. (7)

Hence, t 7→ Ptop(−tJuT), as the supremum over affine functions, is a convex function.
Using that µ∗ is the entropy-maximizing measure and Theorem 3, respectively, we obtain:

αµ∗(0) = htop(T) and αµ∗(1) = 0.
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On the other hand, also:

Ptop(−0 · λ+) = htop(T) and Ptop(−1 · JuT) = 0.

The second identity here follows from the fact that Ptop(−1 · JuT) = supµ∈MT
(hµ(T)−

∫
λ+dµ)

and hµ(T) ≤
∫

λ+dµ by Ruelle’s inequality (5). Hence, Ptop(−1 · JuT) = hµ∗(T)−
∫

λ+dµ∗ = 0.
By convexity of t 7→ Ptop(−tJuT) and (7), this implies:

Ptop(−tJuT) = αµ∗(t), ∀t ∈ R.

From (7), it now follows that all of the maps αµ have the same slope, i.e.,
∫

λ+dµ is independent of µ.

The above theorem shows that the equality htop(T) = hres(T) is a very restrictive condition.
Indeed, this can be seen as follows. Any topologically mixing Anosov diffeomorphism has an
abundance of periodic points. Indeed, the set of periodic points is dense in M; see [20], Corollary 6.4.19.
If we consider a periodic point p ∈ M of period np ∈ N, we can consider the invariant measure µp

given by:

µp :=
1

np

np−1

∑
i=0

δTi(p)

with δ(·) being the Dirac measure at a point. The above theorem implies that, under htop(T) = hres(T),
the number:

γ(p) :=
∫

λ+dµp =
1

np
log
∣∣∣det

(
DTnp(p)|Eu

p
: Eu

p → Eu
p

)∣∣∣
is independent of the periodic point p chosen. On the other hand, we know that every sufficiently
small C2-perturbation of T yields another C2-Anosov diffeomorphism, topologically conjugate to T,
hence also topologically mixing. If this perturbation is only performed in a small vicinity of a fixed
periodic orbit, it can easily change the number γ(p), while not changing it for most of the other periodic
orbits. As a consequence, the perturbed diffeomorphism Tε cannot satisfy htop(Tε) = hres(Tε).

The following corollary gives another characterization of Anosov diffeomorphisms with
htop = hres in a two-dimensional case.

Corollary 1. Consider a C2 area-preserving Anosov diffeomorphism T : T2 → T2 of the two-torus. Then,
the equality htop(T) = hres(T) is equivalent to the existence of a hyperbolic linear automorphism TA : T2 → T2

and a C1-diffeomorphism h : T2 → T2 such that h−1 ◦ T ◦ h = TA.

Proof. It follows immediately from Theorem 6 in combination with [20], Corollary 20.4.4, that the
identity htop(T) = hres(T) implies the existence of a C1-conjugacy, as asserted. The other direction is
easy to see, using the definition of restoration entropy. If h−1 ◦ T ◦ h = TA, then also h−1 ◦ Tn ◦ h = Tn

A
for all n ∈ N. We use that a C1-map on a compact manifold has a global Lipschitz constant.
Let L := Lip(h) and L′ := Lip(h−1) be Lipschitz constants of h and h−1, respectively. Then:

Tn(Bε(x)) = h ◦ Tn
A ◦ h−1(Bε(x)).

Observe that h−1(Bε(x)) ⊂ BL′ε(h−1(x)). Let N(l) denote the minimal number of ε-balls needed to
cover an lε-ball in T2 for any l > 0. Then, the minimal number of ε-balls needed to cover Tn

Ah−1(Bε(x))
is bounded from above by N(L′) supz∈T2 p(n, z, ε; TA). This implies:

p(n, x, ε; T) ≤ N(L)N(L′) sup
z∈T2

p(n, z, ε; TA).
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Hence,

sup
x∈T2

1
n

log p(n, x, ε; T) ≤ 1
n

log N(L)N(L′) + sup
x∈T2

1
n

log p(n, x, ε; TA).

Taking the lim sup for ε ↓ 0 and subsequently the limit for n → ∞, we obtain that
hres(T) ≤ hres(TA). The other inequality can be proven analogously, so:

hres(T) = hres(TA).

Since T and TA are topologically conjugate (the C1-diffeomorphism h is a homeomorphism,
in particular), they also have the same topological entropy:

htop(T) = htop(TA).

To complete the proof, it now suffices to show that hres(TA) = htop(TA). We can compute hres(TA)

using Theorem 4. To this end, observe that A is a hyperbolic matrix. If |λ1| > 1 > |λ2| are its
eigenvalues, we obtain:

lim
n→∞

1
n

2

∑
i=1

max{0, log αi(n, x)} = log |λ1| ∀x ∈ T2,

implying hres(TA) = log |λ1|. It is well known that this is also the value of the topological entropy
htop(TA); see [20], Section 4. This also follows from the combination of the variational principle with
Theorem 3.

The following example demonstrates how restrictive the condition hres(T) = htop(T) is by looking
at small perturbations of Arnold’s Cat Map.

Example 1. Arnold’s Cat Map is the hyperbolic linear two-torus automorphism TA : T2 → T2 induced by the
integer matrix:

A :=

(
2 1
1 1

)
with determinant det A = 1. Observe that the derivative DTA(x) can be identified with A for each x ∈ T2.
Since A is a hyperbolic matrix with eigenvalues:

γ1 =
3
2
− 1

2

√
5 and γ2 =

3
2
+

1
2

√
5

satisfying |γ2| > 1 > |γ1|, it follows that TA is a C∞ area-preserving Anosov diffeomorphism. Hence,
Corollary 1 yields:

htop(TA) = hres(TA) = log |γ2|.

Now, we consider a perturbation of the form:

Tε
A(x, y) := (2x + y + ε sin(2πx), x + y) (mod Z2), ε > 0

which is well defined as a torus map, since the sine function is 2π-periodic. By the structural stability of
Anosov diffeomorphisms, for a sufficiently small ε, this map is topologically conjugate to TA, hence has the same
topological entropy log |γ2|. However, its restoration entropy is strictly greater. This can be seen by looking at
the fixed point (0, 0) with the associated derivative:

DTε
A(0, 0) =

(
2 + 2πε 1

1 1

)
.
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The eigenvalues of this matrix can be computed as:

λ± =
3
2
+ πε± 1

2

√
5 + 4πε(1 + πε).

Since λ+ > γ2, Theorem 4 yields hres(Tε
A) ≥ log |λ+| > htop(Tε

A) for ε > 0 sufficiently small.

5. Conclusions

In this paper, we compared two notions of entropy for dynamical systems that have an operational
meaning in the context of state estimation over digital channels: topological entropy and restoration
entropy. Looking at Anosov diffeomorphisms (a paradigmatic class of chaotic dynamical systems),
our main result demonstrates that the equality of these two quantities implies a great amount of
uniformity in the given system. For area-preserving Anosov diffeomorphisms on the two-torus,
this uniformity can be expressed in terms of the existence of a C1-conjugacy to a linear system.
Hence, we can conclude that for most dynamical systems, the strict inequality htop < hres holds.
The operational meaning of this inequality is that for regular observability, as defined in Section 3,
a strictly larger channel capacity is necessary than for observability.
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