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Abstract: In the literature, there are many image encryption algorithms that have been constructed
based on different chaotic maps. However, those algorithms do well in the cryptographic process, but
still, some developments need to be made in order to enhance the security level supported by them.
This paper introduces a new cryptographic algorithm that depends on a logistic and two-dimensional
chaotic economic map. The robustness of the introduced algorithm is shown by implementing it on
several types of images. The implementation of the algorithm and its security are partially analyzed
using some statistical analyses such as sensitivity to the key space, pixels correlation, the entropy
process, and contrast analysis. The results given in this paper and the comparisons performed have
led us to decide that the introduced algorithm is characterized by a large space of key security,
sensitivity to the secret key, few coefficients of correlation, a high contrast, and accepted information
of entropy. In addition, the results obtained in experiments show that our proposed algorithm resists
statistical, differential, brute-force, and noise attacks.
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1. Introduction

Converting secret information such as images from a decipherable form to an undecipherable one
has been recently investigated to fulfill the demand of a secure route of image transmission through
different communications channels such as Internet and wireless networks. Encryption schemes have
been introduced based on chaotic models to handle that issue and to provide such secure routes
[1,2]. The Data Encryption Standard (DES) algorithm is a traditional scheme and has been used for
encrypting images [3]. It has some drawbacks, among which is that the algorithm’s efficiency is low
when dealing with large images [4,5]. The theory of chaos is an important theory that possesses
some complex features such as sensitivity to the initial conditions, unpredictability, and bifurcation.
It has been recently adopted by researchers in the process of encryption [1,2]. Chaos has presented
some popular models, which include some complex properties that help provide a robust encryption
scheme. Such models include the logistic map, Lorenz attractor, the Hénon map, and some chaotic
economic systems [6]. Such complex properties of chaotic maps may be reflected in an analogy to
certain properties of the cryptographic process of ideal ciphers like diffusion, confusion, balance, and
avalanche.
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The cipher schemes proposed based on chaotic characteristics have shown a robust and efficient
way to tackle image broadcast very quickly with highly secured routes via different types of
telecommunications. Since Matthews [7] published his first algorithm of encryption in 1989, which
depended on some chaotic characteristics, a number of chaos-based image encryption schemes with
have been developed in literature. For instance, in [8], the authors created a cipher image by dividing
it into some blocks and used some kind of permutations applied to each block using the logistic map.
A two-dimensional discrete chaotic system has been introduced in [9]. It used the Chebyshev chaotic
sequences to scramble each pixel in the novel image. Increasing the key space is another aspect that
makes the algorithm used for encryption very difficult to break, and this has been performed in [10].
A multi-chaotic system has been adopted in the process of encryption in [10]. In [11], the Rossler
system has been included in an encryption algorithm and has been used to change the image’s pixel
values and position in order to make the ciphered images have high uncertainty. A logistic chaotic
function has been used in [12] with the one-time pads in order to increase the encryption space, and
hence, robust cipher images can be obtained. The shuffling approach has been introduced in [13],
presenting a good scheme of encryption based on the cat map. It is a one-dimensional chaotic map
with some advantages such as simplicity and high efficiency [14]. However, it has some weaknesses
that may make it possible for the encryption scheme to be easily broken. This weakness includes a
small key space and a weak security [15,16].

It is important here to highlight some of the recent and state-of-the-art algorithms in cryptography
that will be used in comparison with our proposed algorithm. For example, in [17], Sivakumar et al.
introduced a new image encryption algorithm based on pixel position permutation and a random
key stream. In [18], the authors combined DNA sequences with a chaotic map to introduce an image
algorithm of encryption. Based on discrete wavelet transform and multi-chaos, an image algorithm
was proposed in [19]. The Arnold transformation has been used to encrypt images with high security
in [20]. The idea in [20] depended on splitting the image randomly into several parts, and then, each
part was coded by the Arnold transformation to increase the security level. Adopting the classical
confusion-diffusion structure, an image encryption algorithm has been introduced by Hua et al. based
on a 2D logistic-sine-coupling map [21]. In [22], a simple piecewise linear chaotic map has been utilized
to construct a bit-level image encryption algorithm. Recently, a robust image encryption/decryption
algorithm via 1D chaotic economic map was proposed in [1]. The advantage of that algorithm is that
the periodic recovery of the plain image is removable.

Some of the disadvantages existing in those algorithms have led us to propose a new 2D
chaotic algorithm for image encryption. The algorithm published in [1] is constructed based on a
one-dimensional chaotic map, but this one depends on a two-dimensional chaotic system. The number
of parameters in the current algorithm is more than that in [1], and therefore, the security level is
higher than the one in [1]. The current paper is organized as follows. In Section 2, a brief introduction
about the 2D chaotic map used in the algorithm is presented. In Section 3, the algorithm’s steps are
introduced in detail. In Section 4, we discuss our obtained results due to applying the algorithm on
some popular images and make some comparisons with the results obtained by existing algorithms in
the literature. In Section 5, we give some conclusions.

2. The Two-Dimensional Map

Recently, the adoption of chaotic dynamical systems to encrypt images has drawn researchers’
attention. Such systems possess many parameters that have influences on the systems’ behaviors and
are suitable in the encryption scheme. Those parameters have some important usage, as they are used
as security keys in the process of encryption. Small changes in the value of the system’s parameters
may make the system enter a region where chaos arises. The chaotic behavior of such systems is an
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important aspect when cryptographic algorithms are constructed. In this work, we adopt the chaotic
economic map introduced in [23] that takes the following form:

x1,n+1 = x1,n + kx2
1,n

(
a− c− b

x1,n

Qn
− b log(Qn)

)
,

x2,n+1 = x2,n + kx2
2,n

(
a− c− b

x2,n

Qn
− b log(Qn)

)
,

 (1)

where:
Qn = x1,n + x2,n, n = 0, 1, 2, ...

Equation (1) shows the chaotic behavior of a map with six distinct parameters. These parameters are
important in the economy. First, a stands for the market size and should always be positive, while the
parameter b > 0 represents the change of price within the market. Economically, the condition a > b
and a > c should be always satisfied. The parameter c ≥ 0 is called the cost of producing one unit
of a good, and k > 0 is known as the speed adjustment. The chaotic behavior of the economic map
(1) is detected at the parameter values: x1,0 = 0.11, x2,0 = 0.12, a = 2, b = 0.5, and c = 0.5. Figure 1a
shows the bifurcation diagram of Equation (1) with respect to the parameter k for these parameters.
Numerical simulation has shown that when the system (1) approaches the value k = 0.6490, a two-cycle
period appears, and so on, for other different cycle periods until the system becomes chaotic. This is
clear in the Lyapunov exponents plotted in Figure 1c at the same values of the parameters. Lyapunov
exponents tell us the rate of divergence of nearby trajectories, a key component of chaotic dynamics.
Figure 1b shows the time series for both variables x1,n and x2,n. Finally, Figure 1d shows the complex
chaotic behavior of the system (1).Aerospace 2018, 5, x FOR PEER REVIEW  1 of 1 
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Figure 1. (a) Bifurcation diagram with respect to the parameter k at (x1,0, x2,0, a, b, c) =

(0.11, 0.12, 2, 0.5, 0.5); (b) time series for the system’s variables at (x1,0, x2,0, k, a, b, c) =

(0.11, 0.12, 0.87, 2, 0.5, 0.5); (c) the Lyapunov exponent with respect to the parameter k at
(x1,0, x2,0, a, b, c) = (0.11, 0.12, 2, 0.5, 0.5); (d) chaotic behavior of the system at the parameters
(x1,0, x2,0, k, a, b, c) = (0.11, 0.12, 0.87, 2, 0.5, 0.5).
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3. The Algorithm

It is known that any original image has strong correlations among its pixels. In the encryption
process, it is important to scatter the pixels to break their correlations. The well-known approach to do
that is the shuffling process, which is applied to each array of the original image. Suppose that the
original image has the dimension M× N and P = (pi,j)1≤i≤M,1≤j≤N is the array of its pixel positions.
To produce the shuffling array, Shrc

P , we continue as follows:

1. (Shuffling of rows) In this step, we recall the logistic map xn+1 = rxn(1− xn). The logistic map
is used to generate a set of random values in the interval [1, M], say i1, i2, ..., iM, ik 6= il ∀ k 6= l.
The rows of the P array are changed according to those random values, and hence, a new array
Shr

P is obtained:

Shr
P =



pi1,1 pi1,2 . . . . . . pi1,N
pi2,1 pi2,2 . . . . . . pi2,N

...
... . . . . . .

...
...

... . . . . . .
...

piM ,1 piM ,2 . . . . . . piM ,N


2. (Shuffling of columns) Using a similar technique as in (1), we generate a new set of random values

in the interval [1, N], say j1, j2, ..., jN , jk 6= jl ∀ k 6= l. The columns of Shr
P take the following form:

Shrc
P =



pi1,j1 pi1,j2 . . . . . . pi1,jN
pi2,j1 pi2,j2 . . . . . . pi2,jN

...
... . . . . . .

...
...

... . . . . . .
...

piM ,j1 piM ,j2 . . . . . . piM ,jN


Now, the steps of our encryption algorithm are constructed as follows:

Step 1: Read the original image, then convert it to a gray image, say P.
Step 2: Perform row and column shuffling to generate the shuffling array, say Shrc

P .
Step 3: Convert the pixel values of Shrc

P from decimal to binary, S = {S1, S2, · · · , SMN}.
Step 4: Use the two-dimensional chaotic economic map (1) to generate MN values x =

{x1, x2, · · · , xMN} as follows:

(i) For i = 2 : n, Compute:
x1,i = x1,(i−1) + kx2

1,(i−1)

(
a− c− b

x1,(i−1)
Qi−1

− b log(Qi−1)
)

x2,i = x2,(i−1) + kx2
2,(i−1)

(
a− c− b

x2,(i−1)
Qi−1

− b log(Qi−1)
)

.
End.

(ii) Set x1,0 = x1,n and x2,0 = x2,n as initial values.
(iii) Generate MN values x1 = {x11, x12, · · · , x1,MN} and x2 = {x21, x22, · · · , x2,MN} using the

two-dimensional chaotic economic map (1).

Step 5: Do the following preprocessing for the generated values in Step 4:

xi = f loor
(

mod
(

xi × 1014
)

, 256
)

Step 6: Convert the preprocessing values in Step 5 from decimal to binary, B1 = {b11, b12, · · · , b1,MN}
and B2 = {b21, b22, · · · , b2,MN} for x1 and x2, respectively.

Step 7: Perform the bit-wise XOR between the values of B1 and I, e1 = bitxor(B1, I), where I equals
the value of the array P after reshaping it to be a vector of size 1×MN.

Step 8: Perform the bit-wise XOR between the values of B2 and I, e2 = bitxor(B2, I).



Entropy 2019, 21, 44 5 of 17

Step 9: Perform the bit-wise XOR between the values of e1 and e2, e = bitxor(e1, e2).
Step 10: Convert the values of e from binary to decimal, say E.
Step 11: The cipher pixel set is denoted by E = {E1, E2, · · · , EMN}.
Step 12: Reshape the set E to be an array of size M× N, say C as the cipher image.

In addition, the steps of our decryption algorithm are described as follows:

Step 1: Read the cipher image, C with size M× N.
Step 2: Reshape C to the cipher pixel set E = {E1, E2, · · · , EMN}.
Step 3: Convert the values of E from decimal to binary, say e.
Step 4: Repeat Step 4 in the encryption algorithm to generate MN values for the two vectors, x1 =

{x11, x12, · · · , x1,MN} and x2 = {x21, x22, · · · , x2,MN}.
Step 5: Do the following preprocessing for the generated values in Step 4:

xi = f loor
(

mod
(

xi × 1014
)

, 256
)

Step 6: Convert the preprocessing values in Step 5 from decimal to binary, B1 = {b11, b12, · · · , b1,MN}
and B2 = {b21, b22, · · · , b2,MN} for x1 and x2, respectively.

Step 7: Perform the bit-wise XOR between the values of B1 and e, F1 = bitxor(B1, e).
Step 8: Perform the bit-wise XOR between the values of B2 and e, F2 = bitxor(B2, e)
Step 9: Perform the bit-wise XOR between the values of F1 and F2, z = bitxor(F1, F2)
Step 10: Convert the values of z from binary to decimal, say Z.
Step 11: Reshape Z to be an array of size M× N, say Sh.
Step 12: Perform row and column shuffling to get the decryption image, say D.

The Secret Key Generation

Assume that P = (pi,j), i = 1, 2, ..., M, j = 1, 2, ..., N, is the plain image, where pi,j refers to the
value of the pixel at the position (i, j) and (M, N) is the size of the plain image P. The secret key will
be calculated via the key mixing proportion factor as follows:

Ku =
1

256
mod

 uM
10

∑
i= (u−1)M

10 +1

N

∑
j=1

pi,j, 256

 (2)

Then, we change the initial condition β0 according to the following formula:

β0 ←
(β0 + K)

2
, (3)

where β0 = x10, r10, x20, r20, x1,0, x2,0, a, b, c, k and K = Ku, u = 1, 2, · · · , 10, respectively.
After that, take two initial values for the logistic map, x10, x20, two parameters for the logistic

map, r10, r20, two initial values for the system, x1,0, x2,0, and four system parameters, a, b, c, k.

Remark 1. It is not difficult to note that 0 < Ku < 1. Therefore, the value of β0 on the right-hand side of
Equation (3) must satisfy the conditions of Map (1).

4. Experimental Analysis

In the current section, we apply the introduced algorithm on several types of images to test its
robustness. Ten well-known images, lena (128 × 128, 256 × 256, 512 × 512), barbara (256 × 256),
airplane (512× 512), boat (512× 512), house (256× 256), baboon (512× 512), moon surface (256× 256),
and resolution chart (256 × 256) are tested as plain images. The plain images and their corresponding
histograms are displayed in the first and second columns in Figure 2.

The security keys of our encryption algorithm are chosen as follows. In the logistic map, r = 3.9985,
x0 = 0.02 for row shuffling and r = 3.9995, x0 = 0.3 for column shuffling. In the two-dimensional
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chaotic economic map (1), x1,0 = 0.11, x2,0 = 0.12, a = 2, b = 0.5, c = 0.5, and k = 0.87. Our
experiments are carried out under MATLAB R2016a running on a laptop with the following features:
Intel(R) Core(TM) i7-4700MQ 2.40 GHz, 12.0 GB memory, and 1.0 TB capacity.

Figure 2. Histogram diagram for plain and cipher images at a = 2, b = 0.5, c = 0.5, x1,0 = 0.11, x2,0 =

0.12, and k = 0.87.

5. Security Analysis

A good encryption algorithm possesses the following properties: (i) histograms of cipher images
that are completely uniform; (ii) good information entropy; (iii) very low relationship between two
adjoining pixels; (iv) resistance to statistical and differential attacks; (v) sensitivity to the secret keys;
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(vi) huge key space; (vii) high contrast; (viii) resisting noise attacks. Those aspects are tested for the
proposed algorithm.

5.1. Statistical Analysis

Statistically, plain and cipher images must be different and therefore similarity must be hidden in
order to avoid the attempts of attackers to break the algorithm.

5.1.1. Analysis of the Histogram

The distribution of pixel values in the image is shown by a histogram analysis. The histogram
of the cipher image should be uniformly distributed. Therefore, obtaining any useful statistical
information will be very hard. The third and fourth columns of Figure 2 display cipher images and
their corresponding histograms.

The histograms of the obtained encrypted images are approximately uniform, are different from
those histograms of the plain images, and show that the proposed algorithm is secure enough for image
encryption. The cipher images have histograms that have an approximately uniform distribution. The
chi-square test [24] is used to check this uniformity using the following formula:

χ2 =
k

∑
i=1

(Oi − ei)
2

ei
, (4)

where the gray level number is k = 256 and Oi and ei represent the observed and the expected
occurrence frequencies of each gray level (0–255). Using a level of significance that α = 0.05, the
chi-square values of the cipher images are given in Table 1.

It is easy to see that χ2(k− 1, α) = χ2(255, 0.05) = 293. Therefore, our null hypothesis is accepted
with this level of significance, and the cipher histograms have a uniform distribution. It is shown in
Table 1 that the value of χ2 is less than the tabulated value χ2(255, 0.05).

Table 1. χ2 values of plain and cipher images at a = 2, b = 0.5, c = 0.5, x1,0 = 0.11, x2,0 = 0.12, and
k = 0.87.

Image χ2

Plain Image Cipher Image

Lena 4.0659× 104 255.4371
Cameraman 1.1097× 105 255.9152

Barbara 3.5245× 104 258.9021

5.1.2. Entropy Process of Information

For a source with symbol S, the process of entropy is denoted by H and is calculated by the
following formula [25].

H(S) = −
N−1

∑
i=0

p(si)log2 p(si) (5)

where p(si) refers to the probability of symbol si and the bits are used for entropy. The theoretical
result of entropy H(S) is eight if N = 256 = 28 gray values for an image with equal probability.
The information entropy shows the distribution of gray values. The information entropy for the cipher
images is exhibited in Table 2. The obtained values are near the theoretical value of eight. Recently,
the authors in [26] proposed a statistical test for the block entropy and introduced qualitative and
quantitative results. We have selected 100 non-overlapped blocks of size 16× 16 randomly from
each cipher image. We have calculated the information entropy for each block based on Equation (5),
and the average entropy was recorded. From Table 2, all actual block entropy values are passed the



Entropy 2019, 21, 44 8 of 17

theoretical block entropy values at α = 0.01 and α = 0.05. Therefore, we may conclude that the cipher
images is random-like after applying our proposed encryption algorithm.

Table 2. Information entropy tests for cipher images at a = 2, b = 0.5, c = 0.5, x1,0 = 0.11, x2,0 = 0.12,
and k = 0.87.

Image Global Actual Block
Theoretical Block Entropy
α = 0.01 α = 0.05

Entropy Entropy 7.16276745 7.16634107

lena (256 × 256) 7.9981 7.1921 Pass Pass
lena (512 × 512) 7.9994 7.1862 Pass Pass
barbara (256 × 256) 7.9973 7.1801 Pass Pass
airplane (512 × 512) 7.9996 7.1817 Pass Pass
boat (512 × 512) 7.9995 7.1849 Pass Pass
house (256 × 256) 7.9984 7.1829 Pass Pass
baboon (512 × 512) 7.9995 7.1827 Pass Pass
moon surface (256 × 256) 7.9982 7.1819 Pass Pass
resolution chart (256 × 256) 7.9980 7.1812 Pass Pass

5.1.3. Examination of Correlation

In this subsection, the vertical, horizontal, and diagonal correlations between two adjacent pixels
in a cipher image are evaluated. This examination can be carried out by selecting randomly 5000 pairs
of two neighboring pixels from the original and cipher images. The coefficient of correlation for each
pair is obtained using [4,27]:

rxy =
cov(x, y)√

D(x)
√

D(y)
(6)

where:

cov(x, y) =
1
N

N

∑
i=1

(xi − E(xi))(yi − E(yi)),

D(x) =
1
N

N

∑
i=1

(xi − E(xi)),

and:

E(x) =
1
N

N

∑
i=1

xi.

where the gray values of any two neighboring pixels of an image are denoted by x and y. Figure 3
demonstrates the horizontal distribution of the relationship between two neighboring pixels in
the original image and its corresponding ciphered image. Table 3 shows the relationship of two
neighboring pixels in the original and cipher images. Figure 3 presents those correlations for the plain
and the cipher one. The correlation coefficients of the cipher image for our proposed algorithm and
other algorithms are shown in Table 4. The correlation coefficients of two adjacent pixels of the cipher
image are close to zero.
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Table 3. Correlation coefficients of two adjacent pixels of the plain image and cipher image at a = 2,
b = 0.5, c = 0.5, x1,0 = 0.11, x2,0 = 0.12, and k = 0.87.

Image Plain Image Cipher Image

lena (128 × 128)
H 0.8906 −0.0102
V 0.9518 −0.0230
D 0.8512 0.0119

lena (256 × 256)
H 0.9351 0.0005
V 0.9692 0.0017
D 0.9181 −0.0025

lena (512 × 512)
H 0.9659 −0.0091
V 0.9837 −0.0198
D 0.9552 −0.0062

barbara (256 × 256)
H 0.8105 −0.0088
V 0.8797 −0.0179
D 0.8335 −0.0054

airplane (512 × 512)
H 0.9566 0.0096
V 0.9600 0.0053
D 0.9237 0.0063

boat (512 × 512)
H 0.9385 −0.0025
V 0.9669 0.0186
D 0.9225 −0.0111

house (256 × 256)
H 0.9812 0.0003
V 0.9660 −0.0178
D 0.9402 0.0050

baboon (512 × 512)
H 0.9121 0.0110
V 0.8634 0.0019
D 0.8282 0.0118

moon surface (256 × 256)
H 0.8859 −0.0026
V 0.9316 0.0100
D 0.8988 −0.0029

resolution chart (256 × 256)
H 0.8828 0.0007
V 0.8793 0.0106
D 0.7524 0.0159

(a) lena(256×256) (b) house(256×256) (c) barbara(256×256)

(d) lena(256×256) (e) house(256×256) (f) barbara(256× 256)

Figure 3. (a–c) Correlation analysis of plain images and (d–f) correlation analysis of cipher images at
a = 2, b = 0.5, c = 0.5, x1,0 = 0.11, x2,0 = 0.12, and k = 0.87.



Entropy 2019, 21, 44 10 of 17

Table 4. Correlation coefficients of two adjacent pixels of the cipher image for the proposed algorithm
at a = 2, b = 0.5, c = 0.5, x1,0 = 0.11, x2,0 = 0.12, and k = 0.87 and other algorithms.

Image
Cipher Image

Proposed [6] [1] [21] [22]Case I Case II Case III

lena
H 0.0005 0.0122 0.0075 −0.0038 0.0077 - −0.0230
V 0.0017 −0.0456 −0.0079 0.0093 0.0168 - 0.0019

(256× 256) D −0.0025 −0.0188 −0.0093 −0.0189 0.0104 - −0.0034

5.2. Sensitivity Analysis

One of the important features of a good encryption algorithm is the sensitivity to the security key
and the plain image. Therefore, any small change in the security key or the plain image tends to a
completely different cipher image [28].

5.2.1. Differential Attack

In order to get some insights about the influence of changing one pixel in the cipher image, some
measures such as NPCR (Number of Pixels Change Rate) and UACI (Unified Average Changing
Intensity) are used. They have the following formulae:

NPCR =
∑i,j D(i, j)

W × H
× 100%, (7)

UACI =
1

W × H

[
∑
i,j

|I1(i, j)− I2(i, j)|
255

]
× 100%. (8)

where:

D(i, j) =

{
1 if I1(i, j) 6= I2(i, j),

0 otherwise
(9)

The width and height of the two ciphered images I1 and I2 are denoted by W and H.
In Table 5, each gray level is coded in such a way that only eight bits are used in the coding.

The obtained calculations demonstrate that the percentage of the NPCR is acceptable, as it is close to
99.6%, while the percentage of the UACI is close to 33.4% is also acceptable for the assigned images.
Therefore, we can conclude that our encryption algorithm can survive against differential attack.

Table 5. Comparison of the Number of Pixels Change Rate (NPCR) and Unified Average Changing
Intensity (UACI) of the lena, barbara, and house images with size 256 × 256 using our proposed
algorithm and other algorithms.

Cipher Algorithm NPCR UACI

Theoretical expected value 99.61% 33.46%
Proposed (lena) 99.60% 33.43%
Proposed (barbara) 99.62% 33.45%
Proposed (house) 99.60% 33.40%
[1] (lena) 99.59% 30.63%
[21] (lena) 99.60% 33.46%
[22] (lena) 99.62% 33.51%

5.2.2. Key Sensitivity Test

Some key sensitivity tests are carried out in this subsection in order to check our proposed
algorithm. Figure 4a–c shows the decrypted images of the ciphered images of lena, barbara, and
house using the proper values of the secret key. In the secret key, if the value of a is changed to
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1.99999999999999 and the other values of the secret key are unchanged, the results give the decrypted
images shown in Figure 4d–f, which are completely unreadable and different from the original ones.
Figure 4g–i shows the decrypted images of the ciphered images with a similar security key except
c = 0.49999999999999. Based on those obtained results, one can conclude that any small change in one
of the security keys leads to a bad image being produced, and then, the original plain image cannot be
retrieved. Therefore, our algorithm possesses strong security keys.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Decrypted images of lena, barbara, and house for the proper secret key (a–c), (d–f) decrypted
images at a = 1.99999999999999, b = 0.5, c = 0.5, x1(0) = 0.11, x2(0) = 0.12, and k = 0.87, and (g–i)
decrypted images at a = 2, b = 0.5, c = 0.49999999999999, x1,0 = 0.11, x2,0 = 0.12, and k = 0.87.

5.3. The Analysis of Our Key Space

A strong encryption algorithm has a large enough key space. For high security, the key space
should be greater than 2100 [2,29]. The proposed algorithm uses two initial values for x0 and two initial
values for r0. The logistic map is utilized for row shuffling and column shuffling. In addition, there are
six initial values, x1,0, x2,0, a, b, c, and k, which are used in the two-dimensional chaotic economic map.
Therefore, our security keys consist of ten values. Therefore, using a precision of 10−14 [2], the size of
the proposed algorithm key space is 10140, and it is more than 2100. Table 6 shows that our proposed
algorithm has a key space larger than the key spaces in [1,6,21,22]. Therefore, the key space of our
algorithm is large enough to resist brute-force attacks. This makes our proposed algorithm sufficiently
robust to oppose a wide range of brute-force attacks.
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Table 6. Key space comparison.

Algorithm Ours [1] [6] [21] [22]

Key Space 10140 10140 1084 2256 ≈ 1.16× 1077 2210 ≈ 1.65× 1063

5.4. Noise Attacks

The security of our algorithm against noise is tested. Two famous types of noises are incorporated
into the encrypted images. The first is Gaussian noise with variances of 0.01 and 0.1. The second is salt
and pepper with densities of 0.05 and 0.1. The Mean Square Error (MSE) and Peak Signal to Noise
Ratio (PSNR) are used for measuring.

Assume that X and Y denote the plain image and decrypted image for the ciphered image after
the noise is incorporated. MSE and PSNR are calculated by the following equations:

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(
Xij −Yij

)2 (10)

and:

PSNR = 10× log10

(
I2

MSE

)
(11)

where I is the maximum possible pixel value of an image.
The high similarity between the plain image and the decrypted image has been measured using

the PSNR. Table 7 and Figure 5 show the results. The results show that the images with salt and pepper
noise are better than the images with Gaussian noise because the PSNR is greater than 18.6. In addition,
the histograms of the decrypted images and the plain images are approximately similar.

Table 7. Noise attack results.

Noise MSE MSE PSNR PSNR
(Our Algorithm) [30] (Our Algorithm) [30]

Gaussian noise
with variance = 0.01 and mean = 0 2321.4 4410.1 14.5 11.7

Gaussian noise
with variance = 0.1 and mean = 0 5201.2 5631.4 11.0 10.6

Salt and pepper noise
with density 0.05 437.9 869.9 21.7 18.7

Salt and pepper noise
with density 0.1 893.1 1829.6 18.6 15.5
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5. (a,e,i,m) Encrypted images after adding Gaussian and salt and pepper, (b,f,j,n) corresponding
histograms of the encrypted images, (c,g,k,o) decrypted images at a = 2, b = 0.5, c = 0.5, x1,0 =

0.11, x2,0 = 0.12, and k = 0.87, and (d,h,l,p) corresponding histograms of decrypted images.

5.5. Contrast Analysis

The difference investigation of the image permits the observer to entirely understand the texture
of images. The ciphered image has high contrast levels as a result of the high randomness given by the
map (1) in the process of encryption. We have evaluated the contrast of the ciphered image and the
effectiveness of Map (1) in image encryption applications. This can be carried out by the following
formula:

C = ∑
i,j
|i− j|2 p(i, j) (12)

where p(i, j) is used to refer to the number of gray levels in the co-occurrence matrices.
The contrast analyses of both the plain and cipher images for lena (256× 256), barbara (256× 256),

and house (256× 256) are shown in Table 8. Table 9 shows that the contrast analysis of the introduced
algorithm overcomes the algorithm in [6]. It has the best result.
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Table 8. Contrast analysis of plain and cipher images at a = 2, b = 0.5, c = 0.5, x1,0 = 0.11, x2,0 = 0.12,
and k = 0.87.

Image Contrast
Plain Image Cipher Image

lena (256× 256) 0.3563 10.6201
house (256× 256) 0.1741 10.5431
barbara (256× 256) 0.9463 10.6986

Table 9. Contrast analysis of the plain (lena (256× 256)) and cipher image using the proposed algorithm
at a = 2, b = 0.5, c = 0.5, x1,0 = 0.11, x2,0 = 0.12, and k = 0.87 and other algorithms.

Contrast
Cipher Image

Image Plain Proposed [6] [21] [22] [1]Image Algorithm Case I Case II Case III

lena 0.3563 10.6201 10.1655 10.3909 10.3971 10.5034 10.4723 10.4767

5.6. Gray Value Degree Analysis

Measuring the gray difference of a pixel requires one to know its four neighbors. This can be
carried out using the following formula:

G(x, y) = ∑ [I(x, y)− I(x́, ý)]2

4
, (x́, ý) =


(x− 1, y)
(x + 1, y)
(x, y− 1)
(x, y + 1)

(13)

where I(x, y) refers to the value of a pixel at location (x, y) and I(x́− ý) denotes its four neighboring
pixels. Now, the average difference of the whole image is measured by the following:

Ī(x, y) =
∑M−1

x=2 ∑N−1
y=2 G(x, y)

(M− 2)× (N − 2)
(14)

where M and N refer to the row and column numbers in an image. Using (11) and (12), the Gray Value
Degree (GVD) is defined as,

GVD =
´̄I(x, y)− Ī(x, y)
´̄I(x, y) + Ī(x, y)

(15)

where the average neighborhood gray difference of an original image is denoted by ´̄I, while Ī(x, y)
refers to those of the encrypted image. Table 10 presents the degree values of the computed gray
value degree for distinct images using the proposed algorithm. One can see from Table 10 that our
obtained degree values are close to the ideal value, which is one. Table 11 shows some validations of
the proposed algorithm versus existing algorithms in the literature.

Table 10. Gray Value Degree (GVD for different test images.

Image GVD Value

lena 0.9653
barbara 0.9571
house 0.9755
moon surface 0.9756
resolution chart 0.9482
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Table 11. GDV analysis of the proposed algorithm with other algorithms.

Image GVD Value

Proposed Algorithm Arnold’s [31] [32]

lena 0.9653 0.8900 0.9540 0.9624

5.7. Peak Signal to Noise Ratio Analysis

PSNR is used to carry out the evaluation of the encryption algorithms. It is applied to both
images, the original image and the encrypted one. It considers the original image as a signal, while
the encrypted image as a noise. PSNR is calculated by using Equation (11). Table 12 shows the PSNR
values of some different images. It is shown that those values are low, which means it is difficult to
retrieve the original image from the encrypted one in the case of hacker attacks.

Table 12. PSNR values for different test images.

Image PSNR Value

lena 8.5557
barbara 9.1158
house 9.2541

moon surface 10.1982
resolution chart 4.9300

5.8. Computational Complexity

We make a comparison of the computational complexity between the traditional DES, AES,
and other algorithms in the literature including our proposed algorithm. The results appear in Table 13.
Based on Table 13, we can concluded that the time of our algorithm is less than the traditional DES and
AES algorithms and the other algorithms in the literature and is completely acceptable for encryption
of an image.

Table 13. The speed of encryption for each algorithm. DES, Data Encryption Standard.

Algorithm Encryption Time (in Seconds)

Proposed Algorithm 0.1309
DES 0.6305
AES 0.2173
[21] 0.1493
[22] 0.2021
[1] 0.5463

6. Conclusions

The current paper introduced a new cryptographic algorithm based on a two-dimensional chaotic
economic map and logical operator bit-wise XOR . The size of the key space for our proposed algorithm
is 10140, which allows our algorithm to survive against attacks. The numerical experiments have shown
that the algorithm is very sensitive to the security keys, and hence, any bit change or random guessing
about the proper value of the security keys fails to retrieve the original image. The obtained results
by the proposed algorithm have shown that the ciphered image is random-like since the information
entropy of the cipher image of size 256× 256 is very close to the theoretical value of eight, the NPCR is
close to 99.6%, and UACI is close to 33.4%. Therefore, our algorithm is extremely sensitive to any small
change in the original image. According to the obtained results, we may conclude that the proposed
algorithm owns a high level of security that allows it to prevent any attempts of attack by hackers.
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