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Abstract: The modeling and forecasting of BBS (Bulletin Board System) posts time series is crucial
for government agencies, corporations and website operators to monitor public opinion. Accurate
prediction of the number of BBS posts will assist government agencies or corporations in making
timely decisions and estimating the future number of BBS posts will help website operators to allocate
resources to deal with the possible hot events pressure. By combining sample entropy (SampEn) and
deep neural networks (DNN), an approach (SampEn-DNN) is proposed for BBS posts time series
modeling and forecasting. The main idea of SampEn-DNN is to utilize SampEn to decide the input
vectors of DNN with smallest complexity, and DNN to enhance the prediction performance of time
series. Selecting Tianya Zatan new posts as the data source, the performances of SampEn-DNN were
compared with auto-regressive integrated moving average (ARIMA), seasonal ARIMA, polynomial
regression, neural networks, etc. approaches for prediction of the daily number of new posts. From the
experimental results, it can be found that the proposed approach SampEn-DNN outperforms the
state-of-the-art approaches for BBS posts time series modeling and forecasting.

Keywords: sample entropy; deep neural networks; BBS posts; time series

1. Introduction

The Internet has become a major public opinion formation and diffusion platform [1]. In the Web
2.0 era, Bulletin Board System (BBS), Micro-blog, WeChat, etc. are main sources for public information
dissemination, and become the core areas of public opinion monitoring [2]. The numbers of posts,
blogs or micro-blogs represent the hot-degree and trend of public opinion, so time series analysis of
the numbers of posts, blogs or micro-blogs, such as prediction of the number of new posts, blogs or
micro-blogs in a time interval ahead, can be considered as an important signal for government agencies,
enterprises and website operators to make decisions. Based on time series analysis of the numbers
of posts, blogs or micro-blogs, convincing results are obtained for the election result prediction [3],
crisis management [4] and stock market forecasting [5]. Therefore, time series analysis of the numbers
of posts, blogs or micro-blogs enable them to monitor the tendency of public opinion, and further
support them to make rational planning and actions for public opinion management and guidance [6].

For government agencies and enterprises, the prediction of the numbers of posts, blogs or
micro-blogs can help them make decision for at least three reasons [7,8]. First, the prediction of the
numbers of posts, blogs or micro-blogs provides government agencies and enterprises with a measure
of the trend, scope and duration time of public opinion on their related topics. Second, it is useful to
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estimate the effort involved in public opinion management and guidance. To different trend types of
events or topics, different operation methods and effort investments are required. Generally, the effort
involved in public opinion management and guidance is proportional to the number of posts, blogs
or micro-blogs. Third, based on the numbers of posts, blogs or micro-blogs, the effectiveness of
guidance strategies can be evaluated. According to the positive or negative feedback from public
opinion, the guidance strategies can be improved immediately. For website operators, the prediction
of the numbers of posts, blogs or micro-blogs can help them allocate resource or strategies on hot
topics [9]. Without sufficient resource allocation for hot events, it will make their system delay or crash.
Conversely, too many resources allocation will increase their operational cost.

Hence, for effective management and guidance of public opinion, the prediction of the numbers
of posts, blogs or micro-blogs is a critical issue. Various approaches are proposed to solve this
problem and we can divide the approaches into two kinds: diffusion model and time series model.
For diffusion model, the classic mathematical models of diffusion are adopted to establish public
opinion, such as Logistic distribution [10], epidemic model [11] and Michaelis–Menten model [12].
The information diffusion process of public opinion is modeled through the classic diffusion model.
Based on the identified model, the trend, peak and duration at different stages of public opinion are
predicted. For time series model, ignoring the diffusion mechanism of public opinion, the diffusion
model of public opinion is constructed only based on time series data. Auto-regressive integrated
moving average (ARIMA) [13], artificial neural network [14] and support vector machines [15,16]
are the frequently used models for time series data. Due to effectiveness of time series model for
public opinion prediction, the time series model is applied for the prediction of the numbers of posts,
blogs or micro-blogs.

In Chinese online community, BBS serves as an important social media; the extensive interests
and contents are distinct characters of the Chinese BBS sites [17]. As an emerging media and electronic
information center, the Chinese BBS sites fulfill the requirements of netizens to be informed and
exchange opinions [18]. With the appearance of blogs, twitter, WeChat, etc., the influence of BBS is
declining, but, due to the Internet regulations in China, the Chinese BBS sites can offer another channel
to express information and spread opinions, and are still an important platform in China. Tianya
Club (http://bbs.tianya.cn/), one of the most influential Chinese BBS sites, provides BBS, blogs, etc.
services for netizen and consists of many sub-boards for different content/topic discussions, such as
Tianya Zatan and Baixing Shengyin [19]. Tianya Zatan board is an important board within Tianya
Club, the content of which covers the daily news of current society and personal life. Daily new posts
published in Tianya Zatan board are nearly 1000, and millions of clicks and replies are created by
netizens [20]. The daily new posts data of Tianya Zatan were selected as the data source for public
opinion monitoring.

Takens’ [21] embedding theorem and Sauer et al.’s [22] embedology theorem provide a theoretical
foundation for nonlinear dynamical system reconstruction based on its generated time series sequence.
Consequently, for the modeling and forecasting of BBS posts time series, two main problems are:
(1) Determination of the embedding dimension. A time series can be represented in the so-called
“phase space” by a set of delay vectors (DVs), and the embedding dimension defines the size of the
DVs. (2) Which model is fit for BBS post number prediction. Approximate entropy is an effective model
for the embedding dimension analysis of time series; sample entropy (SampEn) is a modification of
approximate entropy [23,24]. With multiple layers and more neurons, deep neural networks (DNN)
can detect the features of data, and are more effective for time series prediction [25].

Therefore, by combining SampEn and DNN, an approach SampEn-DNN is proposed to predict
BBS new post number time series. SampEn-DNN applies sample entropy to measure the predictability
of DVs with different dimensions, selects the dimension of DVs with smallest complexity, and feeds the
DVs as the input of DNN to improve the predictive performance of time series. However, in some cases,
the single-scale sample entropy cannot really reflect the complexity of a time series, thus, to avoid this
issue, multi-scale sample entropy is adopted in this paper. The skipping parameter and the dimension
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of DVs are tuned by multi-scale sample entropy. The predictive performance of SampEn-DNN for
Tianya Zatan new posts time series was investigated. For the combination of sample entropy and
DNN for time series modeling and forecasting, both the proposed method and the application area
are attempted for the first time. To illustrate the improvements of SampEn-DNN, the performances
of ARIMA, seasonal ARIMA, polynomial regression and artificial neural network (ANN) on Tianya
Zatan new posts time series analysis were compared.

The rest of the paper is organized as follows. Section 2 presents the related methods for time
series analysis. The proposed approach SampEn-DNN is shown in Section 3. Section 4 presents the
experimental results of SampEn-DNN and the state-of-the-art approaches for time series analysis of
Tianya Zatan new posts. Finally, concluding remarks and future work are given in Section 5.

2. Methodology

Time series Xt(t = 1, 2, 3, . . . , N) is an ordering set of observations of a variable over successive
periods of time. Time series modeling and forecasting has fundamental importance to various practical
domains [26]. Stock exchange data, wind speed, global temperature, etc. are typical examples of time
series. The natural temporal ordering feature of time series makes time series analysis different from
other data analysis problems, in which there is no natural ordering of the observations. The studies
of time series data can be divided into two parts: one is to extract and understand the meaningful
statistics and other characteristics of the data, and the other is to predict future values based on
previously observed values.

Parametric approaches are frequently used for time series modeling and forecasting [26].
The state-of-the-art parametric approaches include ARIMA model, seasonal ARIMA model, polynomial
regression and ANN. The parametric approaches of time series analysis assume that underlying process
is stationary. Generally, a time series Xt(t = 1, 2, 3, . . . , N) is stationary if E(X2

t ) < ∞, E(Xt) = α,
∀t ∈ T = {1, 2, . . . , N} and E(Xt+r − α)(Xt − α) = γX(r), ∀t, t + r ∈ T = {1, 2, . . . , N}, and γX(r)
is the auto-covariance function. In other words, for a stationary time series, the variation is finite,
the expected values at any time points equals the same value α, and the auto-covariance is merely
dependent on their time lag r and not dependent on time t or t + r. For example, the simplest
stationary time series is white noise. For time series modeling and forecasting, the first issue is to
know whether a time series is non-stationary or stationary. The common method for stationary test
is augmented Dicker–Fuller (ADF) test [27]. The related approaches for time series modeling and
forecasting are presented as follows.

2.1. ARIMA Model

ARIMA model is a general class of ARMA model with differencing manipulation on time series
data, and ARMA model consists of two parts: autoregressive (AR) model and moving average
(MA) model. These models are applied for the fitting of time series data, and aim to describe the
autocorrelations in time series.

For a time series Xt(t = 1, 2, 3, . . . , N), assume the number of autoregressive terms as p,
AR model can be abbreviated as AR(p), and expressed as

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + ωt (1)

where xt is stationary, φ1, φ2, . . . , φp are constants and φp 6= 0. ωt is assumed to be Gaussian white
noise with variance σ2

ω and zero mean.
Assume the moving average order as q, so MA model can be abbreviated as MA(q) and

expressed as
xt = ωt + θ1ωt−1 + θ2ωt−2 + · · ·+ θqωt−q (2)

where model parameters are θ1, θ2, . . . , θq(θq 6= 0), and q lags are in the moving average.
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According to Equations (1) and (2), ARMA model with the autoregressive and the moving average
order p and q can be abbreviated as ARMA(p, q) and expressed as

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + ωt + θ1ωt−1 + θ2ωt−2 + · · ·+ θqωt−q (3)

If the mean µ of xt is non-zero, then set α = µ(1− φ1 − · · · − φp), and the ARMA model can be
rewritten as

xt = α + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + ωt + θ1ωt−1 + θ2ωt−2 + · · ·+ θqωt−q (4)

ARIMA model contains differencing manipulation, which is used to transfer a non-stationary time
series to a stationary time series. If L is a differencing operator, Wt = ∇dxt = (1− L)dxt conforms to
the process ARMA(p, q). ARIMA model can be denoted as ARIMA(p, d, q). The general expression of
ARIMA(p, d, q) is given as Equation (5).

Wt = α + φ1Wt−1 + φ2Wt−2 + · · ·+ φpWt−p + ωt + θ1ωt−1 + θ2ωt−2 + · · ·+ θqωt−q (5)

where, through difference by order d, the original time series Xt(t = 1, 2, 3, . . . , N) is converted from
non-stationary into a stationary time series Wt.

2.2. Seasonal ARIMA Model

For real issues, most time series show seasonal variation. Seasonal time series mean that there
is a similar trend of the observations during the same period (e.g., daily, monthly or yearly) of the
time series. Additionally, the observations during the successive periods may also exhibit another
seasonal trend.

To address the seasonality and potential seasonal unit root, an extensional ARIMA model called
Seasonal ARIMA model is proposed [27]. Assume the periodicity of time series is s, Seasonal ARIMA
model is given by

(1− Ls)Ds Wt = α + φ1(1− Ls)Ds Wt−1 + · · ·+ φp(1− Ls)Ds Wt−p + ωt + θ1ωt−1 + · · ·+ θqωt−q (6)

where (1− Ls)Ds is the seasonal differencing operator, and accounts for non-stationarity in observations
made in the same period in successive period, Ds = 0 or 1 for s = 0 or > 1.

2.3. Polynomial Regression

For a given dataset (xi, yi), i = 1, 2, · · · , N, x is the independent variable and y is the dependent
variable. Polynomial regression is a form of linear regression to model the relationship between x
and y as an nth order polynomial. In general, a polynomial regression fits data to a model of the
following form,

yi = a0 + a1xi + a2x2
i + · · ·+ anxn

i + εi (7)

Parameters a1, a2, · · · , an of polynomial regression are identified by the method of least squares.
According to Taylor’s theorem [28], a polynomial regression is the expansion of Taylor series, so it can
be used to approximate continuous functions for curve fitting and trend analysis.

2.4. Artificial Neural Networks

ANN is a framework for machine learning inspired by biological neural networks. One of the
most widely applied models is back propagation neural network (BPNN) [29]. BPNN is a kind
of feed-forward network, the connection weights of which are trained by error back propagation
algorithm. For a given dataset (xi, yi), i = 1, 2, · · · , N, the training of BPNN includes two parts: one is
forward propagation, and the other is back propagation. Forward propagation: The input sample xi
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is propagated from the input layer, via the hidden layer, to the output layer. The connection weights
of BPNN in forward propagation process are maintained constant. Back propagation: The difference
(error) between the real value yi and expected output ŷi of BPNN is propagated from the output layer
to the input layer. The connection weights of BPNN are updated by the error feedback during the
process. The objective of BPNN training is to find a set of network weights that minimize the difference
between the real value yi and the expect output ŷi.

3. SampEn-DNN

By combining of sample entropy (SampEn) and deep neural networks (DNN), a novel time series
modeling and forecasting method SampEn-DNN is proposed to predict the daily number of BBS
new posts.

3.1. Sample Entropy

For a time series Xt(t = 1, 2, 3, . . . , N), assume its constant time interval as τ. The constant time
interval of BBS new posts time series in this study is one day. The SampEn of time series Xt can be
computed as follows.

First, define the dimension of embedding vector as m and tolerance as r, such that embedding
vector is given as Xm(i) = {xi, xi+1, · · · , xi+m−1}.

Second, the Chebyshev distance d[Xm(i), Xm(j)](i 6= j) is used as the distance function [30],

d[Xm(i), Xm(j)] = max
k=0,··· ,m−1

(|x(i + k)− x(j + k)|) (8)

Third, the number of Xm(j) (1 ≤ j ≤ N −m, j 6= i) that do not exceed the tolerance r
(d[Xm(i), Xm(j)] < r) is counted and denoted as ni(m), and then the proportion ci(m) = ni(m)

N−m
that any Xm(j) is close to Xm(i) is computed.

Fourth, by averaging over all possible Xm(i), the proportion c(m) = 1
N−m+1

N−m+1
∑

i=1
ci(m)

is estimated.
Fifth, the Chebyshev distance and c(m + 1) for embedding vector dimension as m + 1 are

computed in a similar way.
Sixth, SampEn of Xt(t = 1, 2, 3, . . . , N) is defined as

SampEn(m, r) = − log
c(m + 1)

c(m)
(9)

From the definition, it can be found that c(m + 1) is not bigger than c(m), so the SampEn(m, r)
value will be either zero or positive. For time series dataset, a smaller value of SampEn(m, r)
means more self-similarity (predictability) or less noise. To overcome the shortcuts of single-scale
SampEn in some special case, multi-scale SampEn is adopted. In multi-scale SampEn, a certain
interval between its every element is defined for input vector specified by the skipping parameter
δ. Hence, input vector is modified as Xm, δ(i) =

{
xi, xi + δ, · · · , xi + (m− 1)δ

}
, c(m)δ is expressed

as c(m)δ = d[Xm,δ(i), Xm,δ(j)] < r, and then SampEn can be given as SampEn(m, r, δ) =

− log(c(m + 1)δ/c(mδ)). In this study, the value of tolerance r is set as 0.02std, where the notation std
stands for the standard deviation of time series Xt(t = 1, 2, 3, . . . , N) [24].

The procedures for the calculation of SampEn(m, r, δ) is presented in Figure 1. For the given
starting positions as i and j in the time series Xt(t = 1, 2, 3, . . . , N), Lines 4–9 in Figure 1
are applied to decide d[Xm,δ(i), Xm,δ(j)] < r or not, and Lines 11–13 are implemented to decide
d[Xm+1,δ(i), Xm+1,δ(j)] < r or not. In Figure 1, for given i and j, according to the definition of
Chebyshev distance, if d[Xm,δ(i), Xm,δ(j)] < r and Max(Abs(X(i + k ∗ δ) − X(j + k ∗ δ))) ≤ r,
d[Xm+1,δ(i), Xm+1,δ(j)] < r can be achieved.
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3.2. Deep Neural Network

DNN model consists of deep belief network (DBN) [31] and feedforward neural network (FNN).
DBN is developed by stacking of multiple-units of Restricted Boltzmann Machines (RBM) [32].
The structure of DNN is shown in Figure 2. The aim of DBN is to extract the high-level features
from input data by the stacked RBMs. The learning process of the stacked RBMs is that the features
produced by the hidden layer of one RBM serve as the input to the higher-level RBM. The high-level
feature representation learned by DBN is fed as the input of FNN. Meanwhile, BPNN is one of the
most used FNN models, and adopted for DNN model.
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Figure 2. DNN (deep neural networks) model consists of DBN (deep belief network) and FNN
(feedforward neural network).

Hence, RBM is the main component of DNN. RBM is an energy-based deep learning model for
unsupervised learning, and consists of two kinds of layers: one is the visible layer and the other is the
hidden layer. The visible layer is for input data representation, and the hidden layer is to represent a
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probability of the distribution of input data. The neurons in the visible layer are only connected to the
neurons in the hidden layer.

For RBM, assume the numbers of neurons in the visible layer and the hidden layer as m and n,
denoted as v= (v1, . . . , vm) and h = (h1, . . . , hn), respectively. Meanwhile, assume the bias vectors
and the weight matrix of RBM as a, b and W. The energy-based model means an entropy function
is applied to define the log-likelihood input data distribution over the parameters a, b, W, v and h.
The energy function for RBM is given by Equations (10) and (11).

E(v, h) =− hTWv− aTv− bTh (10)

E(v, h) = −
m,n

∑
i,j=1

vihjwi,j −
m

∑
i=1

aivi −
n

∑
j=1

bjhj (11)

For each pair of neurons in the visible layer and the hidden layer, the joint probabilistic distribution
is defined as

p(v, h) =
e−E(v,h)

∑v,h e−E(v,h)
(12)

The sum of all probabilities of the hidden vector is the probability that the network assigns to the
visible vector, and expressed as

p(v) = ∑h e−E(v,h)

∑v,h e−E(v,h)
(13)

Since the neurons in visible layer only connect to the neurons in hidden layer, there is no
connection between neurons in the same layer. The joint probability of each pair of neurons in
different layers can be facilitated by the conditional probabilities,

p(h |v ) = ∏
j

p(hj|v ) (14)

p(v |h ) = ∏
i

p(vi|h ) (15)

For binary data, Equations (14) and (15) can be expressed as

p(hj = 1 |v ) = sigm(bj +
m

∑
i=1

viwij) (16)

p(vi = 1 |h ) = sigm(ai +
n

∑
i=1

hiwij) (17)

where sigm(x) is the sigmoid function.

3.3. SampEn-DNN Approach

DNN as regression model for time series analysis. The primary problem is to decide the formation
of its input vectors, which is the main factor to affect the predictive performance for model. Generally,
the input vectors are decided by two parameters: the dimension of input vector m and the skipping
parameter δ. Based on SampEn method, the dimension of input vector m and the skipping parameter
δ are optimized. For DNN model training, the first m − 1 elements are applied to predict the last
(m-th) element.

To optimize the parameters m and δ of input vector, the maximum values of the two parameters
need to be decided first. For the dimension of input vector, if m is larger than 13, the SampEn of time
series cannot be derived in most cases. Because, at this stage, c(m) and c(m + 1) in Equation (9) are
zeros, the differences between the elements of m-length and the (m + 1)-length input vectors are all
bigger than 0.02std. For skipping parameter, if the value of δ is too big, the intervals between data
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points will be large, which means the similarity of the data points to each other of time series will be
smaller, and the unpredictability of the input vectors will be larger. Based on this point, the biggest
skipping parameter δ is constrained as 12 in the study [16].

The SampEn results of BBS new posts time series based on different dimensions of input vectors
m and different skipping parameters δ are presented in Table 1.

Table 1. SampEn (sample entropy) results of BBS (Bulletin Board System) posts time series with
different m and δ.

m
δ

1 2 3 4 5 6 7 8 9 10 11 12

2 1.19 1.22 1.20 1.24 1.31 1.32 1.05 1.32 1.36 1.26 1.30 1.38
3 1.06 1.06 1.13 1.14 1.09 1.18 0.93 1.20 1.14 1.12 1.18 1.20
4 0.96 0.95 1.01 1.05 0.96 1.09 0.85 1.10 1.06 1.04 1.06 1.12
5 0.90 0.80 0.91 0.97 0.92 0.95 0.81 1.07 1.00 0.93 0.97 1.15
6 0.83 0.75 0.87 0.96 0.82 0.93 0.78 1.00 0.89 0.99 0.94 1.09
7 0.81 0.72 0.80 0.90 0.73 0.93 0.76 0.87 0.83 1.13 0.83 0.92
8 0.68 0.72 0.90 0.73 0.70 0.85 0.71 0.88 0.97 1.10 0.76 0.78
9 0.73 0.72 0.92 0.78 0.61 1.30 0.76 1.14 0.98 0.96 1.10 0.89

10 0.63 0.74 0.69 0.98 0.50 1.50 0.74 0.98 1.10 0.92 1.20 1.95
11 0.54 0.85 0.59 1.10 0.41 NaN 0.45 NaN 1.11 NaN NaN NaN
12 0.56 1.50 0.92 NaN 0.47 NaN 0.48 NaN NaN NaN NaN NaN
13 0.98 NaN NaN NaN 0.69 NaN 0.62 NaN NaN NaN NaN NaN

As shown in Table 1, when keeping the skipping parameter δ constant, for the dimension of
input vectors m varying from 2 to 13, the SampEn results of BBS post time series decrease at first and
increase after a critical threshold. For example, when δ = 1, for m varying from 2 to 11, the SampEn
results of the time series decrease from 1.19 to 0.54; however, for m varying from 12 to 13, the SampEn
results increase to 0.54. Formally, this phenomenon is known as phase transition. In Table 1, it can
also be found that, when m is increasing, the SampEn results will decreases along with the range of
c(m) and c(m + 1). Similarly, the value of (c(m)− q)/(c(m + 1) − q) for a given q is smaller than
c(m)/c(m + 1) when c(m) is larger than c(m + 1). When phase transition appears, the complexity of
input vector will increase, which means the unpredictability of time series increase.

Therefore, according to the above analysis, the procedures for the determination of the optimal
size of input vector m and the optimal skipping parameter δ are shown in Figures 3 and 4. At first,
for the optimal size of input vectors m determination, the average of the SampEn results of different
skipping parameter δ under same m is adopted, and m with the smallest average SampEn is selected
as the optimal parameter. After that, the skipping parameter δ with the minimum SampEn is selected
as the optimal skipping parameter.

The procedure for determination of the optimal size of input vector m∗ is presented in Figure 3.
seMatrix is derived based on the SampEn results of different m and δ in Table 1. According to Lines
1–8, the SampEn results of all δ under the same size m are summarized. Line 9 is to get the average of
SampEn results under the same size parameter m. Based on the SampEn values in Table 1, the optimal
dimension of input vector is obtained as 11. It can be found that, for different dimension of input
vector m, the possible skipping parameters δ with SampEn results not equal to infinity are different
from each other.
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Therefore, the procedure for determination of the optimal skipping parameter δ is shown in
Figure 4. According to Lines 2–3, when increasing the skipping parameter δ under the dimension of
input vector m∗, the optimal skipping parameter δ∗ is found. Based on the SampEn values in Table 1,
the optimal skipping parameter δ is derived as 5.

4. Experiments and Discussions

4.1. Datasets

To compare the effectiveness of SampEn-DNN with the state-of-the-art approaches for time series
modeling and forecasting, the time series of daily new post number of Tianya Zantan board (website:
http://bbs.tianya.cn/list.jsp?item=free&order=1) was selected as the data source. The daily new posts
on Tianya Zatan broad are published by netizens to discuss the hot and sensitive topics of current
society. With a spider system developed by our group, the new posts published on Tianya Zatan
board were downloaded and parsed, and the numbers of daily new posts were counted. For this study,
the numbers of daily new posts from 1 January 2013 to 31 December 2017 were selected. This dataset
contains 1826 data points with 1,782,793 new posts. The whole time series of daily new post number is
shown in Figure 5.

In Figure 5, it can be found that the time series of daily new post number published on Tianya
Zatan shows a downtrend from 2013 to 2017, which is mainly owing to the popularity of Micro-blog and
WeChat. The time series of daily new post number also presents periodic fluctuations, e.g., the number
of new posts on the working days is much greater than the number on weekends or holidays.

http://bbs.tianya.cn/list.jsp?item=free&order=1
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4.2. Experimental Procedures

For time series modeling and forecasting, the first issue is to verify whether the time series is
stationary. Through ADF test on the BBS new posts time series, it can be found that the dataset is
stationary (P < 0.05). For effectiveness comparison in daily BBS new post number prediction, the whole
dataset was split into five subsets with the daily new posts for each year as one subset (2013, 2014,
2015, 2016 and 2017). Through the ADF test on these five subsets, it can be found that the subset of
2014 is non-stationary. The first order difference was conducted on the five subsets, and then the ADF
test results show all subsets are stationary (P < 0.05).

ARIMA model: The parameters identification of ARIMA model is based on Box and Jenkin’s
approach [27]. After first order differencing manipulation, the time series became stationary. Hence,
only the orders p and q needed to be identified. Traditionally, the charts of autocorrelation faction
(ACF) and partial ACF (PACF) [27] are adopted to find several candidate couples p and q. Furthermore,
through the Akaiike information criterion, the two parameters p and q of ARIMA model were
decided. Seasonal ARIMA model: First, considering the influences of seasonal vacations and
holidays, the seasonal factor of the time series St was derived, St = 7. Second, with the seasonal
factor St, the time series data were filtered through convolution operation. Third, the order of the
autoregressive order p and the moving average order q were also decided based on ACF and PACF
charts. Polynomial regression: First, BBS new posts time series was converted to a cumulative time

series Nnew =
{

xnew
1 , xnew

2 , · · · , xnew
n
}

, where xnew
i =

i
∑

k=0
xk. Second, the least squares method was used

for parameters identification; Third, the performances of different orders of polynomial regression
ewre compared to select the optimal order. ANN model: According to the skipping parameter and
input vectors results of SampEn, the training and test dataset were extracted from the time series;
then, the reconstructed time series were fed into ANN model to regulate the weights of networks.
DNN model: The procedures were similar with ANN model. Based on the results of sample entropy,
the training and test datasets were derived, and then used for DNN modeling.

For each subset, the new post number points in the time series of the first 11 months (January–
November) were selected as the training dataset, and the new post number points in the time
series of the last month (December) were selected as the test dataset. Based on the reconstructed
dataset, the predictive performance of SamEn-DNN for BBS post time series was compared with
ARIMA, Seasonal ARIMA, polynomial regression, and ANN models. To evaluate the performance of
SamEn-DNN and other mentioned methods, magnitude of relative error (MRE) and mean magnitude
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of relative error (MMRE) were selected as the evaluation criterion. MRE and MMRE are expressed in
Equations (18) and (19).

MREi =
|xi − x̂i|

xi
(18)

MMRE =

n
∑

i=1
MREi

n
(19)

where xi is the real post number and x̂i is the estimated post number of model. The smaller are the
MRE and MMRE, the better is the prediction. The range of MRE and MMRE are [0, 1].

4.3. Experimental Results

Based on Equations (18) and (19), the performances of SampEn-DNN and the mentioned methods
were evaluated, and the MMRE results are presented in Table 2.

Table 2. MMREs (mean magnitude of relative error) of ARIMA (auto-regressive integrated moving
average), seasonal ARIMA, polynomial (polynomial regression), ANN (artificial neural networks) and
SampEn-DNN (sample entropy-deep neural networks) on BBS post time series.

Subset ARIMA Seasonal ARIMA Polynomial ANN SampEn-DNN

1 0.2355 ± 0.0090 0.1968 ± 0.0119 0.2772 ± 0.0109 0.2003 ± 0.0129 0.1419 ± 0.0078
2 0.1895 ± 0.0103 0.1691 ± 0.0126 0.4735 ± 0.0179 0.1694 ± 0.0107 0.1241 ± 0.0078
3 0.1915 ± 0.0117 0.1704 ± 0.0107 0.3535 ± 0.0135 0.1934 ± 0.0092 0.1748 ± 0.0080
4 0.1325 ± 0.0049 0.1188 ± 0.0066 0.3637 ± 0.0212 0.1450 ± 0.0098 0.0878 ± 0.0036
5 0.1653 ± 0.0083 0.1451 ± 0.0102 0.2401 ± 0.0126 0.1494 ± 0.0101 0.1256 ± 0.0043

Table 2 shows the MMREs of SampEn-DNN and the mentioned methods for BBS daily new post
number prediction. In Table 2, it can be found that, among the five models, SampEn-DNN model
shows better performances than other methods on four of the five subsets. Meanwhile, Seasonal
ARIMA model shows better performance on one of the five subsets. Thus, it may be concluded that the
SampEn-DNN outperforms Seasonal ARIMA model. Furthermore, both SampEn-DNN and Seasonal
ARIMA model show better performances on the five subsets than ARIMA, polynomial regression and
ANN. Moreover, ANN has produced better performance than ARIMA model, and ARIMA model has
outperformed polynomial regression. From this point, it can be said that, among the mentioned five
methods, polynomial regression has obtained the poorest performance for BBS new posts time series
modeling and forecasting.

To directly show the advantage of each method, the pairwise comparisons of the predictive
performances for SampEn-DNN and the other mentioned methods were conducted. The results of
MREs of each method on the five datasets were used for comparison. As mentioned in Section 4.2,
for each subset, the 31 data points of December were selected as the test dataset, thus there wre totally
155 MREs in the five subsets. For pairwise effectiveness comparison, the Wilcoxon signed rank test [33]
was employed. The Wilcoxon signed rank test is a non-parametric statistical hypothesis test for the
difference assess of the repeated measurements on a single sample. The Wilcoxon signed rank test
results of the MREs of the compared methods are shown in Table 3. The codification of the P-value in
ranges is defined as follows: “∼” means P > 0.05, which indicates that differences in performances
of two compared methods are not significant; “<“ (“>“) means 0.01 < P ≤ 0.05, which indicates
one model slightly outperforms the other model; and “�” (“�”) means P ≤ 0.01, which indicates
one model significantly outperforms the other model. For example, for effectiveness comparison of
ARIMA and SampEn-DNN, the code “�” means that the P-value of Wilcoxon signed rank test is
<0.01, thus SampEn-DNN shows a significantly better performance than ARIMA.
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Table 3. Wilcoxon signed rank test on MREs (magnitude of relative error) for the five methods.

Model Pair Seasonal ARIMA Polynomial Regression ANN SampEn-DNN

ARIMA < � < �
Seasonal ARIMA ∼ � ∼ <

Polynomial
Regression � ∼ � �

ANN ∼ � ∼ <

From the results in Table 3, it can be found that the outcome of Table 3 validates the conclusions of
Table 2. SampEn-DNN has obtained the best performance for time series forecasting of daily BBS new
posts, Seasonal ARIMA and ANN are also effective methods for prediction the number of BBS new
posts, and Polynomial regression has produced the poorest performance. The results can be explained
from two points: (i) SampEn-DNN applies the SampEn method for the dimension optimization of
input vectors. Based on the input vectors with smallest complexity, DNN method easily captures the
micro-level patterns of BBS new posts time series; (ii) DNN model is a probabilistic, generative model
that can learn to probabilistically reconstruct its inputs, and also takes advantage of more neurons
to reach the minimum error, thus DNN generates superior performance to the other four methods.
In Figure 5, it can also be found that BBS new posts time series show some periodic fluctuations,
thus Seasonal ARIMA method shows better performance for this periodically fluctuating dataset than
ARIMA. Polynomial regression is in the macro-level and cannot detect the micro-level patterns of post
number time series, thus it has produced the poorest performance for BBS new posts time series.

5. Concluding Remarks

In this paper, based on SampEn and DNN, a novel approach SampEn-DNN is proposed for BBS
new post number time series modeling and forecasting. The multi-scale sample entropy is adopted
to optimize the skipping parameter δ and the dimension of input vector m, and DNN is applied for
time series modeling and forecasting based on the optimal parameters. Tianya Zatan board daily new
post number was selected as the data source, and extensive experiments based on SampEn-DNN and
the state-of-the-art approaches were carried out. From the experimental results, it can be found that,
due to the parameter optimization of multi-scale sample entropy, DNN easily learns the micro-level
patterns from BBS new posts time series and SampEn-DNN has produced better performance than
ARIMA, Seasonal ARIMA, polynomial regression and ANN.

In the future, SampEn-DNN approach will be applied to different tasks on time series modeling
and forecasting. For public opinion monitoring, SampEn-DNN will be extended to predict the daily
numbers of posts or micro-blogs for more BBSs or micro-blogging websites. Meanwhile, SampEn-DNN
approach will be applied to other areas to test its effectiveness, such as weather forecasting, control
engineering, etc.
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