
entropy

Article

On Using Linear Diophantine Equations for
in-Parallel Hiding of Decision Tree Rules

Georgios Feretzakis * , Dimitris Kalles and Vassilios S. Verykios

School of Science and Technology, Hellenic Open University, Patras 263 35, Greece;
kalles@eap.gr (D.K.); verykios@eap.gr (V.S.V.)
* Correspondence: georgios.feretzakis@ac.eap.gr

Received: 10 December 2018; Accepted: 10 January 2019; Published: 14 January 2019
����������
�������

Abstract: Data sharing among organizations has become an increasingly common procedure in
several areas such as advertising, marketing, electronic commerce, banking, and insurance sectors.
However, any organization will most likely try to keep some patterns as hidden as possible once it
shares its datasets with others. This paper focuses on preserving the privacy of sensitive patterns
when inducing decision trees. We adopt a record augmentation approach to hide critical classification
rules in binary datasets. Such a hiding methodology is preferred over other heuristic solutions like
output perturbation or cryptographic techniques, which limit the usability of the data, since the
raw data itself is readily available for public use. We propose a look ahead technique using linear
Diophantine equations to add the appropriate number of instances while maintaining the initial
entropy of the nodes. This method can be used to hide one or more decision tree rules optimally.

Keywords: decision trees; privacy preserving; Diophantine equations; hiding rules; entropy;
information gain; data sharing

1. Introduction

Privacy preserving data mining [1] is a relatively recent research area aimed at alleviating issues
related to the use of data mining algorithms and the privacy of data subjects and the information or
knowledge hidden in those data piles. Agrawal and Srikant [2] were the first to consider the induction
of decision trees from anonymized data that were adequately corrupted with noise to survive from
privacy attacks. The general strand of knowledge hiding research [3] has led to specific algorithms for
hiding classification rules, such as the addition of noise, for example, by a data swap process [4].

A key element of privacy preserving data mining concerns individual data privacy and aims to
shield the individual integrity of database records in order to prevent the re-identification of individuals
or characteristic groups of data inference attacks. This forms the subject of this paper, which deals with
the protection of sensitive patterns arising from the application of data mining techniques. Of course,
all privacy preservation approaches strive to maintain data information quality.

The primary representative of statistical methods [5] adopts a parsimonious downgrading
technique to determine whether additional confidentiality is worth the loss of functionality associated
with not downgrading data. Reconstruction techniques involve the reconstruction of the public
dataset [6,7] from the non-sensitive rules produced by C4.5 [8] and RIPPER [9] algorithms.
Perturbation-based techniques involve the modification of transactions to only support non-sensitive
rules [10], the removal of tuples associated with sensitive rules [11], the suppression of specific attribute
values [12], and the redistribution of tuples supporting sensitive patterns to maintain the ordering of
the rules [13]. Another interesting approach is machine learning classification over encrypted data [14],
in which a private decision tree classifier allows the server to traverse a binary decision tree using the
client’s input, such that the server does not learn the input x and the client does not learn the structure

Entropy 2019, 21, 66; doi:10.3390/e21010066 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-3597-1187
https://orcid.org/0000-0003-0364-5966
http://dx.doi.org/10.3390/e21010066
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/21/1/66?type=check_update&version=2

Entropy 2019, 21, 66 2 of 22

of the tree and the thresholds at each node. A recent work [15] proposes privacy-preserving decision
tree evaluation protocols which hide the sensitive inputs from the counterparty using an additively
homomorphic encryption (AHE), which are similar to the ElGamal encryption procedure.

In our previously published works [16,17], we proposed a series of techniques to adequately
protect the disclosure of sensitive patterns of knowledge in the mining of classification rules. We aimed
to hide sensitive rules without compromising the information value of the whole dataset. After an
expert selected the sensitive rules, the class labels at the tree node corresponding to the tail of the
sensitive pattern were modified (Swap-and-Add pass) to eliminate the gain achieved by the information
metric that caused the split. By preserving the class balance of every node across the sensitive path
(the path from the root until the leaf that we want to hide), we could assure that we would not have
any change in the hierarchy order of the particular path due to changes in entropy of the nodes along
the path. We then set the values of non-class attributes, appropriately adding new instances along
the path to the root if necessary, so that non-sensitive patterns remained as unaffected as possible.
This approach is very important because the sanitized dataset can be subsequently published and,
even, shared with the dataset owner’s competitors, as can be the case with retail banking [18]. In this
paper, we extend these works by formulating a generic look ahead technique that takes into account
the structure of the decision tree all the way from an affected leaf to the root. The main contribution
of this paper is to improve the Swap-and-Add pass by following a look ahead approach instead of a
greedy approach, which was previously used. This technique can be accomplished by using linear
Diophantine equations and, importantly, can handle in parallel any number of hiding requests by
determining the overall minimum amount of added instances.

The rest of this paper consists of three sections: Section 2 describes the dataset operations we
employ to hide a rule while attempting to affect the decision tree minimally; in Section 3 we present
how the new look ahead approach can be applied in parallel hiding requests; and Section 4 discusses
further research issues and concludes the paper.

2. Materials and Methods

We chose decision trees for our research since we are primarily interested in techniques that are
applicable to "comprehensible" models, and this eventually leads to rules, trees, and other graphical
models (Bayesian nets for example). However, the interpretability of rules and trees has to do with
how widespread they are and with the scope to associate the masking of metric quality both regarding
verboseness as well as the impact on understanding and the accuracy of concealment.

The transparency of the decision tree model is one of its great advantages. Unlike other
decision-making models, the decision tree explicitly identifies all possible alternatives and traces
each alternative in one view, allowing easy comparison between the different alternatives. One of the
main benefits of decision tree analysis is its ability to assign specific values to the problems, decisions,
and results of each decision. This reduces ambiguity related to decision-making. Every possible
decision scenario finds representation through a clear fork and node, allowing all possible solutions to
be seen in one view. A decision tree also allows data to be partitioned at a much deeper level, which is
not easily achieved with other decision-making classifiers, such as logistic regression. The decision tree
illustrates the problem graphically and various alternatives in a simple and easy-to-understand format
that requires no explanation. Decision trees divide data into illustrations that are easy to understand
based on rules easily understood. Simple mathematics based on entropy concepts can easily replicate
the reasons for the rules produced in a decision tree.

Figure 1 below shows a baseline problem, which assumes a binary decision tree representation,
with binary-valued symbolic attributes (X, Y, and Z) and binary classes (C1 and C2). Hiding R3 implies
that the splitting in node Z should be suppressed, hiding R2 as well.

A first approach to hide R3 would be to remove all the instances of the leaf corresponding to R3
from the training data and to retrain the tree from the resulting dataset. However, this action can lead
to a significant restructuring of the tree which also affects other parts of the tree.

Entropy 2019, 21, 66 3 of 22
Entropy 2019, 21 3 of 22

R1: 𝑋=𝑡⋀𝑌=𝑡⇒𝐶1

R2: 𝑋=𝑡⋀𝑌=𝑓⋀𝑍=𝑡⇒𝐶2

R3: 𝑋=𝑡⋀𝑌=𝑓⋀𝑍=𝑓⇒𝐶1

R4: 𝑋=𝑓⋀𝑍=𝑡⇒𝐶1

R5: 𝑋=𝑓⋀𝑍=𝑓⇒𝐶2

R1: 𝑋=𝑡⋀𝑌=𝑡⇒𝐶1

R23: 𝑿=𝒕⋀𝒀=𝒇⇒𝑪2

R4: 𝑋=𝑓⋀𝑍=𝑡⇒𝐶1

R5: 𝑋=𝑓⋀𝑍=𝑓⇒𝐶2

Figure 1. A binary decision tree, before (left) and after (right) hiding and the associated rule sets.

A first approach to hide R3 would be to remove all the instances of the leaf corresponding to R3
from the training data and to retrain the tree from the resulting dataset. However, this action can lead
to a significant restructuring of the tree which also affects other parts of the tree.

Another approach would be to turn the direct parent of the R3 leaf into a new leaf. This would
not, however, modify the actual dataset. An opponent could thus recover the original tree.

To achieve hiding by minimally modifying the original dataset, we may interpret “minimally”
concerning dataset changes or whether the sanitized decision tree produced via hiding is
syntactically close to the original. Measuring minimality in how one modifies decision trees has been
studied regarding heuristics that guarantee or approximate the impact of changes [19–21].

Hiding in Z, however, changes the statistics along with the path from Z to the root. Since the
splitting along this path depends on these statistics, the relative ranking of the attributes may change
if we use the same induction algorithm on the modified dataset. To avoid ending with an entirely
different tree, we first used a bottom-up pass (Swap-and-Add) to change the class label of instances
at the leaves, and then added new instances on the root path to preserve the critical statistics on the
intermediate nodes.

Subsequently, we use a top-down pass (Allocate-and-Set) to complete the newly added instance
specification. These two passes help us firstly hide all sensitive rules and secondly keep the sanitized
tree close to the structure of the original decision tree. We note that the above two procedures had
been fully described in previously published works [16,17].

2.1. Adding Instances to Preserve the Class Balance Using Linear Diophantine Equations: A Proof of
Concept and an Indicative Example

The Swap-and-Add pass aims to ensure that node statistics change without threatening class-
value balances in the rest of the tree. Using Figure 2 as an example, we show the original tree with
class distributions of instances across edges.

X

f
Z

X

f

f

f

t

t

t

t

W Y

Z

C1

C1

C1

C2

C2

f

f

t

t

t

W Y

C1 C1 C2 C2

Figure 1. A binary decision tree, before (left) and after (right) hiding and the associated rule sets.

Another approach would be to turn the direct parent of the R3 leaf into a new leaf. This would
not, however, modify the actual dataset. An opponent could thus recover the original tree.

To achieve hiding by minimally modifying the original dataset, we may interpret “minimally”
concerning dataset changes or whether the sanitized decision tree produced via hiding is syntactically
close to the original. Measuring minimality in how one modifies decision trees has been studied
regarding heuristics that guarantee or approximate the impact of changes [19–21].

Hiding in Z, however, changes the statistics along with the path from Z to the root. Since the
splitting along this path depends on these statistics, the relative ranking of the attributes may change
if we use the same induction algorithm on the modified dataset. To avoid ending with an entirely
different tree, we first used a bottom-up pass (Swap-and-Add) to change the class label of instances
at the leaves, and then added new instances on the root path to preserve the critical statistics on the
intermediate nodes.

Subsequently, we use a top-down pass (Allocate-and-Set) to complete the newly added instance
specification. These two passes help us firstly hide all sensitive rules and secondly keep the sanitized
tree close to the structure of the original decision tree. We note that the above two procedures had been
fully described in previously published works [16,17].

2.1. Adding Instances to Preserve the Class Balance Using Linear Diophantine Equations: A Proof of Concept
and an Indicative Example

The Swap-and-Add pass aims to ensure that node statistics change without threatening class-value
balances in the rest of the tree. Using Figure 2 as an example, we show the original tree with class
distributions of instances across edges.

We used the information gain as the splitting heuristic. In order to hide the leaf which corresponds
to the nine positive instances (to the right of N0), we changed the nine positive instances to negative
ones and denoted this operation by (−9p,+9n). As a result, the parent node N0 becomes a one-class
node with minimum (zero) entropy. All nodes located upwards to node N0 until the root N4 also
absorb the (−9p, +9n) operation (Figure 3). This conversion would leave node N1 with 49p+46n
instances. However, since its original 58p+37n distribution contributed to N1’s splitting attribute AN1,
which in turn created N0 (and then 9p), we should preserve the information gain of AN1, since the
entropy of a node depends only on the ratio p:n of its instance classes (Lemma 1).

Entropy 2019, 21, 66 4 of 22
Entropy 2019, 21 4 of 22

Figure 2. Original tree.

We used the information gain as the splitting heuristic. In order to hide the leaf which
corresponds to the nine positive instances (to the right of N0), we changed the nine positive instances
to negative ones and denoted this operation by (−9p,+9n). As a result, the parent node N0 becomes a
one-class node with minimum (zero) entropy. All nodes located upwards to node N0 until the root
N4 also absorb the (−9p, +9n) operation (Figure 3). This conversion would leave node Ν1 with
49p+46n instances. However, since its original 58p+37n distribution contributed to N1’s splitting
attribute AN1, which in turn created N0 (and then 9p), we should preserve the information gain of
AN1, since the entropy of a node depends only on the ratio p:n of its instance classes (Lemma 1).

Lemma 1. The entropy of a node only depends on the ratio of its instance classes. (The proof is in Appendix A)

Figure 3. Bottom-up propagation of instances (−9p,+9n).

To maintain the initial ratio of node N1 (58p:37n), an appropriate number of positive and
negative instances should be added to node N1, and this addition process should be extended to the
tree root by accumulating all instance requests from below at each node and by adding instances to
maintain the node statistics locally, propagating these changes to the root.

In our previous published work [16,17], the above procedure was greedy, mostly solving the
issue for only one (tree) level of nodes, which often resulted in a non-minimum number of added
instances, whereas a look ahead based solution would be able to take into account all levels up to the

Figure 2. Original tree.

Entropy 2019, 21 4 of 22

Figure 2. Original tree.

We used the information gain as the splitting heuristic. In order to hide the leaf which
corresponds to the nine positive instances (to the right of N0), we changed the nine positive instances
to negative ones and denoted this operation by (−9p,+9n). As a result, the parent node N0 becomes a
one-class node with minimum (zero) entropy. All nodes located upwards to node N0 until the root
N4 also absorb the (−9p, +9n) operation (Figure 3). This conversion would leave node Ν1 with
49p+46n instances. However, since its original 58p+37n distribution contributed to N1’s splitting
attribute AN1, which in turn created N0 (and then 9p), we should preserve the information gain of
AN1, since the entropy of a node depends only on the ratio p:n of its instance classes (Lemma 1).

Lemma 1. The entropy of a node only depends on the ratio of its instance classes. (The proof is in Appendix A)

Figure 3. Bottom-up propagation of instances (−9p,+9n).

To maintain the initial ratio of node N1 (58p:37n), an appropriate number of positive and
negative instances should be added to node N1, and this addition process should be extended to the
tree root by accumulating all instance requests from below at each node and by adding instances to
maintain the node statistics locally, propagating these changes to the root.

In our previous published work [16,17], the above procedure was greedy, mostly solving the
issue for only one (tree) level of nodes, which often resulted in a non-minimum number of added
instances, whereas a look ahead based solution would be able to take into account all levels up to the

Figure 3. Bottom-up propagation of instances (−9p,+9n).

Lemma 1. The entropy of a node only depends on the ratio of its instance classes. (The proof is in Appendix A)

To maintain the initial ratio of node N1 (58p:37n), an appropriate number of positive and negative
instances should be added to node N1, and this addition process should be extended to the tree root
by accumulating all instance requests from below at each node and by adding instances to maintain
the node statistics locally, propagating these changes to the root.

In our previous published work [16,17], the above procedure was greedy, mostly solving the
issue for only one (tree) level of nodes, which often resulted in a non-minimum number of added
instances, whereas a look ahead based solution would be able to take into account all levels up to
the root. Furthermore, the new ratios of the nodes (p:n) were not the same as they were before the
change, thus propagating ratio changes, whose impact could only be quantified in a compound fashion
by inspecting the final tree, hampering our ability to investigate the behaviour of this heuristic in a
detailed fashion. Therefore, we used linear Diophantine equations as the formulation technique of the
problem of determining how many instances to add; as we will show, this technique deals with both
issues in one go.

Entropy 2019, 21, 66 5 of 22

Definition 1. A Diophantine equation is a polynomial equation where the coefficients are integers, and the
solutions are integers. The most basic Diophantine equation is the linear case and is of the following form:

ax + by = c where a, b, c ∈ Z

Referring to the example in Figure 3, let (x1, y1) be the number of positive and negative instances,
respectively, that must be added to node N1 (49p,46n) in order to maintain its initial ratio (58p,37n), as
shown in Figure 2. This can be expressed with the following equation:

49 + x1

46 + y1
=

58
37

The above equation is equivalent to the following linear Diophantine equation:

37x1 − 58y1 = 85 (1)

Similarly, let (x2, y2), (x3, y3), (x4, y4) be the corresponding number of positive and negative
instances that have to be added to nodes N2, N3 and N4.

The corresponding linear Diophantine equations for nodes N2, N3 and N4 are:

137x2 − 58y2 = 1755 (2)

137x3 − 352y3 = 4401 (3)

459x4 − 541y4 = 9000 (4)

Theorem 1. Let a, b and c be integers with a and b, not both zero. The linear Diophantine equation

ax + by = c where a, b, c ∈ Z

has a solution if and only if d = GCD(a, b) divides c.

If a linear Diophantine equation does not have solutions, this problem can be overcome by a slight
change in the initial ratio until a solvable linear Diophantine equation is achieved.

Theorem 2. Let a and b integers with d=GCD(a,b). If c mod d = 0, then there are infinite integer solutions.
Moreover, if x = x0 , y = y0 is a particular solution of the equation, then all solutions are given by

x = x0 +
b
d

n , y = y0 −
a
d

n where n ∈ Z

The general solutions of the above four (1–4) linear Diophantine equations are given below
(k ∈ Z):

37x1 − 58y1 = 855⇔
{

x1 = 9405 + 58k
y1 = 5985 + 37k

137x2 − 58y2 = 1755⇔
{

x2 = −19305 + 58k
y2 = −45630 + 137k

137x3 − 352y3 = 4401⇔
{

x3 = −734967 + 352k
y3 = −286065 + 137k

459x4 − 541y4 = 9000⇔
{

x4 = −297000 + 541k
y4 = −252000 + 459k

Entropy 2019, 21, 66 6 of 22

From the infinite pairs of solutions for every linear Diophantine equation, we choose the pairs
(x∗1 , y∗1), (x∗2 , y∗2), (x∗3 , y∗3) and (x∗4 , y∗4), where x∗1 , x∗2 , x∗3 , x∗4 , y∗1 , y∗2 , y∗3 , y∗4 are the minimum natural
numbers that satisfy the following condition.

(C1): x∗1 ≤ x∗2 ≤ x∗3 ≤ x∗4 and y∗1 ≤ y∗2 ≤ y∗3 ≤ y∗4 .
Condition (C1) ensures that we have selected those pairs of solutions which have the minimum

total sum of positive and negative instances that have to be added in each node, starting from the
lowest node up to the root of the decision tree, given that every addition of instances propagates
upwards in a consistent manner (i.e., if one adds some instances at a lower node, one cannot have
added fewer instances in an ancestor node).

With this technique, we can determine precisely the minimum number of instances that must be
added to each node to maintain the initial ratios of every node.

For this example, the pairs of solutions that are both minimum and satisfy the condition (C1) are

(x∗1 , y∗1) = (67, 28) , (x∗2 , y∗2) = (67, 128), (x∗3 , y∗3) = (361, 128), (x∗4 , y∗4) = (550, 450)

Based on the above solutions, we must add 67 positive and 28 negative instances to N1, which
leads to a ratio of (116p

74n). These new instances propagate upwards; therefore, on N2 we do not need to
add any positive instances, but we do need to add 100 (=128 − 28) negative instances, which leads
to a ratio of (116p

274n). Similarly, for N3 we should add 294 (=361 − 67) new positive and no negative
instances. Finally, for N4 we should add 189 (=550 − 361) new positive and 322 (=450 − 128) new
negative instances. With this look ahead technique, we know from the very beginning the minimum
number of instances that we must add in order to maintain the exact values of initial ratios.

We note that the solutions of Diophantine Equation (4), corresponding to the node N4 (root),
determine the total number of instances that should be added to our dataset to maintain the same
ratios. If we change the N4 ratio slightly (in our case let be changed to (540p

460n) instead of (541p
459n)), then we

have a different Diophantine equation that results in a smaller number of additional instances. In our
example, the new Diophantine Equation (5) and the corresponding set of solutions are shown below:

460x4 − 540y4 = 4000 (5)

460x4 − 540y4 = 4000⇔
{

x4 = −1400 + 27k
y4 = −1200 + 23k

, k ∈ Z

For this example, the pairs of solutions that are both minimum and satisfy the condition C1 are

(x∗1 , y∗1) = (67, 28) , (x∗2 , y∗2) = (67, 128), (x∗3 , y∗3) = (361, 128), (x∗4 , y∗4) = (382, 318)

Therefore, we have to add 700 new instances instead of 1000 that we had to add before. Of course,
now we do not have the same ratio p:n for node N4, but something very close to it. In other words,
the method of linear Diophantine equations helped us to make a holistic tree-wide trade-off between
the number of added instances and the degree of precision to which we approximate the original
node’s ratio.

2.2. Fully Specifying Instances

For the newly added instances, setting the values of some attributes is only a partial instance
specification because we did not fix those instance values for any other attribute, other than
those present in the path from the root to the node where the addition of the instances occurred.
Unspecified values must be set in such a way to ensure that competing attributes do not displace
currently selected attributes at all nodes; this is what the Allocate-and-Set pass does.

Concerning Figure 2 and the 9n instances added due to N1 via the N2-N1 branch, these instances
did not have their values set for AN1 and AN2. These must be set accordingly to minimize the possibility

Entropy 2019, 21, 66 7 of 22

that AN2 is displaced from N2, since (at N2) any of the attributes AN0, AN1 or AN2 (or any other) can
be selected. Those 9n instances were added to help guarantee the existence of N1.

As in the bottom-up pass, we needed the information gain of AN2 to be sufficiently large to
prevent competition from AN0 or AN1 at node N2, but not too large to threaten AN3. We started with
the best possible allocation of values to attribute AN2, and gradually explored directing some values
along the N2–N1 branch, stopping when the information gain for AN2 was lower than the information
gain for AN3. We use the term two-level hold-back to refer to this technique because it covers two levels
of the tree. This approach takes advantage of convexity property of the information gain difference
function (Lemma 2).

The Allocate-and-Set pass examines all four distribution combinations of all positive and all
negative instances to one branch, selecting the one that maximizes the information gain difference
and then moving along the slope that reduces the information gain, until we do not exceed the
parent’s information gain. Following this, the recursive specification was performed all the way to the
tree fringe.

Lemma 2. Distributing new class instances along only one branch maximizes information gain. (The proof is
in Appendix A)

2.3. Hiding in Parallel: Grouping of Hiding Requests

By processing hiding requests serially, each entails the full cost of updating the instance population.
By knowing them in advance, we only consider every node once in the bottom-up and once in the
top-down pass. We express that dealing with all hiding requests in parallel leads to the minimum
number of new instances by ∣∣∣TP

R

∣∣∣ = min
i

∣∣∣∣(TS
{i}

)S

R−{i}

∣∣∣∣
The formula states that for a tree T, after a parallel (Tp) hiding process of all rules (leaves) in R,

the number of instances (|T|) is the optimum along all possible orders of all serial (Ts) hiding requests
drawn from R. A serial hiding request is carried out by selecting a leaf to be hidden, after which the
remaining leaves are treated recursively.

Lemma 3. When serially hiding two non-sibling leaves, the number of new instances to be added to maintain
the max:min ratios is larger or equal to the number of instances that would have been added if the hiding requests
were handled in parallel. (The proof is in Appendix A)

3. Results

In this section we demonstrate an example in which two hiding requests were handled in parallel,
using the proposed look ahead technique of linear Diophantine equations. In Figure 4, we show the
original tree with class distributions on nodes.

We used the information gain as the splitting heuristic. To hide the leaf which corresponds to the
ten positive instances (to the left of N0), we changed the ten positive instances to negative ones and
denoted this operation by (−10p, +10n). As a result, the parent node N0 became a one-class node with
minimum (zero) entropy. All nodes located upwards of node N0 until the root N4 also absorbed the
(−10p, +10n) operation (Figure 5). This conversion left N1 with 48p + 47n instances. But, as its initial
58p + 37n distribution contributed to N1’s splitting attribute, AN1, which in turn created N0 (and then
10p), we preserved the information gain of AN1, since the entropy of a node only depends on the ratio
p:n of its instance classes.

To hide the leaf which corresponds to the five negative instances (to the right of N0’), we changed
the five negative instances to positive ones and denote this operation by (+5p, −5n). As a result, the
parent node N0’ became a one-class node with minimum (zero) entropy. All nodes located upwards to
node N0’ until the root N4 also absorbed the (−10p, +10n) operation (Figure 5). The intersection node

Entropy 2019, 21, 66 8 of 22

N3 and the root N4 were affected by (−5p, +5n), which is the total outcome of the two operations from
the two subtrees below N3.Entropy 2019, 21 8 of 22

Figure 4. Original tree.

To hide the leaf which corresponds to the five negative instances (to the right of N0’), we
changed the five negative instances to positive ones and denote this operation by (+5p, −5n). As a
result, the parent node N0’ became a one-class node with minimum (zero) entropy. All nodes located
upwards to node N0’ until the root N4 also absorbed the (−10p, +10n) operation (Figure 5). The
intersection node N3 and the root N4 were affected by (−5p, +5n), which is the total outcome of the
two operations from the two subtrees below N3.

This conversion left Ν1’ with 125p + 45n instances. But, as its initial 120p + 50n distribution
contributed to N1’s splitting attribute, AN1’, which in turn created N0’ (and then 5n), we preserved
the information gain of AN1’, since the entropy of a node only depends on the ratio p:n of its instance
classes.

In order to maintain the ratio of nodes N1 and N1’, we had to add an appropriate number of
positive and negative instances to N1, N1’ and extend this addition process to the tree root, by
accumulating at each node all instance requests from below and by adding instances locally to
maintain the node statistics, propagating these changes to the tree root.

Figure 5. Bottom-up propagation of instances (−10p,+10n) from the left (+5p,−5n) and right side of the
tree.

Figure 4. Original tree.

Entropy 2019, 21 8 of 22

Figure 4. Original tree.

To hide the leaf which corresponds to the five negative instances (to the right of N0’), we
changed the five negative instances to positive ones and denote this operation by (+5p, −5n). As a
result, the parent node N0’ became a one-class node with minimum (zero) entropy. All nodes located
upwards to node N0’ until the root N4 also absorbed the (−10p, +10n) operation (Figure 5). The
intersection node N3 and the root N4 were affected by (−5p, +5n), which is the total outcome of the
two operations from the two subtrees below N3.

This conversion left Ν1’ with 125p + 45n instances. But, as its initial 120p + 50n distribution
contributed to N1’s splitting attribute, AN1’, which in turn created N0’ (and then 5n), we preserved
the information gain of AN1’, since the entropy of a node only depends on the ratio p:n of its instance
classes.

In order to maintain the ratio of nodes N1 and N1’, we had to add an appropriate number of
positive and negative instances to N1, N1’ and extend this addition process to the tree root, by
accumulating at each node all instance requests from below and by adding instances locally to
maintain the node statistics, propagating these changes to the tree root.

Figure 5. Bottom-up propagation of instances (−10p,+10n) from the left (+5p,−5n) and right side of the
tree.

Figure 5. Bottom-up propagation of instances (−10p,+10n) from the left (+5p,−5n) and right side of
the tree.

This conversion left N1’ with 125p + 45n instances. But, as its initial 120p + 50n distribution
contributed to N1’s splitting attribute, AN1’, which in turn created N0’ (and then 5n), we preserved
the information gain of AN1’, since the entropy of a node only depends on the ratio p:n of its
instance classes.

In order to maintain the ratio of nodes N1 and N1’, we had to add an appropriate number
of positive and negative instances to N1, N1’ and extend this addition process to the tree root, by
accumulating at each node all instance requests from below and by adding instances locally to maintain
the node statistics, propagating these changes to the tree root.

Let (x1, y1) be the number of positive and negative instances, respectively, that should be added
to node N1 to maintain its initial ratio. This can be expressed with the following equation:

48 + x1

47 + y1
=

58
37

Entropy 2019, 21, 66 9 of 22

The above equation is equivalent to the following linear Diophantine equation:

37x1 − 58y1 = 950 (6)

Similarly, let (x2, y2),
(

x′1, y′1
)
, (x′2, y′2), (x3, y3), (x4, y4) be the corresponding number of positive

and negative instances that should be added to nodes N2, N1’, N2’, N3 and N4.
The corresponding linear Diophantine equations for nodes N2, N1’, N2’, N3 and N4 are:

137x2 − 58y2 = 1950 (7)

50x′1 − 120y′1 = −850 (8)

93x′2 − 294y′2 = −1935 (9)

230x3 − 352y3 = 2910 (10)

459x4 − 541y4 = 5000 (11)

The general solutions of the above six (6–11) linear Diophantine equations are given below
(k ∈ Z):

37x1 − 58y1 = 950⇔
{

x1 = 10450 + 58k
y1 = 6650 + 37k

137x2 − 58y2 = 1950⇔
{

x2 = −21450 + 58k
y2 = −50700 + 137k

50x′1 − 120y′1 = −850⇔
{

x′1 = −425 + 12k
y′1 = −170 + 5k

137x′2 − 58y′2 = 1755⇔
{

x′2 = −12255 + 98k
y′2 = −3870 + 31k

137x3 − 352y3 = 4401⇔
{

x3 = 109125 + 176k
y3 = 71295 + 115k

459x4 − 541y4 = 9000⇔
{

x4 = −165000 + 541k
y4 = −140000 + 459k

From the infinite pairs of solutions for every linear Diophantine equation, we choose the pairs
(x1, y1), (x2, y2),

(
x1
′, y1

′), (x2
′, y2

′), (x3, y3), (x4, y4) where x1, x2, x1
′, x2

′, x3, x4, y1, y2, y1
′, y2

′, y3, y4

are the minimum natural numbers that satisfy the conditions (C1) and (C2).
(C1): x1 ≤ x2 and y1 ≤ y2 and x1

′ ≤ x2
′ and y1

′ ≤ y2
′

(C2): x2 + x2
′ ≤ x3 ≤ x4 and y2 + y2

′ ≤ y3 ≤ y4

Condition (C1) ensures that we have selected the optimum path from the leaves up to the
intersection node N3 of the decision tree.

Condition (C2) ensures that we have selected the optimum path from one level below the
intersection node N3 (N2, N2’) up to the root.

For this example, the pairs of solutions that are both minimum and satisfy the conditions (C1),
(C2) are:

(x1, y1) = (68, 27) , (x2, y2) = (68, 127),
(
x1
′, y1

′) = (7, 10),
(

x2
′, y2

′) = (93, 36)

(x3, y3) = (357, 225) , (x4, y4) = (546, 454)

Entropy 2019, 21, 66 10 of 22

Based on the above solutions, we should add to N1 68 positive and 27 negative instances.
These new instances propagate upwards; therefore, at N2 we did not need to add any positive
instances, but we needed to add 100 (=127 − 27) negative instances. In the same manner, we needed
to add to N1’ seven positive and ten negative instances. These new instances propagate upwards;
therefore, on N2’ we needed to add 86 (=93− 7) positive instances and 26 (=36− 10) negative instances.

Similarly, for N3, which is an intersection node, we should add the corresponding instances from
its children (N2, N2’), 196 (=357 − 68 − 93) new positive and 62 (=225 − 127 − 36) new negative
instances. Finally, for N4, we should add 189 (=546 − 357) new positive and 229 (=454 − 225) new
negative instances.

Based on this example, we observe that by using this technique we can handle more than one
hiding request without any increase in the number of instances that need to be added. An algorithm
that processes in parallel n hiding requests is described in detail in Appendix B. We have also
developed a prototype to demonstrate the validity of our arguments on a small scale example [22].
This implementation demonstrates the use of Diophantine equations on our technique and consists of
only one part of our proposed method. For that reason, there is no need at this stage to use real datasets.

4. Brief Discussion and Conclusions

We have presented a new look ahead technique for deciding how many instances to add to a
decision tree to hide a specific rule. By using linear Diophantine equations instead of the previously
used greedy approach, our heuristic allows one to specify which decision tree leaves should be hidden,
and then intelligently add instances to the original dataset so that the next time one tries to build the
decision tree (with the same induction algorithm), the to-be-hidden nodes will have disappeared, as
the instances corresponding to these nodes will have been absorbed by their neighbors.

Two fully-fledged examples of the proposed approach have been presented: One for a single
request and the other for two parallel hiding requests. Also, we have introduced an algorithm for n
parallel hiding requests for this look ahead technique.

With regards to performance aspects, besides speed, the issue of assessing the similarity of the
original tree to the one produced after the above procedure has been applied must also be considered.
Another issue of substantial importance is syntactic similarity [23] (comparing the data structures—or
parts thereof—themselves) or semantic similarity (comparing against reference datasets), which will
also help settle questions of which heuristics work better and which not.

As the number of instances to be added is a primary index of the heuristic’s quality, a reasonable
direction for investigation is to determine the appropriate ratio values, which result in smaller integer
solutions of the corresponding linear Diophantine equations, but at the same time do not deviate too
much from the structure of the original tree. This suggests the adoption of approximate ratios instead
of exact ones, and also raises the potential to investigate the trade-off between dataset increase and
tree similarity further.

The medium-term development goal is to have the proposed technique implemented as a standard
data engineering service to accommodate hiding requests, coupled with an appropriate environment
where one could specify the importance of each hiding request. On research and development aspects,
the most pressing questions are related to the ability to handle multi-valued (also numeric) attributes
and multi-class trees. From a research perspective, the most important issue relates to whether the
problem can be framed in terms of (integer) constraints, so that we may be able to turn to the repertoire
of constraint satisfaction techniques, and to whether one can devise metrics of tree similarity (syntactic
or semantic) that utilize the locality of the operations employed by the proposed method. The apparent
rise in interest of privacy-preserving solutions suggests that systems with theoretical backing can be
expected to appear increasingly often.

Entropy 2019, 21, 66 11 of 22

Author Contributions: Conceptualization, G.F., D.K. and V.S.V.; methodology, G.F., D.K. and V.S.V.; software,
G.F.; validation, G.F., D.K. and V.S.V.; formal analysis, G.F. and D.K.; investigation, G.F., D.K. and V.S.V.; resources,
G.F., D.K. and V.S.V.; data curation, G.F. and D.K.; writing—original draft preparation, G.F.; writing—review and
editing, G.F., D.K. and V.S.V.; visualization, G.F. and D.K.; supervision, D.K. and V.S.V.; project administration, D.K.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Lemma 1. The entropy of a node only depends on the ratio of its instance classes.

Proof. Let E be the entropy of a node with p positive and n negative instances, with p : n = a.
We assume that a ≥ 1.

pi : The probability of class i

E = −∑ pi log2 pi = −
n

p + n
log2

n
p + n

− p
p + n

log2
p

p + n
=

p=an︷︸︸︷
= − n

an + n
log2

n
an + n

− an
an + n

log2
an

an + n
=

− 1
a + 1

log2
1

a + 1
− a

a + 1
log2

a
a + 1

=

1
a + 1

log2(a + 1)− a
a + 1

(log2 a− log2(a + 1)) =

log2(a + 1)− a
a + 1

log2 a Q.E.D.

�

Lemma 2. Distributing new class instances along only one branch maximizes information gain.

Proof. Let G(i) be the function that represents the information gain after the addition of k new positive
instances at a node, and the distribution of i of these nodes to the left child and of k− i to the right child.

G(i) = G(p + k, n, p1 + i, n1, p2 + (k− i), n2), f or 0 ≤ i ≤ k

G(i) = E(p + k, n)−
[

E(p1 + i, n1)·
p1 + i + n1
p + k + n

+ E(p2 + (k− i), n2)·
p2 + k− i + n2

p + k + n

]
=

C−Constant︷ ︸︸ ︷
E(p + k, n)−

[(
log p1+i+n1

n1
− p1 + i

p1 + i + n1
· log p1 + i

n1

)
· p1 + i + n1

p + k + n

+
(

log p2 + k − i + n2
n2

− p2 + k − i
p2 + k − i + n2

· log p2 + k − i
n2

)
· p2 + k − i + n2

p + k + n

]
=

C− 1
p + k + n

[
(p1 + i + n1)· log p1 + i + n1

n1
− (p1 + i)· log p1 + i

n1

+(p2 + k − i + n2)· log p2 + k − i + n2
n2

− (p2 + k − i)· log p2 + k − i
n2

]
change o f base︷︸︸︷

= C− 1
p + k + n

· 1
ln2 [(p1 + i + n1)· ln p1 + i + n1

n1
− (p1 + i)· ln p1 + i

n1

+(p2 + k − i + n2)· ln p2 + k − i + n2
n2

− (p2 + k − i)· ln p2 + k − i
n2

]

Entropy 2019, 21, 66 12 of 22

Taking the first derivative of G(i) we have

G′(i) = 0 − 1
p + k + n

· 1
ln2

[
ln p1 + i + n1

n1
+ (p1 + i + n1)· n1

p1 + i + n1
· 1

n1
− ln p1 + i

n1
− (p1 + i)· n1

p1 + i ·
1

n1

+(−1)· ln p2 + k − i + n2
n2

− (p2 + k − i + n2)· n2
p2 + k − i + n2

· 1
n2
− (−1)

· ln p2 + k − i
n2

− (p2 + k − i)· n2
p2 + k − i ·

(
− 1

n2

)]
=

− 1
p + k + n

[
ln

p1 + i + n1
n1

+ 1− ln
p1 + i

n1
− 1− ln

p2 + k− i + n2
n2

− 1 + ln
p2 + k− i

n2
+ 1
]
=

− 1
p + k + n

[
ln

p1 + i + n1

p1 + i
+ ln

p2 + k− i
p2 + k− i + n2

]
=

− 1
p + k + n

[
ln

(p1 + i + n1)·(p2 + k− i)
(p1 + i)·(p2 + k− i + n2)

]
Then we find the second derivative of G(i)

G′′ (i) = − 1
p + k + n

[
ln

(p1 + i + n1)·(p2 + k− i)
(p1 + i)·(p2 + k− i + n2)

]′
=

A(i)<0 f or every i∈[0,k]︷ ︸︸ ︷

− 1
p + k + n

·

(p1 + i)·

p2 +

≥0︷︸︸︷
k− i + n2


(p1 + i + n1)·

p2 +

≥0︷︸︸︷
k− i


·
(
(p1 + i + n1)·(p2 + k− i)
(p1 + i)·(p2 + k− i + n2)

)′
=

A(i)· ((p1 + i + n1)·(p2 + k − i))′ ·((p1 + i)·(p2 + k − i + n2))

((p1 + i)·(p2 + k − i + n2))
2︸ ︷︷ ︸

B(i)>0

− ((p1 + i + n1)·(p2 + k − i))·((p1 + i)·(p2 + k − i + n2))
′

((p1 + i)·(p2 + k − i + n2))
2︸ ︷︷ ︸

B(i)>0

=

C(i)<0︷ ︸︸ ︷(
A(i)
B(i)

)
·[(p2 + k− i− p1 − i− n1)·(p1 + i)·(p2 + k− i + n2)− (p1 + i + n1)

·(p2 + k− i)·(p2 + k− i− p1 − i + n2)] =

C(i)·[((p2 + k− i)− (p1 + i + n1))·(p1 + i)·(p2 + k− i + n2)− (p1 + i + n1)·(p2 + k− i)
·((p2 + k− i + n2)− (p1 + i))] =

C(i)·[(p2 + k− i)·(p1 + i)·(p2 + k− i + n2)− (p1 + i + n1)·(p1 + i)·(p2 + k− i + n2)

−(p2 + k− i + n2)·(p1 + i + n1)·(p2 + k− i) + (p1 + i)·(p1 + i + n1)

·(p2 + k− i)] =

C(i)·[(p2 + k− i)·(p2 + k− i + n2)(p1 + i− p1 − i− n1) + (p1 + i)·(p1 + i + n1)·(p2 + k− i− p2 − k + i− n2)] =

C(i)·[(p2 + k− i)·(p2 + k− i + n2)·(−n1) + (p1 + i)·(p1 + i + n1)·(−n2)] =

Entropy 2019, 21, 66 13 of 22

− C(i)·


n1·

p2 +

≥0︷︸︸︷
k− i

·
p2 +

≥0︷︸︸︷
k− i + n2

+ n2·(p1 + i)·(p1 + i + n1)

︸ ︷︷ ︸
D(i)>0


=

− C(i)· D(i) > 0, f or every i ∈ [0, k]

So, the function G(i) is convex in the interval [0, k].
The proof of Lemma 2 is completed due to a theorem that states “A convex function on a closed

bounded interval attains its maximum at one of its endpoints.” �

Lemma 3. When serially hiding two non-sibling leaves, the number of new instances to be added to maintain
the max:min ratios is larger or equal to the number of instances that would have been added if the hiding requests
were handled in parallel.

Proof. Let a parent node have p positive and n negative instances, with p : n = r ≥ 1, and let two
hiding requests, each from a different branch, propagate to that node, requiring that pL, nL (from the
left child) and pR, nR (from the right child) instances be added. Now assume that to maintain the
p:n ratio, we must add (parallel) pX or nX instances to parent node instead of adding first p1 or n1

(in order to control the change due to left child) and then p2 or n2 (to control the change due to right
child). First, we create a Table A1 with all (32) possible cases and then we have to prove Lemma 3 for
each of these cases. �

Table A1. All possible cases to compare parallel and l serially addition for new instances.

Parallel Serially

a + pXI
b (I)

a + p1 + p2
b (1)
b

a + p1 + p2
(2)

b
a + pXII

(I I)
a + p1
b + n2

(3)

b + n2
a + p1

(4)

a
b + nXII I

(I I I)
a

b + n1 + n2
(5)

b + n1 + n2
a (6)

b + nXIV
a (IV)

a + p2
b + n1

(7)

b + n1
a + p2

(8)

• Case (I-1):
a + pXI

b
=

a + p1 + p2

b
⇔ pXI = p1 + p2 Q.E.D.

• Case (I-2):
a + pXI

b
=

b
a + p1 + p2

The reason that we selected option (I), i.e.,
a+pXI

b is that pXI is the minimum number
of instances to add in order to maintain the ratio in the parent node. Therefore,
pXI = min

{
pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI I ≥ pXI (∗). If we had selected option

(I I), i.e., b
a+pXII

, we would have case (II-2).

Entropy 2019, 21, 66 14 of 22

i.e.
b

a + pXI I

=
b

a + p1 + p2
⇔ pXI I = p1 + p2(∗∗)

From (*), (**) above, we have p1 + p2 ≥ pXI Q.E.D.
• Case (I-3):

a + pXI

b
=

a + p1

b + n2
⇔

⇔ ab + an2 + bpXI + n2 pXI = ab + bp1 ⇔

⇔ an2 + b
(

pXI − p1
)
+ pXI n2 = 0

If pXI ≥ p1, then this case is impossible because all terms in the left-hand side in the above
equation are positive. If pXI < p1 then we have p1 + n2 > pXI Q.E.D.

• Case (I-4):
a + pXI

b
=

b + n2

a + p1

The reason that we selected option (I), i.e.,
a+pXI

b is that pXI is the minimum number
of instances to add in order to maintain the ratio in the parent node. Therefore,
pXI = min

{
pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI I ≥ pXI (∗). If we had selected option

(I I), i.e., b
a+pXII

, we would have case (II-4), for which it had been proved that

p1 + n2 > pXI I (∗∗)

From (*), (**) above, we have p1 + n2 > pXI Q.E.D.
• Case (I-5):

a + pXI

b
=

a
b + n1 + n2

⇔

⇔ ab + a(n1 + n2) + bpXI + pXI (n1 + n2) = ab⇔

⇔ a(n1 + n2) + bpXI + pXI (n1 + n2) = 0

This case is impossible because all the terms in the left-hand side in the above equation are positive.
• Case (I-6):

a + pXI

b
=

b + n1 + n2

a

The reason that we selected option (I), i.e.,
a+pXI

b is that pXI is the minimum number
of instances to add in order to maintain the ratio in the parent node. Therefore,
pXI = min

{
pXI , pXI I , nXI I I , nXIV

}
, meaning that nXIV ≥ pXI (∗). If we had selected option

(IV), i.e.,
b+nXIV

a we would have case (IV-6),

i.e.
b + nXIV

a
=

b + n1 + n2

a
⇔ nXIV = n1 + n2(∗∗)

From (*), (**) above, we have n1 + n2 > pXI Q.E.D.
• Case (I-7):

a + pXI

b
=

a + p2

b + n1
⇔

⇔ ab + an1 + bpXI + n1 pXI = ab + bp2 ⇔

Entropy 2019, 21, 66 15 of 22

⇔ an1 + b
(

pXI − p2
)
+ n1 pXI = 0

If pXI ≥ p2 then this case is impossible, since the left-hand side in the above equation is positive.
If pXI < p2 then we have p2 + n1 > pXI Q.E.D.

• Case (I-8):
a + pXI

b
=

b + n1

a + p2

The reason that we selected option (I), i.e.,
a+pXI

b is that pXI is the minimum number of
instances to add in order to maintain the ratio in the parent node. Therefore, pXI =

min
{

pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI I ≥ pXI (∗). If we had selected option (I I), i.e., b

a+pXII
we would have case (II-8), for which it had been proved that

n1 + p2 > pXI I (∗∗)

From (*), (**) above, we have n1 + p2 > pXI Q.E.D.
• Case (II-1):

b
a + pXI I

=
a + p1 + p2

b

The reason that we selected option (I I), i.e., b
a+pXII

is that pXI I is the minimum number

of instances to add in order to maintain the ratio in the parent node. Therefore, pXI I =

min
{

pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI ≥ pXI I (∗). If we had selected option (I), i.e.,

a+pXI
b

we would have the case (I-1), and for that it had been proven that

p1 + p2 = pXI (∗∗)

From (*), (**) above, we have p1 + p2 ≥ pXI I Q.E.D.
• Case (II-2):

b
a + pXI I

=
b

a + p1 + p2
⇔ pXI I = p1 + p2 Q.E.D.

• Case (II-3):
b

a + pXI I

=
a + p1

b + n2

The reason that we selected option (I I), i.e., b
a+pXII

is that pXI I is the minimum number

of instances to add in order to maintain the ratio in the parent node. Therefore, pXI I =

min
{

pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI ≥ pXI I (∗). If we had selected option (I), i.e.,

a+pXI
b

we would have the case (I-3), and for that it had been proved that

p1 + n2 ≥ pXI (∗∗)

From (*), (**) above, we have p1 + n2 ≥ pXI I Q.E.D.
• Case (II-4):

b
a + pXI I

=
b + n2

a + p1
⇔

⇔ ab + bp1 = ab + an2 + bpXI I + n2 pXI I ⇔

⇔ an2 + n2 pXI I + b
(

pXI I − p1
)
= 0

Entropy 2019, 21, 66 16 of 22

If pXI I ≥ p1 then this case is impossible, since the left-hand side in the above equation is positive.
If pXI I < p1 then we have p1 + n2 > pXI I Q.E.D.

• Case (II-5):
b

a + pXI I

=
a

b + n1 + n2

The reason that we selected option (I I), i.e., b
a+pXII

is that pXI I is the minimum number

of instances to add in order to maintain the ratio in the parent node. Therefore, pXI I =

min
{

pXI , pXI I , nXI I I , nXIV

}
, meaning that nXI I I ≥ pXI I (∗). If we had selected option

(I I I), i.e., a
b+nXII I

we would have case (III-5), and for that it had been proved that

n1 + n2 = nXI I I (∗∗)

From (*), (**) above, we have n1 + n2 ≥ pXI I Q.E.D.
• Case (II-6):

b
a + pXI I

=
b + n1 + n2

a
⇔

⇔ ab = ab + a(n1 + n2) + bpXI I + pXI I (n1 + n2)⇔

⇔ a(n1 + n2) + bpXI I + pXI I (n1 + n2) = 0

This case is impossible because all the terms in the left-hand side in the above equation are positive.
• Case (II-7):

b
a + pXI I

=
a + p2

b + n1

The reason that we selected option (I I), i.e., b
a+pXII

is that pXI I is the minimum number

of instances to add in order to maintain the ratio in the parent node. Therefore, pXI I =

min
{

pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI ≥ pXI I (∗). If we had selected option (I), i.e.,

a+pXI
b

we would have the case (I-7), and for that it had been proved that

p2 + n1 > pXI (∗∗)

From (*), (**) above, we have p2 + n1 ≥ pXI I Q.E.D.
• Case (II-8):

b
a + pXI I

=
b + n1

a + p2
⇔

⇔ ab + bp2 = ab + an1 + bpXI I + n1 pXI I ⇔

⇔ an1 + n1 pXI I + b
(

pXI I − p2
)
= 0

If pXI I ≥ p2 then this case is impossible, since the left-hand side in the above equation is positive.
If pXI I < p2 then we have p2 + n1 > pXI I Q.E.D.

• Case (III-1):
a

b + nXI I I

=
a + p1 + p2

b
⇔

⇔ ab = ab + b(p1 + p2) + anXI I I + nXI I I (p1 + p2)⇔

⇔ b(p1 + p2) + anXI I I + nXI I I (p1 + p2) = 0

Entropy 2019, 21, 66 17 of 22

This case is impossible because all the terms in the left-hand side in the above equation are positive.
• Case (III-2):

a
b + nXI I I

=
b

a + p1 + p2

The reason that we selected option (I I I), i.e., a
b+nXII I

is that nXI I I is the minimum number

of instances to add in order to maintain the ratio in the parent node. Therefore, nXI I I =

min
{

pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI I ≥ nXI I I (∗). If we had selected option

(I I), i.e., b
a+pXII

we would have case (II-2), and for that it had been proved that

pXI I = p1 + p2(∗∗)

From (*), (**) above, we have p1 + p2 ≥ pXI I Q.E.D.
• Case (III-3):

a
b + nXI I I

=
a + p1

b + n2
⇔

⇔ ab + an2 = ab + bp1 + anXI I I + p1nXI I I ⇔

⇔ bp1 + p1nXI I I + a
(
nXI I I − n2

)
= 0

If nXI I I ≥ n2 then this case is impossible, since the left-hand side in the above equation is positive.
If nXI I I < n2 then we have n2 + p1 > nXI I I Q.E.D.

• Case (III-4):
a

b + nXI I I

=
b + n2

a + p1

The reason that we selected option (I I I), i.e., a
b+nXII I

is that nXI I I is the minimum number

of instances to add in order to maintain the ratio in the parent node. Therefore, nXI I I =

min
{

pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI ≥ nXI I I (∗). If we had selected option (I), i.e.,

a+pXI
b

we would have case (I-4), and for that it had been proved that

p1 + n2 > pXI (∗∗)

From (*), (**) above, we have p1 + n2 ≥ nXI I I Q.E.D.
• Case (III-5):

a
b + nXI I I

=
a

b + n1 + n2
⇔ nXI I I = n1 + n2 Q.E.D.

• Case (III-6):
a

b + nXI I I

=
b + n1 + n2

a

The reason that we selected option (I I I), i.e., a
b+nXII I

is that nXI I I is the minimum number

of instances to add in order to maintain the ratio in the parent node. Therefore, nXI I I =

min
{

pXI , pXI I , nXI I I , nXIV

}
meaning that nXIV ≥ nXI I I (∗). If we had selected option

(IV), i.e.,
b+nXIV

a we would have the case (IV-6), and for that it had been proved that

n1 + n2 = nXIV (∗∗)

From (*), (**) above, we have n1 + n2 ≥ nXI I I Q.E.D.

Entropy 2019, 21, 66 18 of 22

• Case (III-7):
a

b + nXI I I

=
a + p2

b + n1
⇔

⇔ ab + an1 = ab + bp2 + anXI I I + p2nXI I I ⇔

⇔ bp2 + p2nXI I I + a
(
nXI I I − n1

)
= 0

If nXI I I ≥ n1 then this case is impossible, since the left-hand side in the above equation is positive.
If nXI I I < n1 then we have n1 + p2 > nXI I I Q.E.D.

• Case (III-8):
a

b + nXI I I

=
b + n1

a + p2

The reason that we selected option (I I I), i.e., a
b+nXII I

, is that nXI I I is the minimum

number of instances to add in order to maintain the ratio in the parent node. Therefore,
nXI I I = min

{
pXI , pXI I , nXI I I , nXIV

}
meaning that pXI I ≥ nXI I I (∗). If we had selected option

(I I), i.e., b
a+pXII

we would have case (II-8), and for that it had been proved that

p2 + n1 > pXI I (∗∗)

From (*), (**) above, we have p2 + n1 > nXI I I Q.E.D.
• Case (IV-1):

b + nXIV

a
=

a + p1 + p2

b

The reason that we selected option (IV), i.e.,
b+nXIV

a , is that nXIV is the minimum
number of instances to add in order to maintain the ratio in the parent node. Therefore,
nXIV = min

{
pXI , pXI I , nXI I I , nXIV

}
meaning that pXI I ≥ nXIV (∗). If we had selected option

(I I), i.e., b
a+pXII

we would have case (II-1), and for that it had been proved that

p1 + p2 ≥ pXI I (∗∗)

From (*), (**) above, we have p1 + p2 ≥ nXI I I Q.E.D.
• Case (IV-2):

b + nXIV

a
=

b
a + p1 + p2

⇔

⇔ ab = ab + b(p1 + p2) + anXIV + nXIV (p1 + p2)⇔

⇔ b(p1 + p2) + anXIV + nXIV (p1 + p2) = 0

This case is impossible because all the terms in the left-hand side in the above equation are positive.
• Case (IV-3):

b + nXIV

a
=

a + p1

b + n2

The reason that we selected option (IV), i.e.,
b+nXIV

a is that nXIV is the minimum number
of instances to add in order to maintain the ratio in the parent node. Therefore,nXIV =

min
{

pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI ≥ nXIV (∗). If we had selected option (I), i.e.,

a+pXI
b

we would have case (I-3), and for that it had been proved that

Entropy 2019, 21, 66 19 of 22

p1 + n2 > pXI (∗∗)

From (*), (**) above, we have p1 + n2 ≥ nXIV Q.E.D.
• Case (IV-4):

b + nXIV

a
=

b + n2

a + p1
⇔

⇔ ab + an2 = ab + bp1 + anXIV + p1nXIV ⇔

⇔ bp1 + p1nXIV + a
(
nXIV − n2

)
= 0

If nXIV ≥ n2 then this case is impossible, since the left-hand side in the above equation is positive.
If nXIV < n2 then we have n2 + p1 > nXIV Q.E.D.

• Case (IV-5):
b + nXIV

a
=

a
b + n1 + n2

The reason that we selected option (IV), i.e.,
b+nXIV

a is that nXIV is the minimum number
of instances to add in order to maintain the ratio in the parent node. Therefore, nXIV =

min
{

pXI , pXI I , nXI I I , nXIV

}
meaning that nXI I I ≥ nXIV (∗). If we had selected option

(I I I), i.e.,
a+pXI

b we would have case (III-5), and for that it had been proved that

nXI I I = n1 + n2(∗∗)

From (*), (**) above, we have n1 + n2 ≥ nXIV Q.E.D.
• Case (IV-6):

b + nXIV

a
=

b + n1 + n2

a
⇔ nXIV = n1 + n2Q.E.D.

• Case (IV-7):
b + nXIV

a
=

a + p2

b + n1

The reason that we selected option (IV), i.e.,
b+nXIV

a is that nXIV is the minimum number
of instances to add in order to maintain the ratio in the parent node. Therefore, nXIV =

min
{

pXI , pXI I , nXI I I , nXIV

}
, meaning that pXI ≥ nXIV (∗). If we had selected option (I), i.e.,

a+pXI
b

we would have case (I-7), and for that it had been proven that

p2 + n1 > pXI (∗∗)

From (*), (**) above, we have p2 + n1 > pXI ≥ nXIV Q.E.D.
• Case (IV-8):

b + nXIV

a
=

b + n1

a + p2
⇔

⇔ ab + an1 = ab + bp2 + anXIV + p2nXIV ⇔

⇔ bp2 + p2nXIV + a
(
nXIV − n1

)
= 0

If nXIV ≥ n1 then this case is impossible, since the left-hand side in the above equation is positive.
If nXIV < n1 then we have n1 + p2 > nXIV Q.E.D.

Entropy 2019, 21, 66 20 of 22

Appendix B

An algorithm that handles, in parallel, n hiding requests
We present an algorithm in this section which implements the look ahead technique by using

linear Diophantine equations in the Swap-and-Add pass.
For every node N, we initialize a flag indicating what needs to be done as follows:
N.affected:= DO_NOTHING
We also initialize a hiding set with all leaves selected for hiding as follows:
For all L in hiding-set
L.affected:= HIDE
Other possible values for the affected flag are: MAKE_LEAF (if possible, for parents of leaves

which will be hidden), and ADJUST_RATIO (for internal nodes on the path from the hidden lead to
the root).

The algorithm traverses the decision tree in a depth-first-search fashion. It pushes nodes into the
classic DFS stack, so that all nodes (including leaves to be hidden) are popped and processed before
their ancestors; this allows us to propagate the need for change upwards.

process (node~X)

begin

if (X.affected != DO_NOTHING) then

// X has been selected for hiding

if X.is-leaf() then

X.parent.affected = MAKE_LEAF

else

// X is an internal node

if (X.parent != null) then

// set X’s parent to be affected

X.parent.affected = ADJUST_RATIO

if (X.affected == MAKE_LEAF) then

// if X is the parent of a leaf

make-leaf (X)

elseif (X.affected == ADJUST_RATIO) then

// if X is a node on the path

adjust-ratio (X)

end-if

end-if

end-if

end-if

end

make-leaf (node X)

begin

// calculate required local changes

compute (± p∗, ∓ n∗)

// modify local instance population

X.add (± p∗, ∓ n∗)

if (X.parent != null) then

// propagate change to parent

Entropy 2019, 21, 66 21 of 22

X.parent.must − add (± p∗, ∓ n∗)

end-if

// turn X into a leaf if you can

if (X.left.is-leaf() && X.right.is-leaf()) then

X.left = null

X.right = null

end-if

end

adjust-ratio (node Y)

begin

// calculate ratio to be preserved

compute rY = pY : nY

// absorb changes from children

Y.add (± p∗Y.le f t ± p∗Y.right, ∓ n∗Y.le f t ∓ n∗Y.right)

if (Y.parent != null) then

// propagate changes to parent

Y.parent.must − add (± p∗Y.le f t ± p∗Y.right, ∓ n∗Y.le f t ∓ n∗Y.right)

end-if

// calculate LDE pairs

calculate Diophantine to add
(

pm
Y , nm

Y
)
, m ∈ N, ˜m = 1, . . .

// select minimum pair to accommodate nodes below

select from
(

pm
Y , nm

Y
)
according to

(
pm.le f t

Y.le f t , nm.le f t
Y.le f t

)
+
(

pm.right
Y.right , nm.right

Y.right

)

add
(

pm.Y
Y , nm.Y

Y
)
to Y.instances

end

References

1. Verykios, V.S.; Bertino, E.; Fovino, I.; Provenza, L.; Saygin, Y.; Theodoridis, Y. State-of-the-art in privacy
preserving data mining. ACM SIGMOD Rec. 2004, 33, 50–57. [CrossRef]

2. Agrawal, R.; Srikant, R. Privacy-preserving data mining. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data—SIGMOD’00, Dallas, TX, USA, 16–18 May 2000. [CrossRef]

3. Gkoulalas-Divanis, A.; Verykios, V.S. Privacy Preserving Data Mining: How Far Can We Go? In Data Mining
in Public and Private Sectors:Organizational and Government ApplicationsInformation Science Reference; IGI Global:
Hershey, PA, USA, 2010. [CrossRef]

4. Estivill-Castro, V.; Brankovic, L. Data swapping: Balancing privacy against precision in mining for logic
rules. In Proceedings of the First International Conference on Data Warehousing and Knowledge Discovery,
Florence, Italy, 30 August–1 September 1999.

http://dx.doi.org/10.1145/974121.974131
http://dx.doi.org/10.1145/342009.335438
http://dx.doi.org/10.4018/9781605669069.ch007

Entropy 2019, 21, 66 22 of 22

5. Chang, L.; Moskowitz, I. Parsimonious downgrading and decision trees applied to the inference problem.
In Proceedings of the 1998 Workshop on New Security Paradigms—NSPW’98, Charlottesville, VA, USA,
22–26 September 1998. [CrossRef]

6. Natwichai, J.; Li, X.; Orlowska, M. Hiding Classification Rules for Data Sharing with Privacy Preservation.
In Proceedings of the 7th International Conference on Data Warehousing and Knowledge Discovery,
Copenhagen, Denmark, 22–26 August 2005; pp. 468–477.

7. Natwichai, J.; Li, X.; Orlowska, M. A Reconstruction-based Algorithm for Classification Rules Hiding.
In Proceedings of the 17th Australasian Database Conference, Hobart, Australia, 16–19 January 2006;
pp. 49–58.

8. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 1993.
9. Cohen, W.W. Fast, effective rule induction. In Proceedings of the 12th International Conference on Machine

Learning, Tahoe City, CA, USA, 2–9 July 1995. [CrossRef]
10. Katsarou, A.; Gkouvalas-Divanis, A.; Verykios, V.S. Reconstruction-based Classification Rule Hiding through

Controlled Data Modification. In IFIP International Federation for Information Processing 296; Springer: Boston,
MA, USA, 2009; pp. 449–458. [CrossRef]

11. Natwichai, J.; Sun, X.; Li, X. Data Reduction Approach for Sensitive Associative Classification Rule Hiding.
In Proceedings of the 19th Australian Database Conference, Wollongong, Australia, 22–25 January 2008.

12. Wang, K.; Fung, B.; Yu, P. Template-Based Privacy Preservation in Classification Problems. In Proceedings of
the Fifth IEEE International Conference on Data Mining (ICDM’05), Houston, TX, USA, 27–30 November
2005. [CrossRef]

13. Delis, A.; Verykios, V.; Tsitsonis, A. A data perturbation approach to sensitive classification rule hiding.
In Proceedings of the 2010 ACM Symposium on Applied Computing—SAC’10, Sierre, Switzerland,
22–26 March 2010. [CrossRef]

14. Bost, R.; Popa, R.; Tu, S.; Goldwasser, S. Machine Learning Classification over Encrypted Data. In Proceedings
of the 2015 Network and Distributed System Security Symposium, San Diego, CA, USA, 8–11 February 2015.
[CrossRef]

15. Tai, R.; Ma, J.; Zhao, Y.; Chow, S. Privacy-Preserving Decision Trees Evaluation via Linear Functions.
In Proceedings of the Computer Security—ESORICS 2017, Oslo, Norway, 11–15 September 2017; pp. 494–512.
[CrossRef]

16. Kalles, D.; Verykios, V.S.; Feretzakis, G.; Papagelis, A. Data set operations to hide decision tree
rules. In Proceedings of the Twenty-second European Conference on Artificial Intelligence, The Hague,
The Netherlands, 29 August–2 September 2016. [CrossRef]

17. Kalles, D.; Verykios, V.; Feretzakis, G.; Papagelis, A. Data set operations to hide decision tree rules.
In Proceedings of the 1st International Workshop on AI for Privacy and Security—Praise’16, The Hague,
The Netherlands, 29–30 August 2016. [CrossRef]

18. Li, R.; de Vries, D.; Roddick, J. Bands of Privacy Preserving Objectives: Classification of PPDM Strategies.
In Proceedings of the 9th Australasian Data Mining Conference, Ballarat, Australia, 1–2 December 2011;
pp. 137–151.

19. Kalles, D.; Morris, T. Efficient incremental induction of decision trees. Mach. Learn. 1996, 24, 231–242. [CrossRef]
20. Kalles, D.; Papagelis, A. Stable decision trees: Using local anarchy for efficient incremental learning. Int. J.

Artif. Intell. Tools 2000, 9, 79–95. [CrossRef]
21. Kalles, D.; Papagelis, A. Lossless fitness inheritance in genetic algorithms for decision trees. Soft Comput.

2009, 14, 973–993. [CrossRef]
22. Feretzakis, G. Full Look Ahead Calculator for “On Using Linear Diophantine Equations for in-Parallel

Hiding of Decision Tree Rules”. Available online: www.learningalgorithm.eu (accessed on 1 January 2019).
23. Zantema, H.; Bodlaender, H.L. Finding Small Equivalent Decision Trees is Hard. Int. J. Found. Comput. Sci.

2000, 11, 343–354. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/310889.310921
http://dx.doi.org/10.1016/b978-1-55860-377-6.50023-2
http://dx.doi.org/10.1007/978-1-4419-0221-4_53
http://dx.doi.org/10.1109/icdm.2005.142
http://dx.doi.org/10.1145/1774088.1774216
http://dx.doi.org/10.14722/ndss.2015.23241
http://dx.doi.org/10.1007/978-3-319-66399-9_27
http://dx.doi.org/10.3233/978-1-61499-672-9-1575
http://dx.doi.org/10.1145/2970030.2970041
http://dx.doi.org/10.1007/BF00058613
http://dx.doi.org/10.1142/S0218213000000070
http://dx.doi.org/10.1007/s00500-009-0489-y
www.learningalgorithm.eu
http://dx.doi.org/10.1142/S0129054100000193
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Adding Instances to Preserve the Class Balance Using Linear Diophantine Equations: A Proof of Concept and an Indicative Example
	Fully Specifying Instances
	Hiding in Parallel: Grouping of Hiding Requests

	Results
	Brief Discussion and Conclusions
	
	
	References

