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Abstract: The Araki–Lieb inequality is commonly used to calculate the entropy of subsystems when
they are initially in pure states, as this forces the entropy of the two subsystems to be equal after the
complete system evolves. Then, it is easy to calculate the entropy of a large subsystem by finding
the entropy of the small one. To the best of our knowledge, there does not exist a way of calculating
the entropy when one of the subsystems is initially in a mixed state. For the case of a two-level
atom interacting with a quantized field, we show that it is possible to use the Araki–Lieb inequality
and find the von Neumann entropy for the large (infinite) system. We show this in the two-level
atom-field interaction.
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1. Introduction

It is well known that the atomic inversion for a two-level atom interacting with a quantized
field suffers collapses and revivals of Rabi oscillations [1–3]. The revivals may be considered as an
indicator of the nature of the photon distribution of the initial field inside the cavity, because the atomic
inversion depends on it:

W(t) =
∞

∑
n=0

Pn cos(2λt
√

n + 1), (1)

where λ is the atom-field interaction constant and Pn is the photon distribution.
For instance, in the case that a squeezed field is considered, the atomic inversion shows so-called

ringing revivals that give us information that such a non-classical field was used as an initial field
state [4,5]. However, different initial fields may produce the same atomic inversions, namely a coherent
state (|α〉) and a statistical mixture of coherent states ( 1

2 [|α〉〈α|+ | − α〉〈−α]), which produce the same
atomic inversion as both have the same photon distribution:

Pn = e−|α|
2 |α|2n

n!
, (2)

with α the amplitude of the coherent state.
Both states that have the same distribution (2) are completely different, as the coherent state is a

pure state, while the statistical mixture is a mixed state. On the other hand, decoherence plays a strong
role in the purity of the states of quantum systems [6]. For instance, it is well known that a superposition
of coherent states (|ψ〉 ∝ |α〉+ | − α〉), a so-called Schrödinger cat state, reduces to a statistical mixture of
coherent states when subjected to dissipation [7–10]. The way that coupling parameters are effectively
affected by an environment has been already studied on qubit–field interactions [11]. This is an
indication that, in order to have better knowledge of a given field, information is also needed about its
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degree of purity. One of the most important quantities to measure the degree of purity of a state is
von Neumann entropy [12], which, together with the atomic inversion, may give information about
the initial states used in a given experiment [13,14]. For instance, if the entropy of a quantized field
initially in a squeezed state, after some interaction time, is close to zero and the atomic inversion is in
the collapse region, it is known that a superposition of squeezed states is a good approximation to the
state generated [5].

In summary, the atomic inversion can give us some information about the initial state of the field
and, together with entropy, can tell us if the initial field was in a pure state or in a mixed state [15,16].

Because we are studying the interaction of two subsystems, namely atom and field (although it
may be generalized to other systems, for instance ion–laser interaction [13]), a quantity of interest is
the so-called Araki–Lieb inequality [17]:

|SA − SB| ≤ SAB ≤ SA + SB (3)

where SAB is the von Neumann entropy of the total system and SA and SB are the entropies of the
subsystems A and B, respectively. This inequality is of great help when one needs to calculate the
entropy of a subsystem if the two subsystems are initially in pure states, because the total wavefunction
being also in a pure state, it is maintained pure through unitary evolution. In other words, the fact that
SAB = 0 results in both entropies being equal, SA = SB, allows us to calculate the entropy of one of the
subsystems from the other subsystem entropy. In the case of the (two-level) atom-field interaction,
because the atom lives in a two-dimensional Hilbert space, its entropy is easy to calculate, while the
entropy for the field (living in an infinite Hilbert space) is complicated [15]. However, the Araki–Lieb
inequality tells us that both are the same, provided the initial states for the atom and field were initially
in pure states.

A question arises: Is it possible to calculate the entropy of the field when it is initially in a mixed
state, namely a mixture of coherent states? Recently, we tried to give an answer to this question,
but were only able to deliver a positive answer for certain periods of time, but not for the complete
evolution [18]. This is because in such a case, the above triangle inequality seems to be useless,
and there is not a general answer.

Phoenix and Knight showed how the field entropy for an initial coherent state can be calculated
analytically for initial pure states for the atom and the field without making use of the Araki–Lieb
inequality. They were able to find eigenstates and eigenvalues of the field density matrix and, from it,
to construct the entropy. Phoenix later applied the same method to compute the entropy for a field subject
to decay. Calculations of this type are already complicated for pure initial states (for both subsystems).

In this contribution, we show a possible answer to the problem of finding the field entropy even
though any of the subsystems is in a mixed state. In this case, SAB 6= 0, and therefore, we cannot say
much about the subsystems’ entropies. However, we will introduce the idea of a virtual four-level atom
that will allow as to use the Araki–Lieb inequality. The solution we provide may be easily generalized
to more complicated interactions (atoms with more levels) or more complicated mixtures of atomic or
field states.

We will start by introducing our method, which consists of the fact that, once we trace over the
atomic basis in order to obtain a field density matrix, we use the concept of virtual (many-level) atoms,
which will be key for our calculation. We finally analyze, as an example, the atom-field interaction in
some detail when different initial mixed states are considered, i.e., specifically, when the Araki–Lieb
inequality cannot be used to obtain the entropy of the large system (field) in terms of the small
one (atom).

2. Schmidt Decomposition

The Schmidt decomposition [19] is a useful mathematical tool that plays an important role in one
of the key features of quantum mechanics, namely the description of entanglement.
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Let us consider a wave function |ψ〉 of an entangled state that describes the interaction between
an n-level system (an atom, for simplicity) and an infinite-level system (a quantized field):

|ψ〉 =
n

∑
k=1
|ψk〉|ak〉, (4)

where {|ψk〉}F and {|ak〉}A are a set of (unnormalized) field and atomic states, respectively,
which satisfy, in general, the following conditions:

〈ψi|ψj〉 6= 0 , 〈ai|aj〉 = δij , ∀ i, j ∈ {1, 2, ...., n}. (5)

We should stress that the above state is not written as a Schmidt decomposition because the states
|ψj〉 are neither orthogonal, nor normalized.

Schmidt decomposition [19] states that there exist a couple of orthonormal bases {|Ψk〉}F and
{|Ak〉}A and real, non-negative numbers, λk, such that:

|ψ〉 =
n

∑
k=1

√
λk|Ψk〉|Ak〉. (6)

The fact may be noted that a density matrix from the state (6) may be handled easily because it
is formed by normalized states, and therefore, functions of it may be calculated in a straightforward
manner, while the form written in Equation (4) is not easy to handle. This fact will become clearer in
the next section.

Moreover, the following quantity:

n

∑
k=1
|ψk〉〈ψk| =

n

∑
k=1

λk|Ψk〉〈Ψk| (7)

is an invariant for such an entangled state.

3. Entropy Associated with an n-Level System: Mixed States

Consider ρ̂M a density operator for a mixed state, defined by:

ρ̂M =
n

∑
k=1
|ψk〉〈ψk|, (8)

with:
n

∑
k=1
〈ψk|ψk〉 = 1. (9)

Because of the invariant Equation (7), it may be rewritten as:

ρ̂M =
n

∑
k=1

λk|Ψk〉〈Ψk|, (10)

and, as the wavefunctions {|Ψk〉}F are orthonormal, the von Neumann entropy (defined as
S = −Tr{ρ̂ ln ρ̂}) may be easily found:

SM = −
n

∑
k=1

λk ln λk. (11)

In what follows, we will show that the entropy to the mixed state (field), Equation (10), is equal
to the entropy associated with a virtual atom and will verify that this fact is consistent with the
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Araki–Lieb inequality [17]. In order to achieve this, we consider the density operator for the composed
virtual-atom-field pure state, Equation (6),

ρ̂ =
n

∑
j=1

n

∑
k=1

√
λjλk|Ψj〉|Aj〉〈Ak|〈Ψk|, (12)

which, by tracing over the field states, produces the atomic density operator:

ρ̂A =
n

∑
k=1

λk|Ak〉〈Ak|, (13)

from which we can easily obtain the (virtual) atomic entropy:

SA = −
n

∑
k=1

λk ln λk. (14)

In addition, if we trace the total density matrix, Equation (12), over the atomic states, we find that
the field entropy may be written as:

SF = −
n

∑
k=1

λk ln λk, (15)

i.e., both entropies are equal, SF = SA, and they are also equal to the entropy associated with the
mixed state (10). Therefore, in order to find the entropy for a mixed state (8), one may construct an
associated virtual atom, then calculate its entropy, and, by virtue of the Araki–Lieb inequality, associate
such atomic entropy with the field mixed state. It is possible to use the Araki–Lieb inequality because
the density matrix (12) is precisely a density matrix for a pure state, making the total entropy of the
composed system equal to zero. Moreover, although both entropies, for the field and virtual atom,
are not zero at time t = 0, they have the same value, not violating the Araki–Lieb inequality.

It is also important to stress here that the maximum value of SM is ln n, because the virtual atom
will be maximally entangled when all the probability amplitudes,

√
λk, for k = 1, 2, ..., n, reach the

same value, that is λk = 1/n.

4. Interaction between a Two-Level and a Quantized Field

In order to apply our findings, we use as an example the well-known Jaynes–Cummings
model [20], whose interaction Hamiltonian reads:

ĤI = λ
(

â†σ− + âσ+
)

, (16)

which describes the interaction between a two-level atom and a quantized field in the rotating
wave approximation. The interaction constant, λ, defines the rate at which the atom and the field
exchange energy. The operators â and â† are the field annihilation and creation operators, respectively,
while σ− and σ+ are the atomic lowering and raising Pauli operators. It is not difficult to obtain the
evolution operator for the Hamiltonian above, which reads [1]:

ÛI =

 cos
(

λt
√

ââ†
)

−i V̂ sin
(

λt
√

â† â
)

−i V̂† sin
(

λt
√

ââ†
)

cos
(

λt
√

â† â
)

 , (17)

with V̂ and V̂† the London phase operators.
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4.1. Initial Field in a Mixed State and Atom in an Excited State

First, we consider the case of the field initially in a mixture of two coherent states and the atom
in its excited state, i.e., ρ̂(0) = (C|α〉〈α|+ (1−C)|β〉〈β|) |e〉〈e|, for which the evolved density matrix
reads:

ρ̂ =

(
|ψ1〉〈ψ1|+ |ψ2〉〈ψ2| |ψ1〉〈ψ3|+ |ψ2〉〈ψ4|

|ψ3〉〈ψ1|+ |ψ4〉〈ψ2| |ψ3〉〈ψ3|+ |ψ4〉〈ψ4|

)
, (18)

with:

|ψ1〉 =
√

C cos
(

λt
√

n̂ + 1
)
|α〉,

|ψ2〉 =
√

1−C cos
(

λt
√

n̂ + 1
)
|β〉, (19)

|ψ3〉 = −i
√

CV̂† sin
(

λt
√

n̂ + 1
)
|α〉,

|ψ4〉 = −i
√

1−CV̂† sin
(

λt
√

n̂ + 1
)
|β〉.

We find the reduced atomic and field density operators by tracing over the field:

ρ̂A =

(
〈ψ1|ψ1〉+ 〈ψ2|ψ2〉 〈ψ1|ψ3〉∗ + 〈ψ2|ψ4〉∗

〈ψ1|ψ3〉+ 〈ψ2|ψ4〉 〈ψ3|ψ3〉+ 〈ψ4|ψ4〉

)
, (20)

and the atomic basis:
ρ̂F = |ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ |ψ3〉〈ψ3|+ |ψ4〉〈ψ4|, (21)

respectively.
Note now that Equation (21) is precisely the invariant defined in Equation (7), but for

a virtual four-level atom.
Because of Equation (19), the matrix elements of the density operator associated with the virtual

four-level system are given by Pij = 〈ψi|ψj〉.
Therefore, the entropy, SF, and the purity parameter, ξF = 1− Tr{ρ̂2

F}, may be easily calculated as:

SF = −λ1 ln λ1 − λ2 ln λ2 − λ3 ln λ3 − λ4 ln λ4 (22)

and:

ξF = 1− |P11|2 − |P22|2 − |P33|2 − |P44|2 − 2|P12|2

−2|P13|2 − 2|P14|2 − 2|P23|2 − 2|P24|2 − 2|P34|2, (23)

where the λj’s are the solutions of the determinant equation:

det


P11 − λ P∗12 P∗13 P∗14

P12 P22 − λ P∗23 P∗24
P13 P23 P33 − λ P∗34
P14 P24 P34 P44 − λ

 = 0. (24)

Of course, the entropy for the real two-level atom is simply described by:

SA = −λ+ ln λ+ − λ− ln λ− (25)

with:
λ± =

1
2
± 1

2

√
(P11 + P22 − P33 − P44)2 + 4|P13 + P24|2. (26)
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In Figure 1, we plot the entropy, SF, and the purity parameter, ξF, which, as should be expected,
show the same behavior. We were able to calculate in [18] the field entropy, analytically, only for certain
periods of time. The figure presented there coincides with the SF of Figure 1 for several time intervals.
As stated before, in [18], we were able calculate correctly the entropy for some time intervals, precisely
the ones where they match. Therefore, Figure 1 extends the validity to intervals of time from about
λt ≈ 10 to λt ≈ 17. Note that, although we are considering a two-level atom, the maximum of the
entropy goes up to ln 4, defined by our four-level virtual system.

0 5 10 15 20 25 30
λt

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SF

ξF

Figure 1. We plot the field entropy, SF, and the purity parameter, ξF, as a function of λt for an initial
field mixture of coherent states, with α = 4, β = −4, C = 1/2, and the atom initially in its excited state.

In Figure 2, we plot the entropies for the field and the two-level atom. They show different
behaviors, as should be expected, as they, because the Araki–Lieb inequalities are expected to be
different (the entropies of the field and the virtual four-level atom are the same, but differ from
the two-level atom). In fact, besides the difference by an amount ln 2, the atomic entropy lacks the
oscillations present in the field entropy for the period of time from about λt ≈ 10 to λt ≈ 17.

0 5 10 15 20 25 30
λt

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SF

SA

Figure 2. We plot the field entropy, SF, and the atomic entropy, SA, for the same parameters used in
Figure 1.

4.2. Atom Initially in a Mixture of States and Field in a Coherent State

The formalism to calculate the entropy for mixed states can be extended to the case in which,
not the field, but the atom, is in a mixed state. In fact, this may be generalized to even more complicated
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cases, but we feel that it is enough to present this other case. Consider then an initial atom-field density
matrix ρ̂(0) = (C|e〉〈e|+ (1−C)|g〉〈g|) |α〉〈α|. In this case, its evolution is described by:

ρ̂ =

(
|φ1〉〈φ1|+ |φ2〉〈φ2| |φ1〉〈φ3|+ |φ2〉〈φ4|

|φ3〉〈φ1|+ |φ4〉〈φ2| |φ3〉〈φ3|+ |φ4〉〈φ4|

)
, (27)

where:

|φ1〉 =
√

C cos
(

λt
√

n̂ + 1
)
|α〉,

|φ2〉 = −i
√

1−C V̂ sin
(

λt
√

n̂
)
|α〉, (28)

|φ3〉 = −i
√

C V̂† sin
(

λt
√

n̂ + 1
)
|α〉,

|φ4〉 =
√

1−C cos
(

λt
√

n̂
)
|α〉.

The atomic and field reduced density operators read:

ρ̂A =

(
〈φ1|φ1〉+ 〈φ2|φ2〉 〈φ1|φ3〉∗ + 〈φ2|φ4〉∗

〈φ1|φ3〉+ 〈φ2|φ4〉 〈φ3|φ3〉+ 〈φ4|φ4〉

)
, (29)

and:
ρ̂F = |φ1〉〈φ1|+ |φ2〉〈φ2|+ |φ3〉〈φ3|+ |φ4〉〈φ4|, (30)

respectively. In a similar fashion as the case previously described, we note that Equation (30) is nothing
but the invariant defined in Equation (7), again for a four-level virtual atom. We can follow the
procedure described above and plot in Figure 3 the field entropy, SF, and field purity parameter, ξF,
to show they again, as expected, have the same behavior.

0 10 20 30 40 50 60
Λt

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SF

ΞF

Figure 3. We plot the entropy, SF, and the field purity parameter, ξF, for the atom initially in a mixture
of ground and excited states, with C = 1/2 and the field initially in a coherent state with α = 4.

Finally, we show in Figure 4 the field and atomic entropies. In this case, they show a completely
different behavior, unlike Figure 2.



Entropy 2019, 21, 49 8 of 9

0 10 20 30 40 50 60
Λt

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SF

SA

Figure 4. We plot the time evolution of the entropies, for the field, SF, and for the atom, SA, for the
atom initially in an statistical mixture of excited and ground states, with C = 1/2 and the field initially
in a coherent state with α = 4.

5. Conclusions

We have shown that in the atom-field interaction, although the atom or the field may be initially
in mixed states, it is possible, by using the Araki–Lieb inequality and the concept of virtual (extended)
atoms, to calculate the entropy of the field. Although the small system (in this case, the two-level atom)
continues to deliver the information of the big system (the field), its Hilbert space should be extended,
in fact doubled, for us to be able to extract information about the complete system. To be clearer, if we
consider the density matrix a field in the form:

ρF =
1
N

N−1

∑
k=0
|αk〉〈αk| (31)

we need to consider a virtual N-level atom for which the eigenvalues are properly calculated in order
to find the entropy for the above mixed density matrix.
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