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Abstract: We investigate the emergence of chaotic dynamics in a quantum Fermi—Pasta—Ulam
problem for anharmonic vibrations in atomic chains applying semi-quantitative analysis of resonant
interactions complemented by exact diagonalization numerical studies. The crossover energy
separating chaotic high energy phase and localized (integrable) low energy phase is estimated.
It decreases inversely proportionally to the number of atoms until approaching the quantum regime
where this dependence saturates. The chaotic behavior appears at lower energies in systems with
free or fixed ends boundary conditions compared to periodic systems. The applications of the theory
to realistic molecules are discussed.
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1. Introduction

Understanding vibrational energy flow in molecules is one of the challenges in modern science
and technology [1,2]. Vibrational energy flows control energetics of chemical reactions, determine heat
balance in modern nano-devices [1,3–6] and can be manipulated similarly to electrons and photons
and used to carry and process quantum information [7–9]. Intramolecular energy relaxation and
transport are dramatically sensitive to the molecule’s ability to attain the thermal equilibrium [4,10].

After seminal work by Stewart and McDonalds [11], it has been realized that the internal
vibrational relaxation can be absent or proceed very slowly in small enough molecules and/or at
low temperature. Based on these observations, the concept of localization of low energy anharmonic
vibrational states of poly-atomic molecules within the manifold of harmonic product states of almost
independent normal modes was put forward by Logan and Wolynes [12]. In earlier [13–15] and
later [16–18] work, similar ideas have been developed for particle and spin systems. Theory was
further extended combining random matrix theory methods [19–21] and Bose Statistics Triangle Rule
approach [22–24] and this extension was reasonably consistent with the experimental observations [11].

This development is qualitatively consistent with the investigations of the classical counterpart
problem of anharmonic vibrational dynamics. Its simplest realization in atomic chains probed as a
modeling system for irreversible dynamics was considered in the celebrated work by Fermi, Pasta and
Ulam [25] (FPU), where the quasi-periodic behavior has been discovered for the evolution of the initial
excitation instead of irreversible energy equipartition. Despite over sixty years of investigations of the
FPU problem, its complete understanding remains a challenge [26–29].

Both quantum and classical non-linear vibrational dynamics can be characterized by a critical
energy separating low energy integrable (localized) and high energy chaotic (delocalized) behaviors.
In the chaotic regime, each part of the system can be thermalized due to its interaction with the rest
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suggesting ergodic behavior in classical regime, which is expressed by the eigenstate thermalization
hypothesis [30,31] in quantum regime. The position of the crossover energy separating two regimes
determines the localization threshold. The threshold energy can be redefined in terms of the critical
temperature corresponding to that energy.

The knowledge of the localization threshold for an individual molecule is significant since
the vibrational relaxation changes dramatically depending on whether the energy of the molecule
is lower or higher than the threshold [5,10,32,33]. In the latter case, the vibrational relaxation
follows standard Fermi Golden rule kinetics [34], while, in the localized regime, it is severely limited.
Particularly, population decay rates may even be similar at very short times, but, in the localized
regime, there would be numerous recurrences at longer times similarly to those in the classical FPU
problem [25], which would not appear in the extended regime. Practically, the relaxation should take
place due to the interaction with the environment (e.g., solvent if the molecule under consideration
is dissolved) but it should take place much more slowly. Therefore, the present work is focused on
the localization threshold and its dependence on system size (number of atoms) and the strength of
anharmonic interaction.

Since the properties of a molecule can be sensitive to its shape, the consideration is restricted to
the simple linear chain of atoms coupled by anharmonic interactions identical to the FPU problem [25].
This problem is relevant for the energy relaxation and transport in polymer chains used in the modern
heat conducting devices [3,32,35,36]. The anomalous increase of a thermal conductivity there with the
system size suggests a very slow thermalization or even the lack of one [36]. The results for the FPU
problem can be qualitatively relevant for the analysis of more complicated molecules.

The consideration is restricted to quantum mechanical systems. It has been suggested that the
threshold energy separating localized and chaotic states decreases with the system size [27–29,37–40].
This leads to the reduction of thermal energy below the vibrational quantization energy, which makes
quantum effects inevitably significant for sufficiently large molecules.

The paper is organized as follows. The FPU problems with different boundary conditions are
formulated and briefly discussed in Section 2. The analysis of localization is performed combining
analytical (Section 3) and numerical (Section 4) approaches for the FPU problems with different
boundary conditions. Both approaches are reasonably consistent with each other and led to the
predictions of analytical dependencies of localization threshold on system parameters discussed in
Section 5 for organic molecules. The methods and brief conclusions are formulated in Sections 6
and 7, respectively.

2. Model

The FPU model of anharmonic atomic chain with different common boundary conditions
including periodic, fixed ends and free ends (see Figure 1) can be described by the Hamiltonians
defined as

Ĥper = ∑N
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i
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1+û4

N−1
24 , fixed ends,
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(1)

Below, we set mass, harmonic force constant and Planck constant to unity, h̄ = M = k = 1.
Force constants A and B describe relative strengths of third- and fourth-order anharmonic interactions.
The fixed ends problem has been studied in the classical FPU paper [25].

Anharmonic interactions should be weak for the system energy E of interest to justify the applicability
of the series expansion for non-linear terms. Assuming approximate energy equipartition, one can estimate
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(xi− xi+1)
2 ∼ E/N, which leads to anharmonic interaction estimates V3 ∼ AE3/2/

√
N and V4 ∼ BE2/N

for the third- and fourth-order anharmonic interactions, respectively. Comparing harmonic and
anharmonic interactions, we end with the restrictions for energy density in the form

E
N

<
1
B

,
1

A2 . (2)

(a) (b) (c)

Figure 1. Schematic illustration of periodic (a), fixed ends (b) and free ends (c) FPU atomic chains.

However, we impose a stronger constraint on the energy requiring the stability with respect to the
dissociation. Consequently, the total energy should be less than the dissociation energy, Ed. This energy
can be estimated for the single bond assuming that anharmonic energy becomes comparable to the
harmonic one which suggests Ed ∼ 1

A2 ∼ 1
B . For instance, for the Morse potential [41] often used to

model atomic interactions, one has

Ed =
7

2B
=

9
4A2 . (3)

We assume that the system energy is always smaller than the dissociation energy

E < Ed ∼
1
B
∼ 1

A2 , (4)

so the molecule is stable with respect to large coordinate displacements.
Equation (4) can be satisfied for a quantum system only if it is satisfied at least for the minimum

energy that can be estimated as a quantization energy E ∼ 1. Consequently, the anharmonic
interactions should be weak, which requires

A, B� 1. (5)

These requirements are well satisfied in real molecules because of the small amplitudes of
vibrations of heavy atoms. For instance, using the Morse potential for C–C bond, one can express the
dimensionless parameters A and B as

|A| = 3
√

2
2

√
h̄
√

k/M
Ed

= 0.4644, B =
7
2

h̄
√

k/M
Ed

= 0.2644. (6)

The conditions of the weakness of anharmonicity are better satisfied since the dissociation energy
contains the additional large numerical factor (see Equation (3)).

In the absence of anharmonic interactions, one can describe periodic chain in terms of its normal
modes that can be characterized by quasi momenta quantum numbers p = −N/2 + 1,−N/2 +

2, ..., N/2 for even N and p = −(N − 1)/2,−(N − 3)/2, ..., (N − 1)/2 for odd N, wavefunctions
ψp(k) = ei2πpk/N/

√
N and eigenfrequencies

ωp = 2 sin(pπ/N). (7)
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These frequencies are identical to normal mode quantization energies (remember that we set
the Planck constant h̄ to unity). The mode with zero quasi-momentum p = 0 can be excluded from
the consideration because it corresponds to identical displacements of all atoms that cannot modify
a system energy. Therefore, only N − 1 normal modes are significant and the harmonic part of the
Hamiltonian can be re-expressed in the diagonal form with respect to these normal modes as

Ĥ0 =
N−1

∑
p=1

ωp

[
b̂†

p b̂p +
1
2

]
, (8)

where operators b̂†
p and b̂p describe creation or annihilation of one quantum of vibration of normal

mode (phonon) p. The harmonic problem is obviously integrable since the system breaks into N
independent oscillators (phonons) and each phonon population number operator νp = b̂†

p b̂p represents
a local integral of motion [42] in the momentum representation. Each many-body eigenstate |S >

of the harmonic system can then be represented by an arbitrary sequence of integer population
numbers S = {νp}.

Anharmonic interaction mixes up these states because it breaks down the conservation of
individual phonon population numbers. In the periodic system with only fourth-order anharmonicity
(A = 0 in Equation (1)), this interaction can be expressed as

V̂ = B
96N ∑p1 p2 p3 p4

∆(p1 + p2 + p3 + p4)sign(p1 p2 p3 p4)(−1)
(p1+p2+p3+p4)

N
√

ωp1ωp2ωp3ωp4×
×(b̂†

p1 + b̂−p1)(b̂†
p2 + b̂−p2)(b̂†

p3 + b̂−p3)(b̂†
p4 + b̂−p4), ∆(p) = 1

N ∑N
k=1 e

i2πpk
N .

(9)

The factor ∆(p1 + p2 + p3 + p4) is equal to unity if the sum of all four momenta is equal to zero
or integer fraction of N (due to Unklamp processes); otherwise it is equal to zero giving rise to a
quasi-momentum conservation.

Because of the above conservation law, the basis states of the system with given normal mode
population numbers can be split into N subsystems with the total quasi-momenta Q = 0, 1,−1, ..., N/2
for even N or Q = 0, 1,−1, ...,−(N − 1)/2 for odd N determined with the accuracy to the addition of
integer number of Ns. Each subsystem should be studied separately since the states from different
subsystems do not interact with each other. In addition, the states with Q = 0 and Q = N/2 for
even N possess a mirror reflection symmetry with respect to replacement all states S = νp with
the states S− = ν−p. Then, the states with Q = 0, N/2 can be split into two subgroups symmetric
or antisymmetric with respect to the mirror reflection symmetry. Consequently, all many-body
states can be split into N + 1 subgroups for odd N and N + 2 subgroups for even N that should be
considered separately.

Similarly, one can consider the interacting normal modes for free and fixed boundary atoms
(see Equation (1)). One can similarly introduce normal modes for this problem and their anharmonic
coupling. In these two cases, one cannot introduce quasi-momenta because of the lack of translational
symmetry. However, there is a mirror reflection symmetry with respect to the middle of the chain.
Then, all states can be separated into two subgroups of symmetric and anti-symmetric states with
respect to that symmetry. The states belonging to the different subgroups can be considered separately.

3. Localization-Delocalization Transition: Qualitative Analytical Consideration

There are over sixty years of history of the investigation of chaos in the classical FPU problem
and this problem remains a challenge [26,27]. The situation with the quantum mechanical problem
is even more complicated [43,44]. Below, we summarize the established results for the system of a
few atoms [34] and attempt to extend them to atomic chains having many atoms N � 1 first for the β

FPU problem containing only fourth-order anharmonic interactions and then extend it to the mixed
α + β problem.
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3.1. Localization—Chaos Transition in the Small System N ∼ 1.

Localization-chaos transition in systems with the small number of atoms N ∼ 1 can be well
understood following Ref. [34]. In this paper, the critical energy Ec separating localized and chaotic
states is estimated using a dimensionality arguments since the only value having the dimension of
energy can be constructed using the parameters in Equation (1) in the form

Ec ∼
1
B

. (10)

The numerical studies of both classical and quantum mechanical problems in Ref. [34] have
confirmed these expectations provided that the system is semiclassical, i.e. the system energy Ec is
much larger than the quantization energy h̄ω ∼ 1. This requires B� 1. Transitions in quantum and
classical systems occur under almost identical conditions since the system is semiclassical because
the maximum quantization energy max(ωp) is of order of unity (Equation (7)). Consequently, it is
much less than the energy per the mode Ec/N expressing the thermal energy kBT (see Equation (10),
remember that B ≤ 1 and N ∼ 1).

Similarly, one can estimate the critical energy for the α FPU problem with the third-order
anharmonic interaction as

Ec ∼
1

A2 . (11)

Equations (10) and (11) differ from the expectations of the analysis exploiting resonances for
many-body transitions that has been successfully applied to problems of interacting spins [15,45–47]
or electrons [16,48]. According to this criterion, chaos emerges in the presence of approximately one
resonance per the many-body state under the condition that the diagonal interaction of resonant
modes is larger or comparable to their resonant coupling [15,47–49] that is needed to avoid destructive
interference between consecutive resonant transitions. Such interaction is present naturally for the
fourth-order anharmonicity in Equation (9) (for instance, the terms with p1 = p2 and p3 = p4 are
diagonal in the phonon product state representation). There is no such interaction in the case of the
third-order anharmonic interactions (α FPU problem), which changes the definition of delocalization
transition as it is discussed in Section 3.3.

However, in the β FPU problem under consideration, the matrix elements M of the four phonon
interactions in Equation (9) grow proportionally to the squared population numbers M ∼ Bν2

p ∼ BE2

for the system energy E exceeding the quantization energy. The typical energy change in a four phonon
process is of order of their quantization energy that is of order of unity. Consequently, the amount of
resonances approaches unity at E ∼ B−1/2 in contrast to Equation (10).

This conflict can be resolved at the qualitative level modifying the definition of the resonances
in accordance with Ref. [50] where a single-particle localization problem has been considered for
harmonically coupled vibrations. For example, two unit mass oscillators with frequencies ωa and
ωb coupled by the interaction kabuaub are in resonance under the condition |ω2

a −ω2
b | < kab, while in

terms of matrix elements the resonance takes place at |ω2
a −ω2

b | < kab
√
(νa + 1)(νb + 1).

To define the resonance correctly one can consider the energy change not for a single resonant
transition but for the whole set of possible transitions involving these four phonons, which will increase
the typical energy change due to the transition (h̄ω ∼ 1) by the factor of a typical phonon population
number νp. Then, the resonance criterion can be written as Bν2

p ∼ νp. Setting δE ∼ νp ≈ Ec we end up
with Equation (10). The problem of interest with large number of atoms needs a special consideration
given in the next section.
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3.2. β FPU Problem

3.2.1. Classical Regime

Consider the localization–chaos transition in the case of a large number of atoms assuming
that the system is semiclassical (population of each vibrational mode exceeds unity). One can still
consider resonant interactions similarly to the previous section. In the periodic system of N atoms,
one can find N3 possible four phonon processes for a typical state (the fourth phonon mode is fixed
by the quasi-momentum conservation law in Equation (9)). Consequently, the minimum energy
difference between two modes coupled by the fourth-order anharmonic interaction is given by
δE ∼ νp/N3 ∼ E/N4 (factor νp is added similarly to Section 3.1). The interaction matrix
element scales as M ∼ BE2/N3. Here, the factor 1/N comes from the definition of anharmonic
interactions in Equation (9) and the factor ν2

p ∼ (E/N)2 is determined by the population numbers
√

νp1 νp1 νp2 νp4 ∼ (kBT)2 while the thermal energy kBT for N classical oscillators is given by E/N [51].
Setting δE ∼ M to ensure the presence of resonant interactions we estimate the localization threshold as

Ec,res(N) ∼ 1
NB

. (12)

Similar dependence can be obtained for the atomic chains with fixed or free ends boundary
conditions where there is no quasi-momentum conservation. In those systems, one has N4 possible
four phonon transitions and 1/N2 (instead of 1/N, Equation (9)) scaling of anharmonic interaction
matrix element. Then, extra factors N−1 are canceled out on both sides of the criterion of resonance
leading to Equation (12).

It is noticeable that the estimated behavior of localization threshold in Equation (12) is qualitatively
consistent with the earlier estimates [39,40,52,53] obtained using the stability analysis of the classical
dynamics of a non-linear FPU chain in the form

Ec(N) ≈ 2π2

NB
. (13)

Since this equation agrees with numerical studies in Section 4 for free and fixed ends boundary
conditions, we used it for quantitative estimates.

In our qualitative analysis of resonant interactions, we considered only typical phonons with
energy close to unity, while the low frequency phonons were ignored. Based on the present
understanding of localization–chaos transition, it is hard to expect that they can suppress the chaotic
dynamics because the typical phonons form the ergodic spot normally capable to equilibrate the rest
of the system [48,54]. It is hard to expect that they can give additional support to the chaotic dynamics
since they are coupled weakly to the rest of the system compared to typical phonons.

On the other hand, one can imagine marginal states with the only low frequency phonons being
excited. These states can possibly show anomalously strong localization behavior as predicted for the
classical systems in Refs. [38,55]. There are other suggestions for classical systems [27–29,56] that the
crossover in Equation (13) does not describe the transition to a truly integrable (localized) behavior
but separates strongly ergodic and weakly ergodic regimes at high and low energies, respectively.
Since the numerical simulations in Section 4 show the pure localization transition, we did not see any
evidence for such behavior in a quantum regime. It cannot be excluded that at larger number of atoms
some additional channels for chaotic behavior can emerge.

The criterion in Equation (12) is valid until the system remains semiclassical, meaning that the
phonon population numbers exceed unity. This requires the thermal energy Ec(N)/N to exceed the
quantization energy, which is of order of unity. Thus, the classical regime takes place at sufficiently
small number of atoms
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N < Nc ≈
√

2π√
B

. (14)

The crossover energy Ec expresses the minimum threshold energy in the classical regime
of vibrations. At larger N, the system should be treated quantum mechanically as considered
in Section 3.2.2.

3.2.2. Quantum Mechanical Regime

We begin the consideration with the analysis of the problem in terms of resonant interactions.
Imagine that the system energy is spread between phonons of energy ε such that

√
E/N < ε ≤ 1.

In our case of small energy E < N, the thermal energy is given by kBT ≈
√

E/N and the lower limit
for the energy ε qualitatively represents the typical thermodynamic equilibrium.

For an arbitrary energy ε, the total number of phonons is given by nε ∼ E/ε. This number is
smaller than the number of quantum states with energy of order of ε that is given by Nε. The modeling
system is non-degenerate so typical populations of vibrational states do not exceed unity and one can
describe the emergence of chaos requiring a single resonant interaction per a many-body quantum
state (cf. [47,48]). The typical anharmonic interaction strength for periodic boundary conditions scales
as M ∼ Bε2/N. The energy difference to the adjacent state coupled to the given state and having
the same number of phonons can be estimated as ε/Nc where Nc is the number of anharmonically
coupled states with the same number of phonons. This number can be estimated considering the
number of possible anharmonic transitions including n2 possible double annihilations of phonons and
Nε creations (the fourth phonon is fixed by the quasi-momentum conservation law and we consider
only processes conserving the number of phonons). The resonant interactions exist under the condition
Bε2/N < ε/(n2εN). Then, the critical energy Ec = nε can be estimated as

Ec ∼
1√
B

. (15)

The generalization to the non-periodic boundary conditions can be done similarly to that in the
previous section.

This answer is universal and insensitive to the number of atoms. It predicts the saturation of
the dependence of critical energy on the number of atoms in the quantum regime. Based on the
numerical results in Section 4, we assume that the saturation takes place at Ec = N. Then, combining
Equation (13) with Equation (15), one can write the summary of the predicted behaviors as

Ec =


2π2

NB , N <
√

2π√
B

,
√

2π√
B

, N >
√

2π√
B

.
(16)

In Section 4, it is verified for the minimum division of energy E into phonons with energies of
order of 1. The more accurate numerical analysis of the problem is postponed for the future.

The consideration ignores correlations between phonon energies and momenta, that can take
place due to quasi-momentum conservation in a periodic system [44] or some trace of its conservation
in the system with fixed end boundary conditions. These processes are fully suppressed for free
ends boundary conditions where the above consideration is most applicable. It is less applicable
for the periodic system where these correlations can be significant. For very small system energies
comparable to the maximum quantization energy 1, the periodic system becomes integrable [44] so the
consideration fails. We still believe that our consideration is valid even for a periodic system where the
hot spot [54] can be formed by several excited phonons with nearly maximum energy. These phonons,
indeed, form chaotic state (see Section 4) and can equilibrate other parts of the system. The accurate
numerical verification should resolve the raised questions.
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3.3. α FPU Problem

Here, we consider the effect of the third-order anharmonic interaction on the state of the system.
Let us begin the consideration with the classical regime, E > N. For the small number of atoms,
the dimension based arguments lead to the estimate Ac ∼ 1/

√
E (Equation (11)). For a large number

of atoms N in the periodic system, one can find N2 possible three phonon processes so the minimum
energy shift can be estimated as δE ∼ νp/N2 ∼ E/N3. Remember that the third phonon state is fixed
by the quasi-momentum conservation law in Equation (9). The interaction matrix element scales as
M ∼ AE3/2/N2. Consequently, there are resonant interactions in the case of sufficiently large energy
E > E3res(N), where

E3res(N) ∼ 1
N2 A2 . (17)

This estimate is consistent with Ref. [53]; however, we do not think it describes the localization
breakdown correctly because of the lack of the diagonal interaction. In this case, resonant transitions
are independent of each other [47,48], which prevents the system from delocalization similar to the
XY model, where there is no diagonal interaction [57]. Following Ref. [57], one can consider the
induced resonant interaction in higher orders anharmonicity following the Schrieffer and Wolff
method [58]. In the first non-vanishing order, the fourth-order anharmonic interaction will be
generated. This generated interaction is similar to the one in the β FPU problem with the effective
interaction constant B∗ ∼ A2 if expressed in the momentum space. However, the induced diagonal
interaction is much less than the third-order resonant interaction because A � 1, thus it cannot
enhance delocalization due to three phonon transitions. Following Refs. [17,18], one can suggest the
weaker delocalization criterion of one resonance per each normal mode. This leads to the criterion
Ec3 ∼ 1/A2 that is insensitive to the number of atoms.

However, the more efficient delocalization should take place due to the induced fourth-order
interaction characterized by the interaction strength B∗ ∼ A2. In that case, one can expect the chaotic
behavior following the estimate of Equation (10) that reads

Ecα(N) ∼ 1
NA2 . (18)

Similar to Section 3.2.2, this criterion is valid in the classical regime realized at N < 1/A while in
the opposite regime this dependence saturates at

Ecα ∼
1√
A

. (19)

Following Ref. [28], one can expect that this prediction should be valid to the same extent as
Equation (10). Indeed, if one considers the combined α + β problem containing both third- and
fourth-order anharmonic interactions then the chaotic state formation is dramatically suppressed at
B = 4A2/9 because under these conditions the non-linear interaction would be identical to power
series expansion of the integrable Toda model [59]. Consequently, in this regime, one can expect
that the third-order anharmonic interaction characterized by the constant A should produce similar
delocalization effect to the fourth-order problem, characterized by the interaction constant B ∼ A2 in a
full accord with the estimate of Equation (18).

Following the recipes of Ref. [28], one can extend the above consideration to the general α + β

problem, which can be reduced to the β FPU problem with the interaction constant B∗ defined as

B∗ = B− 4A2

9
. (20)
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Consequently, one can predict the localization threshold energy for the α + β problem in the form
of generalized Equation (16)

Ec =


2π2

N
(

B− 4A2
9

) , N <
√

2π√
B− 4A2

9

,
√

2π√
B− 4A2

9

, N >
√

2π√
B− 4A2

9

.
(21)

This result is not applicable if the denominator in Equation (21) is very close to zero. In the case
of nearly zero denominator, the problem can be effectively described by the sixth-order anharmonic
interaction with the interaction constant C = B2 [28]. In this regime, the similar analysis of resonant
interactions can be applied leading to the threshold energy behaviors Ec ∼ 1/(B

√
N) in the classical

regime and Ec ∼ 1/B2/3 in the quantum regime, where N > B−2/3.
Equation (21) is the main result of the present work. In the next section, some numerical

justification is given based on the diagonalization of Hamiltonians in Equation (1) within the reduced
basis of many-body states.

4. Numerical Analysis of the Transition Localization—Chaos

The numerical analysis is limited to the β FPU problem to avoid overcomplexity. Below,
the numerical studies attempting to justify the analytical predictions of Section 3 are reported.
In Section 4.1, we define the numerical criterion of the chaotic behavior. Since the basis of many-body
states is infinitely large, one should restrict the phase space. In Section 4.2, we introduce the method of
basis restriction considering the states with the fixed number of phonons. In Section 4.3, we investigate
the dependence of the localization threshold on the system energy (number of phonons) and number
of atoms.

4.1. Level Statistics

The chaotic and integrable (or localized) phase of quantum systems can be identified using the
statistics of energy levels. It is expected that in the chaotic phase all states substantially overlap
with each other which leads to their energy level repulsion and, consequently, Wigner–Dyson
level statistics [60,61] suggesting zero probability density for nearest eigenstates energy difference
approaching zero. In the localized phase the overlaps of a majority of states are negligible so
their energies are independent, which results in the Poisson statistics for energy level differences.
In numerical studies exploiting exact diagonalization of the system Hamiltonian, the energy level
statistics can be probed directly and used to identify the state of the system.

Other methods including the analysis of correlation functions [46,62], entanglement entropy [63]
or local integrals of motion [42] can also be used to study the delocalization with respect to the specific
basis. However, the results depend on the choice of the basis. For instance, the basis of single particle
states can be defined in the coordinate or momentum representations and localization in the coordinate
space suggests delocalization in the momentum space and vice versa. Eigenstates of the FPU problem
at very low energies [44] are delocalized in the basis of product states composed by independent
phonon states, while the problem remains integrable [43]. The level statistics based definition is basis
independent and therefore it seems to be the most objective criterion to distinguish localized and
chaotic phases.

The level statistics have been characterized using the averaged ratio of successive gaps, < r >,
defined as [61]

< r >=

〈
min(δn, δn+1)

max(δn, δn+1)

〉
, (22)

where δn = En+1 − En is the energy difference of adjacent energy levels of the system, Equation (1),
obtained by means of exact diagonalization of the Hamiltonian. According to Ref. [61], in the chaotic



Entropy 2019, 21, 51 10 of 21

regime characterized by Wigner–Dyson statistics, one has < r >≈ 0.5307 for the Gaussian Orthogonal
Ensemble of interacting states, while in the case of localization where the Poisson statistics is expected
one has < r >≈ 0.3863.

If a system has integrals of motion, which takes place for our system of interest (see Section 2)
the states with different values of the related integrals do not repel each other that would lead to the
inevitable deviation from the Wigner–Dyson statistics even in the delocalized regime. To avoid this
problem, the states should be split into subgroups with a certain value of all integrals of motion [64].
For the periodic system and even number of atoms N, one can introduce N + 2 such subgroups
characterized by the quasi-momentum including N − 2 subgroups with quasi-momenta different
from 0 or N/2 (Q = −N/2 + 1, ...,−1, 1, ..., N/2− 1) and four subgroups with Q = 0, N/2 either
symmetric or anti-symmetric with respect to the reflection transformation. For an odd N, one has
N + 1 subgroups including N − 1 subgroups with quasi-momenta (Q = −(N − 1)/2,−(N − 1)/2 +
1, ...,−1, 1, ..., (N − 1)/2) and two subgroups with Q = 0 either symmetric or anti-symmetric with
respect to the reflection transformation. For other boundary conditions, one has only two subgroups
either symmetric or anti-symmetric with respect to the center of the chain. Since the results for
symmetric and anti-symmetric states are quite similar, the level statistics reported below are related to
the symmetric states.

In contrast to spin or particle systems [46,61], we cannot directly apply exact diagonalization
method to Hamiltonians in Equation (1) because they have infinite basis of states since the vibration
population numbers can take infinite number of values. Therefore, the basis states should be restricted
to the finite number of states as described in the following section.

4.2. Basic Approximation

For any boundary conditions and specific subgroup of states, the Hamiltonian in Equation (1)
cannot be exactly diagonalized since the total number of possible basis states is infinite. To avoid
this complexity, the off-diagonal anharmonic interaction is restricted to the terms conserving the total
number of excited quanta, nt, similar to Ref. [34]. This means that only terms having two b̂† and
two b̂ operators are taken into consideration. Similar terms are left for other boundary conditions.
This approximation should be valid at least qualitatively if the annahrmonic interaction is weak.
Consequently, the anharmonic interaction energy Bn2

t /N should be less than the harmonic interaction
energy nt that yields

Bnt < 1. (23)

The modified Hamiltonian has a finite basis set for each specific number of atoms N and number
of phonons nt so it can be studied using the full diagonalization of the problem. The representative
level statistics for the chain of N atoms with free ends boundary conditions, total number of phonons
nt = 14 and the strength of anharmonic interaction B = 0.2 is shown in Figure 2. In contrast to
the problems of particles or spins placed in a random potential [61] where the ratio parameter r can
be averaged over many disorder realizations, here we have the only one realization of the system.
In this realization the ratio r itself represents quasi-random number ranging between 0 and 1 in a
chaotic manner as shown by the dashed dark blue line in Figure 2. However, averaging the data over
972 adjacent states (5% of the total number of states) leads to the smooth curve clearly approaching
chaotic limit of 0.53 near the middle of the spectrum (similar value < r > ∼ 0.53 at the upper edge
of the spectrum E ≈ 30 is probably a random coincidence, since it differs for other parameters N,
nt and B at spectrum edges). The average ratio < r > for the given set of parameters N, nt, B has been
determined taking the arithmetic average of this minimum ratio over the middle half of the system
eigenstates, as shown in Figure 2. This procedure describes how the data were collected to analyze
the transition between the localized and chaotic regimes as a function of the number of atoms and
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phonons and the strength of anharmonic interactions. In other calculations, the same averaging of the
ratio parameter r was performed.

Figure 2. Level statistics represented by the minimum ratio r (Equation (22)) including r as it is and
average ratio < r > over 972 adjacent eigenstates that clearly tends to the chaotic behavior < r >≈ 0.53
at the maximum density of states. The average level statistics < r > = 0.5087 for the chain containing
8 atoms, states with the number of phonons nt = 14 and anharmonicity strength B = 0.2 averaged for
mean 1/2 of eigenstates located between two vertical lines.

The typical harmonic energy can be estimated for the given number nt of phonons using their
sinusoidal dispersion law, Equation (7), as Eh = 2nt < |sin(x)| >= 4nt/π. In the case of Figure 2,
this energy can be estimated as 17.83. This energy is smaller than the typical average energy by around
10% because of the anharmonic correction to the energy, which is still small.

The chosen representative states having maximum density at fixed number of phonons do
not perfectly represent the true thermodynamic states of the system at the given energy. In the
classical regime E > N (see Equation (14)), the thermodynamic average number of phonons scales
as E ln(N) due to the contribution of low frequency phonons. We believe that this difference is not
crucial since the logarithmic factor is related to low frequency phonons, which have substantially
reduced anharmonic interaction strength and therefore can be ignored in the consideration of resonant
interactions as discussed in Section 3. The other reason is that the investigated states coexists with
the “thermodynamic” states at the same energy. If the states under consideration are chaotic, the other
states at the same energy should be usually chaotic as well [54].

In the quantum regime, E < N, the representation of the typical configuration by E phonons with
typical energy of order of unity is much less relevant than for the classical regime since the typical
phonon energy is given by the thermal energy

√
E/N that is much less than 1. However, since the

delocalization criterion, Equation (15), is universal and does not depend on the number of phonons we
also believe that the theory should be applicable to the whole system at least quantitatively.

Thus, the numerical results reported below are preliminary and need improvement that is
postponed for the future.

The validity of the approach has been checked for the classical regime extending the basis to all
states with the number of phonons less or equal to nt. The results for this extension are consistent
with those for the phonon number just equal to nt. However, the calculations are much faster in
the latter case and they permit us to obtain more conclusive results. The approach that seems to be
more “natural” restricting the basis to the states with energies less than a certain maximum energy
Emax works much worse and requires Emax ∼ 2E to give a reasonable estimate for the level statistics
at energy E, which substantially limits our abilities to obtain conclusive results. This could be the
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consequence of broken connections due to the exclusion of significant states naturally present in the
theory conserving the number of phonons.

4.3. Dependence of Localization Transition on the Boundary Conditions and the Numbers of Phonons and Atoms

Since our results below for the level statistics (< r >, see Equation (22)) are expressed as a
function of anharmonic interaction strength B (remember that only β FPU problem is considered
numerically), it is convenient to re-express the criterion in Equation (13) in terms of the critical strength
Bc dependence on the number of atoms N and phonons nt. Using Equation (14) for the classical and
quantum regimes, we get.

Bc =


π3

2Nnt
, N < nt,

π3

2n2
t
, N > nt.

(24)

4.3.1. Effect of Boundary Conditions

To examine the effect of boundary conditions, we consider some representative data obtained
for the level statistics parameter < r > vs. the strength of anharmonic interaction B following the
technique described in Section 4.2 (see Figure 2) for the chain of N = 10 atoms with all possible
boundary conditions and for quasi-momenta Q = 0, 1 and 2 in the case of periodic conditions.
These dependencies are shown in Figure 3.

0 0.2 0.4 0.6 0.8 1

B

0.4

0.45

0.5

0.55

<
r>

 Free Ends

 Fixed Ends

 Periodic, Q=0

 Periodic, Q=1

 Periodic, Q=2

 Localization

 Chaos

N=10, n
t
=10

Figure 3. Level statistics represented by the average minimum ratio < r > for different boundary
conditions and quasi-momenta. The transition point, Bc ≈ 0.15 predicted by Equation (24) is shown by
the solid vertical line, while the dashed vertical line shows the transition point estimate for the periodic
regime, Bc ≈ 0.28.

According to Figure 3, it is clear that at large anharmonicity B > 0.4 the system is chaotic, while it
is integrable at small anharmonicity B < 0.15. The Poisson statistics limit < r > ≈ 0.38 is not reached
even at small B < 0.4 possibly because the system under consideration is not random in contrast to
electronic systems [60] and some correlations between energies are significant in integrable states.

For N = 10 and nc = 10 the criterion of Equation (24) predicts Bc ≈ 0.15. This number is in
an excellent agreement with the numerical results for free ends or fixed ends boundary conditions
as indicated by the vertical line in Figure 3. Assuming that Bc ≈ 0.15 characterizes the transition
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in the case of fixed or free ends boundary conditions, one can estimate the threshold anharmonicity
in the periodic system using similar criterion (see dashed vertical line in Figure 3) as Bc,per ∼ 0.28.
This estimates the approximate difference between two critical anharmonicities as Bc,per/Bc ≈ 1.87
and we use this ratio for quantitative estimates of transition parameters below. Probably, theoretical
analysis of Refs. [39,52] is less applicable to the periodic system because of additional integrals of
motion there. The emergence of chaotic phase in periodic system at larger anharmonicity compared to
other boundary conditions can be the consequence of the smaller effective phase space in the former
case due to additional integrals of motion lacking in the latter case. On the other hand, the results
for periodic conditions are almost insensitive to the quasi-momentum, and the results for fixed and
free ends boundary conditions are also quite similar to each other. Therefore, in our predictions for
localization threshold, we do not distinguish between the free and fixed end boundary conditions as
well as between different quasi-momenta for periodic boundary conditions.

However, it is necessary to distinguish between periodic boundary conditions and others.
We suggest the simplest form of difference redefining Equation (24) reasonably valid for fixed and free
ends regimes by multiplying its left hand side by the factor 0.28/0.15 in agreement with the numerical
results in Figure 3. Then, for the periodic system, Equation (24) should be modified as

Bc,per =


0.93π3

Nnt
, N < nt,

0.93π3

2n2
t

, N > nt.
(25)

Consequently, one should modify the critical energy behavior predicted by Equation (21) as

Ec,per =


1.07π2

N
(

B− 4A2
9

) , N < 1.035π√
B− 4A2

9

,

1.035π√
B− 4A2

9

, N > 1.035π√
B− 4A2

9

.
(26)

4.3.2. Dependence of Localization Threshold on Numbers of Atoms and Phonons

Consider the dependence of the threshold anharmonicity on the energy expressed through the
number of phonons. Most of the data are presented for periodic chains because the large number of
integrals of motion there reduces the total number of states permitting us to investigate larger numbers
of atoms and phonons compared to other boundary conditions.

For a demonstration of the method, we consider periodic chain for N = 10 atoms with possible
numbers of phonons nt = 9, 10, 11 and 12. The subgroup of symmetric states with quasi-momentum
Q = 0 is considered.

The choice of possible parameters nt is limited because of the poor data averaging for small size
of phase space less than 5000 states and exponential increase of the number of states with increasing nt.
Indeed, for nt = 9 the basis contains 4420 states that is insufficient for good averaging of level statistics,
as shown in Figure 4a, while for nt = 12 the basis contains 26,720 states that is close to the maximum
matrix size where exact diagonalization can still be performed using standard MATLAB algorithms.

To determine the algebraic dependence of localization threshold on the number of phonons, we use
the data rescaling procedure similarly to the earlier work in spin systems [46,57,64]. This procedure
attempts to attain the maximum match between different data rescaling the x axis. As shown in
Figure 4b, the reasonable match can be attained rescaling the data for different nt with respect to those
for maximum N = 12 by the nt-dependent parameter η shown in Figure 4b. The scaling of parameter
η(nt) is related to that of a critical anharmonicity Bc(nt) as

Bc(nt) = Bc(nt,max)η(nt). (27)
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In our case, nt,max = 12. Consequently, we end up with the dependence of the critical
anharmonicity Bc on the number of phonons, nt, as shown in Figure 5.
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Figure 4. Level statistics dependence on the anharmonic interaction for periodic chain of N atoms and
different total number of phonons as it is (a) or rescaled to attain the optimum match between the
data (b).
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Figure 5. Scaling of critical anharmonicity with the number of phonons (circles) as compared with the
theory predictions in classical and quantum regimes, Equation (24), for N = 10 atoms.

The observed dependence is in between two predictions of Equation (24) that is not surprising
because the calculations are made for nt ∼ N = 10 near the crossover between classical and quantum
regimes. This justifies our definition of that crossover in Equations (21) and (26). Similar behavior
takes place for the same number of atoms and quasi-momentum Q = 1, as shown in Figure 6.
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Consider limiting quantum (nt < N) and classical (nt > N) regimes. Representative results for
quantum regime are shown in Figure 7 in the case of N = 13 atoms and a number of phonons, nt,
ranging from 6 to 10. The observations clearly agree with Equation (24) for nt < N.
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Figure 6. (a) Match of level statistics at different numbers of phonons for the intermediate number of atoms
N = 10. (b) Scaling of critical anharmonicity with the number of phonons (circles) for N = 10 atoms.
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Figure 7. (a) Match of level statistics at different numbers of phonons for the large number of atoms
N = 13. (b) Scaling of critical anharmonicity with the number of phonons (circles) for N = 13 atoms.
(Periodic boundary conditions, Q = 1).

The opposite, classical limit, nt > N, is represented by the periodic chain of N = 6 atoms
considered for the number of phonons, nt, ranging from 18 to 36. The obtained dependence shown in
Figure 8 is very close to the inverse proportionality, Equation (24), valid in this limit. The growing
deviation at small nt is probably caused by quantum effects, significant for nt ∼ N.

Similarly, one can consider the dependence of the threshold anharmonicity, Bc, on the number of
atoms N at fixed number of phonons nt. This dependence is expected to be an inverse proportionality
in the classical regime of a large number of phonons, nt > N, while no dependence is expected in the
opposite, quantum limit of a small number, see Equation (24). These expectations are consistent with
the results given in Figure 9 in the quantum (nt = 6, Figure 9a) and classical (nt = 12, Figure 9b) limits.

The results for other boundary conditions are also consistent with theoretical predictions,
as illustrated in Figure 10, both in classical (N = 6) and quantum (N = 11) regimes.

Thus, the numerical investigation of localization–chaos transition supports the theory predictions,
Equations (21) and (26). A nearly perfect match of rescaled dependencies of average ratio < r >

on anharmonic interactions (see Figures 6a–8a) for different numbers of atoms or phonons suggests
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that the width of the transition is proportional to the transition energy. However, this conclusion
is very preliminary because of the relatively narrow domain of numerical studies and it needs
further verification.

0 0.2 0.4 0.6 0.8 1

B/ (n
t
)

0.4

0.45

0.5

0.55

<
r>

 n
t
=15, =3.0587

 n
t
=16, =3.0525

 n
t
=17, =2.5682

 n
t
=18, =2.4256

 n
t
=19, =2.2979

 n
t
=20, =2.072

 n
t
=21, =2.0086

 n
t
=22, =1.8332

 n
t
=23, =1.8178

 n
t
=24, =1.7883

 n
t
=25, =1.5984

 n
t
=26, =1.6579

 n
t
=27, =1.4869

 n
t
=28, =1.447

 n
t
=29, =1.3971

 n
t
=30, =1.3197

 n
t
=31, =1.2532

 n
t
=32, =1.2488

 n
t
=33, =1.1997

 n
t
=34, =1.1535

 n
t
=35, =1.11

 n
t
=36, =1.0689

 n
t
=37, =1

Localization

Chaos

N=6, Q=0

(a)

15 20 25 30 35

n
t

1

2

3

4

5

6

B
c
/B

c
(n

t,
m

a
x
)

 scaling

 1/n
t

 1/n
t

2

Periodic, N=6, Q=0

(b)

Figure 8. (a) Match of level statistics at different numbers of phonons for the small number of atoms
N = 6. (b) Scaling of critical anharmonicity with the number of phonons (circles) for N = 6 atoms
(periodic boundary conditions, Q = 0).
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Figure 9. Scaling of critical anharmonicity with the number of atoms (circles) as compared with theory
predictions in classical and quantum, Equation (24), regimes for: nt = 6 (a); and nt = 12 (b) phonons.
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Figure 10. Scaling of critical anharmonicity with the number of phonons (circles) as compared with
theory predictions in classical, Equation (24), and quantum, Equation (10) regimes for N = 6 (a) and
N = 11 (b) atoms in the chain with fixed ends.
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5. Discussion

Here, we reformulate the results in terms of standard notations in Table 1, and attempt to apply
them to organic molecules. We predicted the threshold energies for emergence of chaotic dynamics for
combined α + β FPU problem as a function of anharmonic interaction strengths and system sizes as
given by Equations (21) and (16).

For practical application of these results, it is convenient to re-express them in terms of the
dimensional force constant k, atomic mass M and Planck constant h̄. This requires changing the
anharmonic interaction constants as B→ B/k2 and A→ A2/k3 in classical estimates and modifying
the critical energy as N → Nh̄

√
k/M. The results are presented in Table 1 in the standard notations.

Table 1. Summary of the results for localization threshold in classical and quantum regimes and
definitions of those regimes in reduced and standard notations.

Model and Regime α + β, Classical α + β, Quantum

Ec, periodic 3.73π2k2

N
(

B− 4A2
9k

) 1.93πh̄1/2k5/4√
B− 4A2

9k M1/4

Parametric domain N < 1.93πk3/4 M1/4

h̄1/2
√

B− 4A2
9k

N > 1.93πk3/4 M1/4

h̄1/2
√

B− 4A2
9k

> 1

Ec, free or fixed ends 2π2k2

N
(

B− 4A2
9k

) 1.41πh̄1/2k5/4√
B− 4A2

9k M1/4

Parametric domain N < 1.41πk3/4 M1/4

h̄1/2
√

B− 4A2
9k

N > 1.41πk3/4 M1/4

h̄1/2
√

B− 4A2
9k

> 1

One can attempt to apply these results to organic molecules using parameters for C–C bond
extracted from the Morse potential [41] that can be defined in terms of bond dissociation energy
Ed = 5.78× 10−19 J and inverse interaction radius α = 3.45× 1010 m−1 as

k = 2Edα2, A = −6Edα3, B = 14Edα4. (28)

Consequently, the expressions for the threshold energy in classical and quantum regimes
for either free or fixed ends boundary conditions can be written as Ec,cl = 4π2Ed/(3N) and

Ec,q = 2π
√

3
√

Ed h̄
√

k/M, where M is the atomic mass. The transition between two regimes takes

place at the number of atoms Nc ≈ 2π
√

3
√

Ed/(h̄
√

k/M). The chaos can take place in the stable
molecular state at energy less than the dissociation energy that is true only for sufficiently long
molecules containing N ≥ 14 atoms. This is the result for atomic interactions determined by the
Morse potential.

Considering the specific parameters for C–C bond, one can estimate the minimum crossover
energy to the chaotic state as Ec,q ≈ 0.7Ed and transition to the quantum regime is expected at
N > Nc ≈ 20 atoms.

It is interesting to find how long the chain of carbons should be to attain the chaotic state at
room temperature. Since in the Morse potential model room temperature is much smaller than the
characteristic quantization energy h̄

√
k/M ∼ 1300 cm−1, we should use the quantum expression for

the energy E ≈ Nπ2(kBT)2/(h̄
√

k/M). Setting E ∼ Ec,q and kBT ∼ 4× 10−21 J at room temperature,
we get the estimate

NC =
4.2Ed h̄

√
k/M

π2(kBT)2 = 425. (29)

This number is very large.
The energy of molecules studied in the experiments [11] is of order of 3000 cm−1, which is much

lower than the minimum energy Ec,q needed to reach the chaotic state; however, some of them show a
fast internal relaxation. Therefore, a Morse potential based model of the FPU atomic chain seems to be
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not quite relevant there. Perhaps this is because real molecules (e.g., alkane chains) are not perfectly
linear but have a zigzag shape, making them much softer. In addition, transverse and optical modes
have been ignored, while their effect can be significant [12,65]. Accurate studies of molecules thus
require more accurate definitions of their parameters.

6. Materials and Methods

Analytical estimates use the analysis of resonant interactions. These methods can be qualitatively
justified by the similarity of the problem to the exactly solvable localization problem on the Bethe
lattice [12,47,48]. We ignore logarithmic factors appearing in these considerations being concentrated
on the power law dependencies.

The numerical study exploits the exact diagonalization of Hamiltonian matrices using the standard
MatLab software facilities [66].

7. Conclusions

Here, we briefly summarize the results of the present work. The semi-quantitative theory is
developed to determine the critical energy separating localized (integrable) and chaotic behaviors in
the quantum FPU chain of atoms with different boundary conditions. The criterion of delocalization
has been suggested considering resonant interactions for combined α + β FPU problem. It is predicted
that the critical energy decreases with the number of atoms inversely proportionally to this number
until the effective thermal energy exceeds the normal mode quantization energy in agreement with
previous analysis of the classical β FPU problem (see Equations (21) and (26) and Table 1). At larger
numbers of atoms, the critical energy does not depend on this number.

The qualitative behavior predicted by Equation (21) is obtained using resonant language similarly
to in Ref. [47], where the matching Bethe lattice problem has been used to justify the results.
Similar to Bethe lattice problem, one can expect the appearance of the additional logarithmic factor
in Equation (21). However, in our specific case, it is of order of 1 since the argument of logarith is
determined by the ratio of diagonal and off-diagonal interactions [47], which have same order of
magnitude in the problem under consideration. The quantitative expression in Equation (21) gives a
reasonable estimate by order of magnitude but does not pretend to be the accurate expression.

The attempt of numerical verification of the results has been made in the oversimplified model
with conserving number of phonons. This model shows that the chaos emerges at smaller energies for
free and fixed ends boundary conditions compared to the system with periodic boundary conditions
because of the smaller phase space in the latter case. The behaviors obtained are consistent with theory
predictions but more realistic models need to be studied for accurate theory verification.

The application of the theory to atomic chains of carbon atoms described by the Morse potential
predicts the occurrence of chaotic behavior for very long chains and high system energy that does not
agree with experimental observations. Most probably this is because the model describes perfectly
linear chains, while realistic (e.g., alkane) chains have more complicated structure and should be
modeled with modified parameters.
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Abbreviations

The following abbreviation is used in this manuscript:

FPU Fermi–Pasta–Ulam
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