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Abstract: In the practical application of quantum entanglement, entangled particles usually need to
be distributed to many distant parties or stored in different quantum memories. In these processes,
entangled particles unavoidably interact with their surrounding environments, respectively. We here
systematically investigate the entanglement-decay laws of cat-like states under independent Pauli
noises with unbalanced probability distribution of three kinds of errors. We show that the robustness
of cat-like entangled states is not only related to the overall noise strength and error distribution
parameters, but also to the basis of qubits. Moreover, we find that whether a multi-qubit state is
more robust in the computational basis or transversal basis depends on the initial entanglement and
number of qubits of the state as well as the overall noise strength and error distribution parameters of
the environment. However, which qubit basis is conductive to enhancing the robustness of two-qubit
states is only dependent on the error distribution parameters. These results imply that one could
improve the intrinsic robustness of entangled states by simply transforming the qubit basis at the
right moment. This robustness-improving method does not introduce extra particles and works in a
deterministic manner.

Keywords: entanglement robustness; cat-like states; local Pauli noises; robustness-enhancement
method; basis transformation

1. Introduction

Quantum entanglement, a typical non-classical correlation between quantum systems, is at
the center of quantum information science [1–4]. Most quantum communication, computation,
and metrology protocols are based on quantum entanglement [5–7]. However, entanglement is
very fragile due to the unavoidable interactions between the entangled systems and their surrounding
environments [8]. Local system–environment interaction usually happens in the scenarios related to
quantum communication and distributed quantum computation where entangled particles are far
apart [9,10]. Entanglement decay, resulting from environment-induced decoherence, will negatively
affect the quality of related quantum information processing tasks [10–12]. The problem on how to
harness entanglement of quantum systems against the detrimental effects of the environment is of
utmost importance within the vast domain of studies of quantum entanglement, since it is directly
connected to the applications of quantum entanglement [13,14]. A variety of strategies have been
proposed for protecting quantum entanglement [15–33].

Entanglement distillation is a prevalent way to improve the entanglement of distant particles
in mixed states [33–36]. Except for some special scenarios [37–39], the initial fidelity (relative
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to maximally entangled states) or entanglement degree of the source states (input states) in an
entanglement distillation protocol must be larger than a threshold [33–36]. Generally, the higher
degree of entanglement the input states have, the higher degree of entanglement the output states have,
or the higher the distillation efficiency is, provided that the initial entanglement of the source states
meets the threshold requirement. Quantum filtration methods could be used to probabilistically
increase the fidelity of source states with particular structures such that it meets the threshold
required for an entanglement distillation protocol [40,41]. However, quantum filtering operations may
decrease the final distillation efficiency in the case where the entanglement degree of the source states
exceeds the required threshold [42]. Enhancing the intrinsic robustness of entangled states is thus
of importance [43–47].

Pauli noise is a kind of typical noise for qubits [8,9]. The action of a general Pauli noise on any
state ρ of a qubit can be formulated as

E(ρ) =
(

1− p
2

)
ρ +

p
2
(
axσxρσx + ayσyρσy + azσzρσz

)
, (1)

where σx, σy, and σz are the conventional three Pauli matrices in the computational basis {|0〉, |1〉}.
Parameters 0 6 ax, ay, az 6 1 satisfy the normalization condition ax + ay + az = 1. Probability
0 6 p 6 1 measures the noise strength and gives also a convenient parametrization of time: p = 0
refers to the initial time t = 0 and p = 1 refers to the asymptotic t → ∞ limit. Note that the 1/2
factors in Equation (1) are such that an exact fully dephasing channel appears at p = 1 and az = 1.
The particular examples of single-qubit Pauli noises are the depolarizing, phase-flip, bit-flip, and
bit-phase-flip channels, which correspond to ax = ay = az = 1/3, az = 1 (ax = ay = 0), ax = 1
(ay = az = 0), and ay = 1 (ax = az = 0), respectively. A depolarizing channel describes that the qubit
is subjected to bit-flip (σx), phase-flip (σz), and bit-phase-flip (σy) errors with the same probability.
In the other three noise channels, only one type of error happens. An entangled state usually displays
different robustness in different noise channels [48–51]. The robustness of different entangled states,
even with the same initial entanglement, may be different in the same noise channel [44,47,52].

In many cases, the above-mentioned three types of errors may happen with different
probabilities [12,47]. Two examples are listed bellow. Consider that several physical qubits are
used to encode one logical qubit. Errors acting on the individual qubits lead to the populations outside
the logical subspace. However, active quantum error correction allows one to correct certain errors,
while other errors may lead to an error at the logical level. It has been shown that, for a repetition code
capable of correcting bit-flip errors, depolarizing noise at the physical level leads to effective Pauli noise
with a preferred direction at the logical level [53]. Generally, depolarizing noise acting on physical
qubits encoding a logical qubit could be modeled as effective Pauli noise, with unbalanced probability
distribution for the three errors, acting on the logical qubit [53]. Another example is provided by
thermal baths with infinite temperature, where the decoherence of a qubit can be described by a Pauli
map with ax = ay 6= az [12,44].

In this paper, we investigate the disentanglement features and robustness of n-qubit (n > 2)
cat-like entangled states under the local (independent) Pauli channels where the probabilities of three
kinds of errors occurring are not the same. We mainly discuss three issues. One is how the error
distribution parameters (ax, ay, az) affect the residual entanglement. Another one is whether the initial
entanglement degree of an entangled state has influence on its decay law. The third one is how the
qubit basis impacts the entanglement-robustness of cat-like states. What we are most interested in
is under which qubit basis (computational or transversal basis) an entangled state is more robust
in a noisy environment. We shall show that the answer depends not only on the noise parameters,
but also on the entanglement degree of the original entangled state and the number of involved qubits.
More interestingly, two-qubit entangled states may exhibit the opposite phenomenon to multi-qubit
entangled states.
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2. Robustness of Cat-Like States and Its Enhancement Method

When n Pauli noises independently act on n qubits of any state $, the composite n-qubit mapM
is given by the single-qubit map composition

M($) = E1 ⊗ E2 ⊗ · · · Ek ⊗ · · · En($), (2)

where Ek, with 1 6 k 6 n, corresponds to map (1) acting on the kth qubit. We shall discuss the
entanglement-robustness of different n-qubit cat-like states under the mapM. The entanglement
between any two parts of a decohered state, e.g., one qubit versus the rest, will be measured by the
negativity [54,55]. Following Ref. [55], the negativity can be defined as

N ($) = −2λmin, (3)

where λmin is the sum of all minus eigenvalues of the partial transpose of the state $. Note that,
when the two parts are separable, one should let λmin ≡ 0. It will be shown that the robustness of an
entangled state is dependent on the form of qubit basis, the number of qubits n, the noise strength
p, and the error distribution parameters (ax, ay, az). Moreover, two-qubit entangled states express
different decoherence behaviours from multi-qubit entangled states.

2.1. Robustness of Cat-Like States in the Computational Basis

For the initial n-qubit (n > 2) cat-like states

|Φ+
n 〉 = α|0〉⊗n + β|1〉⊗n (4)

with α2 + β2 = 1 (for simplicity, α and β are assumed to be real), the amount of entanglement between
any two partitions is

Ni = 2|αβ|. (5)

When |α| = |β| = 1/
√

2, Ni = 1 and the n-qubit states in Equation (4) are maximally entangled
states. If |α| 6= |β|, Ni < 1 and these states are partially entangled pure states. The decohered states
M(|Φ+

n 〉) are X states [46,56]. For any bipartition of an n-qubit X matrix, its partial-transpose is still an
X matrix with the same dimension. Calculation of the eigenvalues of a 2n × 2n-dimensional X matrix is
essentially equivalent to diagonalizing 2n−1 matrices of dimension 2× 2. With these features, one can
calculate, in a straightforward way, the negativity N of any bipartition “one qubit versus the rest”
ofM(|Φ+

n 〉).
For the phase-flip channelMPF, i.e., az = 1, we have

N(az=1) = (1− p)nNi. (6)

Obviously, N(az=1) decays exponentially with n, as (1− p)n. In fact, all the entanglement in the state
|Φ+

n 〉 underMPF decays (at slowest) exponentially with n. This implies that the state |Φ+
n 〉 is very

fragile to the phase-flip noise.
As to a non-pure phase-damping channel, i.e., az < 1, the negativity of any bipartition “one qubit

versus the rest” ofM(|Φ+
n 〉) can also be analytically calculated, which is given by (Appendix A)

N =
b n−1

2 c

∑
u=0

(
n− 1

u

)
[max (0, Gu − Fu+1) + max (0, Hu − Fu)] , (7)

where b n−1
2 c = (n− 1)/2, for n being odd, or b n−1

2 c = n/2− 1, for n being even, and
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Fu = An−uBu + AuBn−u, (8)

Gu =

[(
An−u−1Bu+1 − Au+1Bn−u−1

)2 (
1−N 2

i

)
+
(
Cn−uDu + CuDn−u)2N 2

i

]1/2
, (9)

Hu =

[(
An−uBu − AuBn−u)2

(
1−N 2

i

)
+
(

Cn−u−1Du+1 + Cu+1Dn−u−1
)2
N 2

i

]1/2
, (10)

A = 1− p
2
+

p
2

az, (11)

B =
p
2

ax +
p
2

ay, (12)

C = 1− p
2
− p

2
az, (13)

D =
p
2

ax −
p
2

ay. (14)

Obviously, the negativity of the decohered state is dependent on both channel parameters
(ax, ay, az, p) and the amount of entanglement of the initial state (Ni). In the following, we shall
show some interesting results.

We first discuss the case Ni = 1, i.e., the original state in Equation (4) is a standard
Greenberger–Horne–Zeilinger (GHZ) state (n > 3) or Bell state (n = 2). When the initial state is
a standard GHZ, the variation tendency of negativity N of the decohered state with error distribution
parameters (ax, ay, az) is related to the overall noise strength p. For a given ay, the increase (decrease)
in ax will always lead to increase (decrease) in the negativity N when p is small; however, N may first
slowly decrease and then increase (even rapidly) with the increase of ax when p exceeds a threshold
(see, e.g., Figure 1). It can be seen from Figure 1 that the threshold of p is usually related to n, and the
larger n, the smaller threshold, and that, for a given n, the larger p is, the larger ax the knee point
of N happens at. Moreover, the larger n is, N is more dependent on ax, i.e., it is more sensitive to
the change of ax. Overall, for given p and ay, the residual entanglement of the decohered GHZ state
tends to a maximum when ax → 1− ay. These phenomena imply that the standard GHZ states under
the computational basis are the most robust against the noise of σx direction (which is vertical to
the qubit-basis direction in the Bloch sphere), and that the variation tendency of the negativity of
a decohered state with the weight of the σx-directional noise is slightly modulated by the overall
noise strength.
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Figure 1. Negativity of decohered stateM(|Φ+
n 〉), as a function of ax, for different noise strength p,

where ay = 0 and Ni = 1. (a) n = 3; (b) n = 8.

The Bell state displays different decoherence behaviour from GHZ states. For any given p and ay,
N(n=2) is not monotonous with ax and the knee point always happens at ax = (1− ay)/2, though ax
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has a very slight influence on it (see, e.g., Figure 2). Furthermore, N(n=2) takes a maximum when ax

equals to zero or 1− ay. In other words, when ax < (1− ay)/2 (ax > (1− ay)/2), the smaller (larger)
ax, the larger N(n=2). These results indicate that when the weights of the phase-flip error and bit-flip
error are more different, the Bell state is more robust.
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Figure 2. Negativity of decohered stateM(|Φ+
2 〉), as a function of ax, for different noise strength p,

where Ni = 1. (a) ay = 0, p = 0.1; (b) ay = 0.2.

One can check another interesting phenomenon that ay has a similar influence with ax on N (see,
e.g., Figure 3). This phenomenon could be partly understood from the fact that both eigenvectors of
noisy operators σy and σx are vertical to basis vectors |0〉 and |1〉 in the Bloch sphere. Moreover, for any
given az,N always takes a minimum when ay = (1− az)/2, i.e., ay = ax (see Figure 3). This conclusion
can be directly obtained from Equation (7) when n = 2. As to n > 2, it could be explained as follows.
The standard GHZ states under the computational basis are the most fragile to the phase-flip error and
the most robust against the bit-flip error (will be shown later). On the other hand, the noisy operator
σy has both phase-flip and bit-flip actions. Thus, there is a trade-off between the negative effect and
positive effect of the weight of the phase-bit-flip error. For a given az, the relation between N and
ay is clearly shown in Figure 4. It can be seen from Figure 4 that the influence degree of ay on N is
symmetric about ay = (1− az)/2 for both Bell and GHZ states, and N takes a maximum when ay

equals to zero or 1− az.
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Figure 3. (Color online) Negativity as a function of ax and ay for initial maximally entangled pure state
|Φ+

n 〉 under local decoherence. (a) n = 2, p = 0.1; (b) n = 9, p = 0.2.
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Figure 4. Negativities as functions of ay for different initial pure states |Φ+
n 〉 with Ni = 1 under local

decoherence, where p = 0.1. (a) az = 0; (b) az = 0.2.

The influence of the channel parameters on the negativityN of the decohered state is also relative
to the amount of entanglementNi of the initial state (4). As examples, Figures 5 and 6 show that, when
Ni < 1 (i.e., |α| 6= |β|), N (for a given ay) exhibits different dynamic behaviour with the variation of ax

from the case Ni = 1 (i.e., |α| = |β|) for n = 2, 3, respectively. Specifically, if Ni < 1, N(n=2) tends to
a minimum when ax → 1− ay (e.g., ay = 0), in contrast to the case Ni = 1 where N(n=2) tends to a
maximum when ax → 1− ay. In the case Ni < 1 (e.g., Ni = 0.6), N(n=3) takes a maximum at ax = 0
when p exceeds a threshold. One can check that, for Ni < 1, N(n>4) could also take a maximum at
ax = 0 when p is very large. Note that, if Ni = 1, N always reaches a maximum when ax increases
to 1− ay for any given p and ay, as mentioned above. The difference of the decay behaviours of
partially entangled states and maximally ones may be partly understood from the fact that the two
distinguishable product states (|0〉⊗n and |1〉⊗n) are superposed with unequal weights in the former
and equal weight in the latter.
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Figure 5. (Color online) Negativity of decohered stateM(|Φ+
2 〉), as a function of ax, for Ni = 0.9 (red

dots), 0.8 (green stars), or 0.6 (blue triangles), where ay = 0, p = 0.1.
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Figure 6. (Color online) Negativity of decohered state M(|Φ+
3 〉) versus noisy parameter ax,

where ay = 0, Ni = 0.6.

From Figure 4a, we can also observe that the more larger n, N is more sensitive to the change
of ay (or ax), which leads to the fact that when ay tends to zero (ay tends to one) and ax tends to one
(ax tends to zero), N(n=M) could be larger than N(n=L) with M > L > 2. Figure 7 shows the trend of
the negativity N with the variation of number of qubits n when ay is near to zero (ay is near to one)
and ax is near to one (ax is near to zero). It can be seen from Figure 7 that the total variation tendency
of N with n is independent from the initial entanglement Ni. Figure 7 also implies that the optimal
n that maximizes the bipartite entanglement of the decohered n-qubit state is dependent on ax (ay)
when ay → 0 (ax → 0). In Figure 8, we give the aforementioned optimal n for different ax with ay = 0.
From Figure 8, we can deduce that, when ax is infinitely close to one, the optimal n always tends
to infinity.
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Figure 7. (Color online) Negativity (N ) versus n, where p = 0.2. Green lines correspond to
Ni = 1; blue lines correspond to Ni = 0.6. Dots correspond to ax = 1, ay = 0; stars correspond
to ax = 0.95, ay = 0; triangles correspond to ax = 0.9, ay = 0.1.
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In fact, when ax = 1, the channel map M reduces to the bit-flip channel MBF, and we can
analytically obtain

E
(
MBF(|Φ+

n 〉)
)
> E

(
MBF(|Φ+

n−1〉)
)
> · · · > E

(
MBF(|Φ+

2 〉)
)

, (15)

where E(·) is an arbitrary entanglement measure. Note that this result is independent from the noise
strength p. It can be understood as follows. A single-qubit σx measurement on |Φ+

n 〉 leaves the
system in state |Φ+

n−1〉 ⊗ |+〉 or |Φ−n−1〉 ⊗ |−〉, with |±〉 = (|0〉+ |1〉)/
√

2 being the eigenstates of σx

and |Φ−n−1〉 = α|0〉⊗n−1 − β|1〉⊗n−1. Similarly, since it commutes withMBF, a σx measurement on
ρ+n =MBF(|Φ+

n 〉) leaves the system in ρ+n−1 ⊗ |+〉〈+| or ρ−n−1 ⊗ |−〉〈−|, with ρ−n−1 =MBF(|Φ−n−1〉).
Furthermore, it is immediate to see that ρ+n−1⊗ |+〉〈+| and ρ−n−1⊗ |−〉〈−| are local-unitarily equivalent.
Thus, we can say E (ρ+n ) > E

(
ρ+n−1

)
. Iterating this reasoning n− 2 times and, for ease of notation,

omitting the tensor-product factors, one can obtain Equation (15). For specific calculation of the
negativity given in Equation (7), one can omit the second term in each square bracket because Hu is
impossible to be larger than Fu when ax = 1.
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Figure 8. (Color online) The optimal n (noptimal) that maximizes N for different ax, where Ni = 1
and ay = 0.

2.2. Robustness of Cat-Like States in the Transversal Basis

By local Hadamard-gate rotationH = |+〉〈0|+ |−〉〈1|, the cat-like state |Φ+
n 〉 can be transformed

into the transversal form, i.e.,

|Φ+T
n 〉 = H⊗n|Φ+

n 〉 = α|+〉⊗n + β|−〉⊗n. (16)

The transversal state |Φ+T
n 〉 is local-unitarily equivalent to |Φ+

n 〉, and thus possesses the same
amount and type of entanglement as |Φn〉. However, it will be shown that |Φ+T

n 〉may display a very
different decoherence behaviour from |Φ+

n 〉 in the same noisy environment.
The decohered stateM(|Φ+T

n 〉) is also an X state under the transversal qubit-basis {|+〉, |−〉}.
In the local bit-flip channels, i.e., ax = 1, the negativityN T of any bipartition “one qubit versus the rest”
ofM(|Φ+T

n 〉) is the same asN(az=1) in Equation (6). For ax < 1,N T has the same form as Equation (7),
but with A, B, C, D being replaced, respectively, by A′, B′, C′, D′, which are given by
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A′ = 1− p
2
+

p
2

ax, (17)

B′ =
p
2

az +
p
2

ay, (18)

C′ = 1− p
2
− p

2
ax, (19)

D′ =
p
2

az −
p
2

ay. (20)

The dependency relationship of N T on ax (az) is different from that of N on ax (az). If az = 1,
the Pauli channelM reduces to the phase-flip channelMPF, the inequalities in Equation (15) also
hold for statesMPF(|Φ+T

n 〉). As a matter of fact, the role of az in N T is the same as that of ax in N .
The essential cause is that the action of operator σz on the basis states {|+〉, |−〉} is the same as σx on
{|0〉, |1〉}, and vice versa. Thus, the result about the influence of ax on the residual entanglement of
|Φ+

n 〉 in the noisy environment described byM shown in the former subsection is also applicable for
the influence of az on the residual entanglement of |Φ+T

n 〉.
The impact of ay on both M(|Φ+T

n 〉) and M(|Φ+
n 〉) is the same. This is due to the fact that

σy|0〉〈0|σy = σy|+〉〈+|σy, σy|1〉〈1|σy = σy|−〉〈−|σy, and σy|0〉〈1|σy = σy|+〉〈−|σy, that is, the operator
σy has the same effect on a qubit under both bases. If ay = 1, i.e., the channel M reduces to the
bit-phase-flip channelMBPF, the inequalities in Equation (15) hold for both statesMBPF(|Φ+

n 〉) and
MBPF(|Φ+T

n 〉). It can be understood as follows. A single-qubit σy measurement on |Φ+
n 〉 leaves the

system in state |Φ′−n−1〉 ⊗ |+〉y or |Φ′+n−1〉 ⊗ |−〉y, with |±〉y = (|0〉 ± i|1〉)/
√

2 being the eigenstates
of σy and |Φ′±n−1〉 = α|0〉⊗n−1 ± iβ|1〉⊗n−1. Note that |Φ′±n−1〉 are local-unitarily equivalent to |Φ+

n−1〉.
Similarly, since it commutes withMBPF, a σy measurement on ρ+n =MBPF(|Φ+

n 〉) leaves the system
in ρ′−n−1 ⊗ |+〉y〈+| or ρ′+n−1 ⊗ |−〉y〈−|, with ρ′±n−1 =MBPF(|Φ′±n−1〉). Furthermore, it is immediate to
see that ρ′±n−1 are local-unitarily equivalent to ρ+n−1. Thus, we can say E (ρ+n ) > E

(
ρ+n−1

)
. Iterating

this reasoning n − 2 times and, for ease of notation, omitting the tensor-product factors, one can
obtain Equation (15) for states MBPF(|Φ+

n 〉). In the same vein, we can also prove the inequalities
in (15) for statesMBPF(|Φ+T

n 〉). Specifically, a single-qubit σy measurement on |Φ+T
n 〉 will leave the

system in state |Φ′+T
n−1〉 ⊗ |+〉y or |Φ′−T

n−1〉 ⊗ |−〉y, with |Φ′±T
n−1〉 = e∓πi/4α|+〉⊗n−1 + e±πi/4β|−〉⊗n−1

being local-unitarily equivalent to |Φ+T
n−1〉. Then, a σy measurement on ρ+T

n =MBPF(|Φ+T
n 〉) will leave

the system in ρ′+T
n−1 ⊗ |+〉y〈+| or ρ′−T

n−1 ⊗ |−〉y〈−|, with ρ′±T
n−1 = MBPF(|Φ′±T

n−1〉) being local-unitarily

equivalent to ρ+T
n−1. Thus, we can conclude E

(
ρ+T

n
)
> E

(
ρ+T

n−1

)
. Repeating the process above n− 2

times, one can verify Equation (15) for statesMBPF(|Φ+T
n 〉).

It should be pointed out again that σy plays the same role as σx in statesM(|Φ+
n 〉) (see Figures 3

and 4) and as σz in statesM(|Φ+T
n 〉). This may be partly understood from the fact that the eigenvectors

of both noisy operators σy and σx are transversal to the qubit basis {|0〉, |1〉}, and the eigenvectors of
both σy and σz are transversal to the qubit basis {|+〉, |−〉}.

2.3. Enhancing the Robustness of Cat-Like States by Basis Transformation

According to the discussion above, we obtain that, under the local Pauli channels with unbalanced
probability distribution for three kinds of errors, the entanglement-robustness of cat-like states are
generally related to the qubit basis. This implies that one can enhance the robustness of entangled
states by transforming the qubit basis according to preestimated channel features. In this subsection,
we investigate in what conditions the basis {|0〉, |1〉} is better than {|+〉, |−〉}, or otherwise. This can
be achieved by comparing the negativity N T of M(|Φ+T

n 〉) and the negativity N of M(|Φ+
n 〉).

If the difference
∆N = N T −N (21)

is larger than zero, it indicates that |Φ+T
n 〉 is more robust than |Φ+

n 〉. If ∆N < 0, it means |Φ+
n 〉 is more

robust than |Φ+T
n 〉. As mentioned above, the noisy operator σy has the same effect on a qubit under
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both bases {|+〉, |−〉} and {|0〉, |1〉}; thus, ∆N ≡ 0 when ay = 1. Then, we only need to discuss the
case ay < 1.

Let us begin by the phase-flip channel az = 1. For n = 2, it can be directly calculated that ∆N = 0
whenNi = 1; however, ∆N 6 0 whenNi < 1 (see Figure 9). Thus, we can conclude that the two-qubit
maximally entangled state (|α| = |β|) has the same robustness under both qubit bases {|+〉, |−〉} and
{|0〉, |1〉}, but two-qubit partially entangled states (|α| 6= |β|) are more robust in the basis {|0〉, |1〉}
than in the basis {|+〉, |−〉}. If consider the possible fact that it is very difficult to make |α| be strictly
equal to |β| in experiments, we could say that the basis {|0〉, |1〉} is superior to the basis {|+〉, |−〉} for
two-qubit state distribution or storage.

Initial Negativity

p

0 0.5 1
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0.4

0.6

0.8

1

−0.16

−0.14

−0.12
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−0.08

−0.06

−0.04

−0.02

0

Figure 9. (Color online) Variation of ∆N with different p and Ni when az = 1 and n = 2.

The results for n > 3 are not the same as that for n = 2. If Ni = 1, ∆N is always positive for
n > 3, which indicates that the basis {|+〉, |−〉} overmatches {|0〉, |1〉} in keeping the entanglement
of standard GHZ states. If Ni < 1, however, the sign (positive or minus) of ∆N is dependent on Ni,
n, and p. When Ni is less than a threshold Nt, ∆N < 0, which means that |Φ+

n 〉 is more robust than
|Φ+T

n 〉 (see, e.g., Figure 10). When Nt < Ni < 1, ∆N could also be minus as long as p is larger than
a threshold pt depending on Ni (see Figure 10). Generally, for a given n, the larger Ni, the larger pt.
In addition, the larger n, the less Nt; when n is very large, Nt → 0. Nt with different n is given in
Figure 11. We plot pt as a function of Ni and n in Figure 12.
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Figure 10. (Color online) The sign (positive or minus) of ∆N(n=3) for different p and Ni, where az = 1.
The blue region denotes ∆N < 0 and the red region denotes ∆N > 0.
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Figure 11. Nt versus n, where az = 1.
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Figure 12. (Color online) pt for different Ni and n, where az = 1.

As to the bit-flip channel ax = 1, the results are the same as above with exchanging the roles of
bases {|0〉, |1〉} and {|+〉, |−〉}. That is, N T

(n=2) > N(n=2) for any case, N T
(n>3) < N(n>3) for Ni = 1,

and N T
(n>3) > N(n>3) for Ni < Nt, or Nt < Ni < 1 but p > pt.

In the case of az and ax being less than one, az = ax is the dividing line between the two regions
of ∆N > 0 and ∆N < 0 (see, e.g., Figure 13). Specifically, the region of ∆N > 0 can be obtained by
mirroring that of ∆N < 0 in az = ax (see, e.g., Figure 13). This can be understood from the fact that
the role of az in N T is the same as that of ax in N , as mentioned above. From Figure 13, we can also
see that az (ax) may have the opposite effect in ∆N(n=2) and ∆N(n=3). In other words, for given az and
ax, if ∆N > 0 for a two-qubit entangled state, ∆N < 0 may happen for a three-qubit entangled state.
This implies that the sign of ∆N is related to the number of qubits n. Moreover, the sign of ∆N may
also be dependent on the initial entanglement Ni. We next analyze the change of the sign of ∆N with
az and Ni for given p and ay (keep in mind that ax = 1− az − ay, and that the noisy operator σy has
the same effect on a qubit under both bases {|+〉, |−〉} and {|0〉, |1〉}). In Figure 14, we show the sign
of ∆N with different Ni by taking ay = 0 and p = 0.1. Figure 14a indicates that ∆N(n=2) > 0 when
az < (1− ay)/2 and ∆N(n=2) 6 0 when az > (1− ay)/2. Figure 14b, however, indicates that the sign
of ∆N(n=3) is dependent on the value of Ni for a given az, i.e., when Ni is larger than a threshold Nt,
∆N(n=3) < 0 for az < (1− ay)/2 and ∆N(n=3) > 0 for az > (1− ay)/2, and otherwise ∆N(n=3) > 0
for az < (1− ay)/2 and ∆N(n=3) < 0 for az > (1− ay)/2. Generally, the larger n is, the smaller Nt is,
and Nt → 0 when n is very large (see, e.g., Figure 15).
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Figure 13. (Color online) Regions of ∆N < 0 (blue) and ∆N > 0 (red) when Ni = 0.9 and p = 0.1.
(a) n = 2; (b) n = 3.
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Figure 14. (Color online) Regions of ∆N < 0 (blue), ∆N > 0 (red), and ∆N = 0 (green) when ay = 0
and p = 0.1. (a) n = 2; (b) n = 3.
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Figure 15. (Color online) Regions of ∆N < 0 (blue) and ∆N > 0 (red) when ay = 0 and p = 0.1.
(a) n = 4; (b) n = 25.
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3. Conclusions

In summary, we investigated the decoherence features and entanglement-robustness of cat-like
states in the local Pauli noises where the probabilities of three kinds of errors occurring are not the
same. It was shown that the decay law of a cat-like state is not only related to the overall noise
strength (p), but also to the error distribution parameters (ax, ay, az), and that the robustness of
both two-qubit and multi-qubit states in a given noisy environment is dependent on the basis of
qubits. Whether a two-qubit entangled state is more robust in the computational basis {|0〉, |1〉} or
transversal basis {|+〉, |−〉} only depends on the error distribution parameters. Specifically, in terms
of the entanglement-robustness of two-qubit states, the basis {|+〉, |−〉} is superior to {|0〉, |1〉} when
az < (1− ay)/2 and {|0〉, |1〉} is superior to {|+〉, |−〉} when az > (1− ay)/2. However, which basis
can be used to enhance the entanglement-robustness of multi-qubit states is not only dependent on the
error distribution parameters, but also on the overall noise strength, the initial degree of entanglement,
and the number of qubits. In other words, the better basis for a multi-qubit state may be not the same
in different noisy environments, and the better basis for two multi-qubit states may be different in the
same noisy environment. These phenomena also lead to another interesting result that the better basis
for a two-qubit state and a multi-qubit state with the same degree of bipartite entanglement may be
different. That is to say, if a two-qubit state is more robust under the basis {|0〉, |1〉}, a multi-qubit
state with the same amount of bipartite entanglement may be more robust under the basis {|+〉, |−〉}.
In addition, an M-qubit cat-like state could be more robust than a L-qubit (M > L) cat-like state having
the same superposition coefficients with the former under the same qubit basis, although each qubit
suffers from a Pauli noise.

The aforementioned results tell us that one could improve the robustness of cat-like entangled
states in local Pauli noises by simply transforming the qubit basis. In some scenarios, one can change
the basis, according to preestimated channel features, before the qubits undergoing decoherence.
In other scenarios, it may be necessary to change the basis during the process of decoherece. Practically,
when we should transform the basis depends on the fact of whether the better basis is related to the
noise strength p characterizing the decoherence time. This enhancement method is much simpler
and more efficient than the others because it does not introduce extra particles and works in a
deterministic manner. Due to the inherent relationship between quantum entanglement and quantum
coherence [57], it may be interesting to investigate whether or how the basis rotation could contribute
to the preservation of quantum coherence that has attracted attention recently [58,59].
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Appendix A

For convenience, we define notations j = j1 j2 · · · jn and j = j1 j2 · · · jn, where jm ∈ {0, 1} and
jm = 1− jm (m = 1, 2, · · · , n). Under the basis {|j〉, j = 0, · · · , 1}, the decohered stateM (|Φ+

n 〉) can
be denoted by a X matrix $ with diagonal and anti-diagonal elements

$j,j = An−|j|B|j|α2 + A|j|Bn−|j|β2, (A1)

$j,j =
(

Cn−|j|D|j| + C|j|Dn−|j|
)

αβ, (A2)
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where |j| denotes the number of “one” in the bit string j, e.g., |0| = 0 and |1| = n. A, B, C, D are
defined in Equations (11)–(14), respectively. Without loss of generality, we consider the bipartition
“qubit one versus the rest”, and introduce a notation j = j1j′ with j′ = j2 j3 · · · jn. Then, the elements of
the partial transpose $T of $ are $T

j1j′ ,j1j′ = $j1j′ ,j1j′ and $T
j1j′ ,j1j′

= $j1j′ ,j1j′ . Calculation of the eigenvalues

of the 2n × 2n-dimensional X matrix $T is essentially equivalent to diagonalizing 2n−1 matrices of
dimension 2× 2, given by (

$0j′ ,0j′ $1j′ ,0j′

$0j′ ,1j′ $1j′ ,1j′

)
(A3)

with |j′| ranging from 0 to n− 1. The eigenvalues of these 2× 2-dimensional matrices are given by

λ
|j′ |
± =

1
2

(
$0j′ ,0j′ + $1j′ ,1j′

)
± 1

2

√(
$0j′ ,0j′ − $1j′ ,1j′

)2
+ 4$1j′ ,0j′$0j′ ,1j′ . (A4)

It can be directly calculated that

$0j′ ,0j′ + $1j′ ,1j′ = A|j
′ |Bn−|j′ | + An−|j′ |B|j

′ |, (A5)

$0j′ ,0j′ − $1j′ ,1j′ =
(

An−|j′ |B|j
′ | − A|j

′ |Bn−|j′ |
)√

1−N 2
i , (A6)

4$1j′ ,0j′$0j′ ,1j′ =
(

Cn−1−|j′ |D1+|j′ | + C1+|j′ |Dn−1−|j′ |
)2
N 2

i , (A7)

where identity |j′|+ |j′| = n− 1 has been used. Using the definition of negativity given in Equation (3),
we have

N =
n−1

∑
|j′ |=0

(
n− 1
|j′|

)
max

(
0,−2λ

|j′ |
−

)

=
b n−1

2 c

∑
|j′ |=0

(
n− 1
|j′|

)
max

(
0,−2λ

|j′ |
−

)
+

n−1

∑
|j′ |=b n−1

2 c+1

(
n− 1
|j′|

)
max

(
0,−2λ

|j′ |
−

)

=
b n−1

2 c

∑
u=0

(
n− 1

u

)
max (0, Hu − Fu) +

b n−1
2 c

∑
u=0

(
n− 1

u

)
max (0, Gu − Fu+1) , (A8)

where b n−1
2 c = (n− 1)/2, for n being odd, or b n−1

2 c = n/2− 1, for n being even, and Fu, Gu, Hu are
defined in Equations (8)–(10), respectively.
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