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Abstract: This paper shows that one cannot learn the probability of rare events without imposing
further structural assumptions. The event of interest is that of obtaining an outcome outside
the coverage of an i.i.d. sample from a discrete distribution. The probability of this event is
referred to as the “missing mass”. The impossibility result can then be stated as: the missing
mass is not distribution-free learnable in relative error. The proof is semi-constructive and relies on
a coupling argument using a dithered geometric distribution. Via a reduction, this impossibility also
extends to both discrete and continuous tail estimation. These results formalize the folklore that in
order to predict rare events without restrictive modeling, one necessarily needs distributions with
“heavy tails”.
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1. Introduction

Given data consisting of n i.i.d. observations X1, · · · , Xn from an unknown distribution p over
the positive integers N+, we traditionally compute the empirical distribution:

p̂n(x) :=
1
n

n

∑
i=1

1{Xi = x}.

To estimate the probability p(E) := ∑x∈E p(x) of an event E ⊂ N+, we could use
p̂n(E) := ∑x∈E p̂n(x). This works well for abundantly represented events, but not as well for rare
events. An unequivocally rare event is the set of symbols that are missing in the data,

En := {x ∈ N+ : p̂(x) = 0}.

The probability of this (random) event is denoted by the missing mass:

Mn(X1, · · · , Xn) := p(En) = ∑
x∈N+

p(x)1{ p̂(x) = 0}.

The question we strive to answer in this paper is: “Can we learn the missing mass when p is
an arbitrary distribution on N+?” Definition 1 phrases this precisely in the learning framework.
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Definition 1. An estimator is a sequence of functions M̂n(x1, · · · , xn) : Nn
+ → [0, 1]. We say that

an estimator learns the missing mass in relative error with respect to a family P of distributions, if for
every p ∈ P and every ε, δ > 0 there exists n0(p, ε, δ) such that for all n > n0(p, ε, δ):

Pp

{∣∣∣∣ M̂n(X1, · · · , Xn)

Mn(X1, · · · , Xn)
− 1
∣∣∣∣ < ε

}
> 1− δ.

The learning is said to be distribution-free, if P consists of all distributions on N+.

In this framework, our question becomes whether we can distribution-free learn the missing
mass in relative error. It is obvious that the empirical estimator p̂(En) gives us the trivial answer of 0,
and cannot learn the missing mass. A popular alternative is the Good–Turing estimator of the missing
mass, which is the fraction of singletons in the data:

Gn := ∑
x∈N+

1
n

1{np̂(x) = 1}.

The Good–Turing estimator has many interpretations. Its original derivation by Good [1] uses
an empirical-Bayes perspective. It can also be thought of as a leave-one-out cross-validation estimator,
which contributes to the missing set if and only if the holdout appears exactly once in the data.
Fundamentally, Gn derives its form and its various properties from the simple fact that:

E[Gn] = ∑
x∈N+

p(x)(1− p(x))n−1 = E[Mn−1].

A study of Gn in the learning framework was first undertaken by McAllester and Schapire [2] and
continued later by McAllester and Ortiz [3]. Some further refinement and insight was also given later
by Berend and Kontorovich [4]. These works focused on additive error. Ohannessian and Dahleh [5]
shifted the attention to relative error, establishing the learning property of the Good–Turing estimator
with respect to the family of heavy-tailed (roughly power-law) distributions, e.g., p(x) ∝ x−1/α with
α ∈ (0, 1). This work also showed that Good–Turing fails to learn the missing mass for geometric
distributions, and therefore does not achieve distribution-free learning. More recently, Ben-Hamou
et al. [6] provide a comprehensive and tight set of concentration inequalities, which can be interpreted
in the current framework, and which further demonstrate that Good–Turing can learn with respect to
heavier-than-geometric light tails, e.g. the family that includes p(x) ∝ 2−xγ

with γ ∈ (0, 1) (see the
definition in Section 4.3 and Remark 4.3 in that paper), in addition to power-laws.

These results leave open the important question: does there exist some other estimator that can
learn the missing mass in relative error for any distribution p? Our contributions are:

• We prove that there are no such estimators, thus providing the first such “no free lunch” theorem
for learning about rare events. The first insight to glean from this impossibility result is that
one is justified to use further structural assumptions. Furthermore, the proof relies on an
implicit construction that uses a dithered geometric distribution. In doing so, it shows that
the failure of the Good–Turing estimator for light-tailed distributions is not a weakness of the
procedure, but is rather due to a fundamental barrier. Conversely, the success of Good–Turing
for heavier-than-geometric and power laws shows its universality, in some restricted sense.
In particular, in concrete support to folklore (e.g., [7]), we can state that for estimating probabilities
of rare events, heavy tails are both necessary and sufficient.

• We extend this result to continuous tail estimation.
• We show, on a positive note, that upon restricting to parametric light-tailed families learning may

be possible. In particular, we show that for the geometric family the natural plug-in estimator
learns the missing mass in relative error. As an ancillary result, we prove an instance-by-instance
convergence rate, which can be interpreted as a weak sample complexity. For this, we establish
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some sharp concentration results for the gaps in geometric distributions, which may be of
independent interest.

The paper is organized as follows. In Section 2, we present our main result, with a detailed
exposition of the proof. In Section 3 we discuss questions of weak versus strong learnability, we give
an immediate extension to continuous tail estimation, show that parametric light-tailed learning is
possible, comment further on the Good–Turing estimator, and concisely place this result in the context
of a chief motivating application, that of computational linguistics. Lastly, we conclude in Section 4
with a summary and open questions.

2. Main Result

Our main result is stated as follows. The rest of this section is dedicated to its detailed proof.

Theorem 1. There exists a positive ε > 0 and a strictly increasing sequence (nk)k=1,2,···, such that for every
estimator M̂n there exists a distribution p?, such that for all k:

Pp?

{∣∣∣∣∣ M̂nk

Mnk

− 1

∣∣∣∣∣ > ε

}
> ε. (1)

In particular, it follows that it is impossible to perform distribution-free learning of the missing mass in
relative error.

Remark 1. Our proof below implies the statement of the theorem with ε = 10−4 and nk = 6.5× 2k, but we
did not make an honest effort to optimize these parameters.

2.1. Proof Outline

Consider the family Pβ,m of β, m-dithered geometric( 1
2 ) distributions, where the mass of each

outcome beyond a symbol m of a geometric( 1
2 ) random variable is divided between two symbols, with

a fraction β in one and 1− β in the other. The individual distributions in this family differ only by
which of each pair of such symbols gets which fraction. More precisely:

Definition 2. The β, m-dithered geometric( 1
2 ) family, for a given choice of β ∈ (0, 1

2 ) and m ∈ N+, is a
collection of distributions parametrized by the dithering choices θ ∈ {β, 1− β}N+ , θ := (θ1, θ2, · · · , θj, · · · ) ,
as follows:

Pβ,m =

{
pθ : pθ(x) =

1
2x , x = 1, · · · , m;

pθ(m + 2j− 1) =
θj

2m+j , pθ(m + 2j) =
1− θj

2m+j , j ∈ N+, θ ∈ {β, 1− β}N+

}
. (2)

The intuition of the proof of Theorem 1 is that within such light-tailed families, two distributions
may have very similar samples and thus estimated values, yet have significantly different true values
of the missing mass. This follows the general methodology of many statistical lower bounds. We now
state the outline of the proof. We choose a subsequence of the form nk = C2k. We set β = 1/4, m = 1,
and C = 6.5. The value of ε > 0 is made explicit in the proof, and depends only on these choices.
We proceed by induction.

• We show that there exists θ?1 such that for all θ with θ1 = θ?1 we have for n = n1:

Ppθ

{∣∣∣ M̂n
Mn
− 1
∣∣∣ > ε

}
> ε. (3)

• Then, at every step k > 1 :
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(H) We start with (θ?1 , · · · , θ?k−1) such that for all θ with (θ1, · · · , θk−1) = (θ?1 , · · · , θ?k−1),
Inequality (3) holds for n = n1, · · · , nk−1.

(*) We then show that it must be that for at least one of θ̃ = β or θ̃ = 1− β, for all θ with
(θ1, · · · , θk) = (θ?1 , · · · , θ?k−1, θ̃), Inequality (3) holds additionally for n = nk. We select θ?k to
be the corresponding θ̃.

• This induction produces an infinite sequence θ? ∈ {β, 1− β}N+ , and the desired distribution
in Theorem 1 can be chosen as p? = pθ? , since it is readily seen to satisfy the claim for each nk,
by construction.

2.2. Proof Details

We skip the proof of the base case, since it is mostly identical to that of the induction step.
Therefore, in what follows we assume that (θ?1 , · · · , θ?k−1) satisfies the inductive hypothesis (H), and we
would like to prove that the selection in (*) can always be done. Let us denote the two choices of
parameters by

θ := (θ?1 , · · · , θ?k−1, β, θk+1, · · · ),

and
θ′ := (θ?1 , · · · , θ?k−1, 1− β, θ′k+1, · · · ),

and let us refer to (θk+1, · · · ) and (θ′k+1, · · · ) by the trailing parameters. What we show in the remainder
of the proof is that with two arbitrary sets of trailing parameters, we cannot have two simultaneous
violations of Inequality (3) (for both θ and θ′). That is, we cannot have both:

Ppθ

{∣∣∣∣ M̂nk
Mnk
− 1
∣∣∣∣ > ε

}
< ε and Ppθ′

{∣∣∣∣ M̂nk
Mnk
− 1
∣∣∣∣ > ε

}
< ε. (4)

This is stated in Lemma 3, in the last portion of this section. To see why this is sufficient to show
that the selection in (*) can be done, consider first the case that Inequality (3) with n = nk is upheld for
both θ and θ′ with any two sets of trailing parameters. In this case we can arbitrarily choose θ?k to be
either β or 1− β, since the induction step is satisfied. We can therefore focus on the case in which this
fails. That is, for either θ or θ′ a choice of trailing parameters can be made such that Inequality (3) with
n = nk is not satisfied, and therefore one of the two cases in (4) holds [say, for example, for θ]. Fix the
corresponding trailing parameters [in this example, (θk+1, · · · )]. Then, for any choice of the other set
of trailing parameters [in this example, (θ′k+1, · · · )], Lemma 3 precludes a violation of Inequality (3)
for n = nk by the other choice [in this example, θ′]. Therefore this choice can be selected for θk [in this
example, θk = 1− β.]

By using the coupling device and restricting ourselves to a pivotal event, we formalize the
aforementioned intuition that the estimator may not distinguish between two separated missing
mass values, and deduce that both statements in (4) cannot hold simultaneously.

2.2.1. Coupling

Definition 3. A coupling between two distributions p and p′ on N+ is a joint distribution q on N2
+, such that

the first and second marginal distributions of q revert back to p and p′ respectively.

Couplings are useful because probabilities of events on each side may be evaluated on the joint
probability space, while forcing events of interest to occur in an orchestrated fashion. Going back to



Entropy 2019, 21, 28 5 of 21

our induction step and the specific choices θ and θ′ with arbitrary trailing parameters, we perform the
following coupling. For (x, x′) ∈ N2

+, let

q(x, x′) =



pθ(x) = pθ′(x′) ; if x = x′ < m + 2k− 1;
β/2m+k ; if x = x′ = m + 2k− 1, or if x = x′ = m + 2k,
(1− 2β)/2m+k ; if x = m + 2k and x′ = m + 2k− 1;
pθ(x)pθ′(x′)/2m+k ; if x, x′ > m + 2k;
0 ; otherwise.

(5)

It is easy to verify that q in Equation (5) is a coupling between pθ and pθ′ as in Definition 3.
Now let us observe the consequences of this choice. If X, X′ are generated according to q, then if either
is in {1, · · · , m + 2k− 2} then both values are identical. If either is in {m + 2k + 1, · · · } then so is the
other, but otherwise the two values are conditionally independent. If either is in {m + 2k− 1, m + 2k},
so is the other, and the conditional probability is given by:

x

x′
m + 2k− 1 m + 2k

m + 2k− 1 β 0
m + 2k 1− 2β β

Now consider coupled data (Xi, X′i)i=1,··· ,n generated as i.i.d. samples from q. It follows that,
marginally, the X-sequence is i.i.d. from pθ , and so is the X′-sequence from pθ′ . Any event B that is
exclusively X-measurable or B′ that is exclusively X′-measurable has the same probability under the
coupled measure. That is,

Ppθ
(B) = Pq(B) := qn(B×Nn

+)

and
Ppθ′ (B′) = Pq(B′) := qn(Nn

+ × B′).

In what follows we work only with coupled data, and use simply the shorthand P to mean Pq.

2.2.2. Pivotal Event

The event we would like to work under is that of the coupled samples being identical, while exactly
covering the range 1, · · · , m + 2k− 1. Let’s call this the pivotal event and denote it by:

Ak :=
nk⋂

i=1

{Xi = X′i} ∩
{
{X1, . . . , Xnk} = {1, · · · , m + 2k− 1}

}
. (6)

The reason Ak interests us is that it encapsulates the aforementioned intuition.

Lemma 1. Under event Ak, the coupled missing masses are distinctly separated,

Mnk

M′nk

=
2− β

1 + β
,

while any estimator cannot distinguish the coupled samples,

M̂nk = M̂′nk
.

Proof. The confusion of any estimator is simply due to the fact that under Ak, the coupling forces all
samples to be identical Xi = X′i , for all i = 1, · · · , nk.

Thus M̂nk = M̂′nk
, since estimators only depend on the samples and not the probabilities.
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The missing masses, on the other hand, do depend on both the samples and the probabilities and
thus they differ. But the event Ak makes the set of missing symbols simply the tail m + 2k, m + 2k + 1, · · · ,
so we can compute the missing masses exactly:

Mnk = pθ(m + 2k) + ∑∞
x=m+2k+1 pθ(x) =

1− θk

2m+k +
1

2m+k = (2− β)2−m−k, and

M′nk
= pθ′(m + 2k) + ∑∞

x=m+2k+1 pθ′(x) =
1− θ′k
2m+k +

1
2m+k = (1 + β)2−m−k,

where 1
2m+k follows from the usual geometric sum. The claim follows.

We now show that Ak has always a positive probability, bounded away from zero.

Lemma 2. For β = 1/4, m = 1, C = 6.5 and nk = C2k, there exists a positive constant η > 0 that does not
depend on θ, such that for all k, P(Ak) > η. We can explicitly set η = 2 · 10−4.

Proof. Please note that Ak in Equation (6) overspecifies the event. In fact, only forcing the exact
coverage of 1, · · · , m + 2k − 1 is sufficient, since this implies in turn that the coupled samples are
identical. Recalling the coupling of Equation (5), this is immediate for symbols in 1, · · · , m + 2k− 2,
and follows for m+ 2k− 1 since m+ 2k is not allowed in this event. We can then write Ak = Ak,1 ∩ Ak,2,
dividing the exact coverage to the localization in the range and the representation of each symbol by at
least one sample:

Ak,1 =
{⋃nk

i=1{Xi} ⊆ {1, · · · , m + 2k− 1}
}

(localization),
Ak,2 =

{⋃nk
i=1{Xi} ⊇ {1, · · · , m + 2k− 1}

}
(representation).

Let α be the probability of (Xi, X′i) for a given i being in {(1, 1), · · · , (m + 2k− 1, m + 2k− 1)}.
From the coupling in Equation (5) and the structure of the dithered family in Equation (2), we see that
for up to m + 2k− 2 this probability sums up to the m + k− 1 first terms of a geometric( 1

2 ), and for
(m + 2k− 1, m + 2k− 1) the coupling assigns it β/2m+k, thus:

α = ∑m+2k−1
x=1 q(x, x) = 1− 1

2m+k−1 +
β

2m+k .

We can then explicitly compute:

P(Ak,1) = αnk =

(
1− 1

2m+k−1 +
β

2m+k

)nk

=: η1(k).

Meanwhile, the complement of Ak,2 is the event that at least one of {(1, 1), · · · , (m + 2k− 1, m +

2k− 1)} does not appear, that is Ac
k,2 =

⋃m+2k−1
x=1 {x /∈ ∪{Xi}}. Conditionally on Ak,1, the occurrence

probabilities of these symbols are simply normalized by α, that is P(x /∈ ∪Xi|Ak,1) = [1− q(x, x)/α]nk .
Thus, by a union bound, we have:
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P(Ak,2|Ak,1) = 1− P(Ac
k,2|Ak,1)

≥ 1−∑m+2k−1
x=1 P(x /∈ ∪Xi|Ak,1)

= 1−∑m+2k−1
x=1 [1− q(x, x)/α]nk

≥ 1−∑m+2k−1
x=1 [1− q(x, x)]nk

= 1−∑m
x=1

(
1− 1

2x

)nk

−∑k−1
j=1

[(
1− β

2m+j

)nk
+
(

1− 1−β

2m+j

)nk
]
−
(

1− β

2m+k

)nk

≥ 1−∑m
x=1

(
1− 1

2x

)nk − 2 ∑k−1
j=1

(
1− β

2m+j

)nk −
(

1− β

2m+k

)nk
=: η2(k),

where the last inequality follows from the fact that β < 1
2 . Therefore,

P(Ak) = P(Ak,1 ∩ Ak,2) = P(Ak,1)P(Ak,2|Ak,1) ≥ η1(k)η2(k) ≥ inf
k≥1

η1(k)η2(k) =: η.

We now use our choices of β = 1/4, m = 1, C = 6.5, and nk = C2k, to bound this worst-case
η. In particular, we can verify that η ≥ 2 · 10−4, and it follows as claimed that the pivotal event has
always a probability bounded away from zero.

2.2.3. Induction Step

We now combine all the elements presented thus far to complete the proof of Theorem 1 by
establishing the following claim, which we have shown in the beginning of the detailed proof section
to be sufficient for the validity of the induction step. In particular, we restate Equation (4) under the
coupling of Equation (5).

Lemma 3. Let

θ := (θ?1 , · · · , θ?k−1, β, θk+1, · · · ), and θ′ := (θ?1 , · · · , θ?k−1, 1− β, θ′k+1, · · · ),

with arbitrary trailing parameters (θk+1, · · · ) and (θ′k+1, · · · ). Let q be the coupling of Equation (5), and let

Bk =
{∣∣M̂nk /Mnk − 1

∣∣ > ε
}

and B′k =
{∣∣∣M̂′nk

/M′nk
− 1
∣∣∣ > ε

}
. Then given our choices of β = 1/4, m = 1,

C = 6.5 and nk = C2k, if ε < 10−4 we cannot simultaneously have

Pq(Bk) < ε and Pq(B′k) < ε.

Proof. Please note that this choice of ε means that ε < η/2, where η is as in Lemma 2. Recall the
pivotal event Ak, and assume, for the sake of contradiction, that both probability bounds P(Bk) < ε

and P(B′k) < ε hold. Please note that if Bc
k holds, it means that

M̂nk /Mnk ∈ (1− ε, 1 + ε), (7)

and similarly if B′ck holds, it means that

M̂′nk
/M′nk

∈ (1− ε, 1 + ε). (8)

By making our hypothesis, we are asserting that these events have high probabilities, 1− ε,
under both pθ and pθ′ distributions, and that thus the estimator is effectively (1± ε)-close to the
true value of the missing mass. Yet, we know that this would be violated under the pivotal event,
which occurs with positive probability. We now formalize this contradiction.
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By Lemma 2, we have that:

P(Bk|Ak) =
P(Ak ∩ Bk)

P(Ak)
≤ P(Bk)

P(Ak)
≤ ε

η

P(B′k|Ak) =
P(Ak ∩ B′k)

P(Ak)
≤

P(B′k)
P(Ak)

≤ ε

η

 ⇒ P(Bc
k ∩ B′ck |Ak) ≥ 1− 2

ε

η
> 0, (9)

where the last inequality is strict, by the choice of ε < η/2.
On the other hand, recall that by Lemma 1 under Ak we have:

M̂nk = M̂′nk
and

Mnk

M′nk

=
2− β

1 + β
= 7

5 .

By combining this with Equations (7) and (8), we can now see that if 1+ε
1−ε < 7

5 , which is satisfied by
any choice of ε < 1/6, in particular ours, then if Bc

k occurs, then B′k occurs, and conversely if B′ck occurs
then Bk occurs. For example, say Bc

k occurs, then M̂nk /Mnk < (1 + ε):

M̂′nk

M′nk

=
M̂nk

7
5 Mnk

< 5
7 (1 + ε) < 1− ε,

implying that Equation (8) is not satisfied, thus B′k occurs. The end result is that under event Ak, Bc
k and

B′ck cannot occur at the same time, and thus:

P(Bc
k ∩ B′ck |Ak) = 0.

This contradicts the bound in (9), and establishes the lemma.

3. Discussions

3.1. Weak Versus Strong Distribution-Free Learning

Arguably, a more common notion of learning is a strong version of Definition 1, where the sample
complexity is a function of the distribution class rather than the instance. Formally:

Definition 4. We say that an estimator learns the missing mass in relative error strongly with respect to
a family P of distributions, if for every ε > 0, δ ∈ (0, 1) there exists n0(P , ε, δ) such that for all p ∈ P and all
n > n0(P , ε, δ):

Pp

{∣∣∣∣ M̂n(X1, · · · , Xn)

Mn(X1, · · · , Xn)
− 1
∣∣∣∣ < ε

}
> 1− δ.

The learning is said to be strongly distribution-free, if P consists of all distributions on N+.

The distinction here is similar to that of uniform versus pointwise convergence.
Clearly, the existence of a strong learner implies the existence of a weak learner. Conversely, as we
have shown that there is no weakly distribution-free learner, there is also no strongly distribution-free
learner. However, the ability to choose a different distribution at every sample size n makes it very
easy to show this corollary directly. For example, we can consider two distributions p and q with
p(1) = 1− 1

n2 and q(1) = 1− 1
100n2 , both of which would result with overwhelming probability

in a length-n sequence consisting entirely of this first symbol. Thus any estimator would need to
predict the same missing mass with high probability. However, the rest of the symbols would have
probabilities differing by a factor of 100 between the two models, and thus any estimator would be
misguided for at least one of the two cases.
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The relevance of the current contribution is rooted in the plausible yet misguided optimism that
although we may not do well in such a worst-case paradigm, there is more hope if we first fix the
instance and then study asymptotics. Our “no free lunch” theorem indeed shows the more subtle
fact that there are always bad instances for every estimator, and thus even such weak learning is
fundamentally impossible.

Such a contrast between weak/strong learning has also been appreciated in the classical learning
literature, notably in the work of Antos and Lugosi [8]. The notions there are framed in the negative,
which is why the weak/strong terminology is reversed. A traditional minimax lower bound in that
context states that for any sequence of concept learners ĝn at each n we can find a distribution for which
the expected cumulative classification error is lower bounded by the complexity of the concept class.
Analogously, not being able to strong learn as in Definition 4 means that for any estimator M̂n at each
n we can find a distribution for which the relative error stays away from zero. By demanding a strong
performance from a learner/estimator, we are able to give only a weak guarantee. In particular, it could
be too loose for a fixed distribution that doesn’t vary with n. [8] contributes by giving lower bounds
that hold infinitely often for any sequence of concept learners ĝn but for a distribution choice that is
adversarial in advance, fixed for all n. Analogously, not being able to (weak) learn as in Definition 1
means that for any estimator M̂n there exists a distribution, fixed for all n, for which the relative error
stays away from zero for infinitely many n. The lower bounds of Antos and Lugosi [8] can now be
tighter, which is why they call their results strong minimax lower bounds. In the context of the present
paper, of course, the lower bounds correspond to the impossibility result, which is thus stronger since
it doesn’t even hold for a fixed distribution.

3.2. Generalization to Continuous Tails

A closely related problem to learning the missing mass is that of estimating the tail of a probability
distribution. In the simplest setting, the data consists of Y1, · · · , Yn that are i.i.d. samples from
a continuous distribution on R. Let F be the cumulative distribution function. The task in question is
that of estimating the tail probability

Wn = 1− F
(

n
max
i=1

Yi

)
,

that is the probability that a new sample exceeds the maximum of all samples seen in the data.
One can immediately see the similarity with the missing mass problem, as both problems

concern estimating probabilities of underrepresented events. We can use essentially the same learning
framework given by Definition 1, and prove a completely parallel impossibility result.

Theorem 2. There exists ε > 0 and a subsequence (nk)k=1,2,···, such that for every estimator Ŵn of Wn there
exists a continuous distribution F?, such that for all k:

PF?

{∣∣∣∣∣Ŵnk

Wnk

− 1

∣∣∣∣∣ > ε

}
> ε.

In particular, it follows that it is impossible to perform distribution-free learning of the tail probability in
relative error.

Proof. (Sketch) The discrete version of this theorem is a trivial extension of Theorem 1, since in the
proof of the latter the pivotal event forced the missing mass to be a tail probability. The potential
strengthening of Theorem 2 comes from insisting on a continuous F?. The same techniques may be
adapted in this case, such as by dithering an exponential distribution, where a base exponential density
is divided into intervals, and mass is moved between pairs of adjacent intervals by scaling the density
the same way as β dithers the geometric. The adversarial distribution for a given estimator can then be



Entropy 2019, 21, 28 10 of 21

chosen from this family. In order not to repeat the same aguments, however, we instead prove this
result via a reduction. The details can be found in the Appendix A. Namely, we show that discrete
tail estimation can be reduced to continuous tail estimation. Since the former is impossible, so is
the latter.

Theorem 2 gives a concrete justification of why it is important to make regularity assumptions
when extrapolating distribution tails. This is of course the common practice of extreme value theory,
see, for example [9]. Some impossibility results concerning the even more challenging problem of
estimating the density of the maximum were already known [10], but to the best of our knowledge
this is the first result asserting it for tail probability estimation as well.

3.3. Learning in Various Families

Ben-Hamou et al. [6] (Corollary 5.3) gives a very clean characterization of a sufficient learnable
family, which encompasses the one covered by Ohannessian and Dahleh [5].

Theorem 3 ([6]). Denote the expected number of single-occurrence and double-occurrence symbols by Φn,1 and
Φn,2 respectively:

Φn,1 := E

[
∑

x∈N+

1{np̂n(x) = 1}
]
= ∑

x∈N+

np(x)[1− p(x)]n−1, and

Φn,2 := E

[
∑

x∈N+

1{np̂n(x) = 2}
]
= ∑

x∈N+

n(n− 1)
2

p(x)2[1− p(x)]n−2.

LetH be the family defined by:

H :=
{

p : Φn,1 → ∞ and
Φn,2

Φn,1
remains bounded as n→ ∞

}
.

The Good–Turing estimator learns the missing mass in relative error with respect toH.

The proof relies on power moment concentration inequalities (such as Chebyshev’s).
The Φn,1 → ∞ property embodies the heavy-tailed nature, since it says that rare events occur often.
The condition that Φn,2

Φn,1
(i.e., its lim sup) remains bounded is a smoothness condition, since Φn,2 roughly

captures the variance of the number of singletons (see [6], Proposition 3.3). For us, this is instructive
because one could readily verify that the condition of Theorem 3 fails for geometric (and dithered
geometric) distributions. We can thus see that in some sense Good–Turing captures a maximal family
of learnable distributions. In particular, we now know that the complement ofH is not learnable.

Considering how sparse the dithered geometric family is, the failure of any estimator to learn the
missing mass with respect to it may seem discouraging. (Please note that Theorem 1 holds even if the
estimator is aware that this is the class it is paired with.) However, if we restrict ourselves to smooth
parametric families within light tails then the outlook can be brighter. We illustrate this with the case
of the geometric family.

Theorem 4. Let G be the class of geometric distributions, parametrized by α ∈ (0, 1):

pα(x) = (1− α)αx−1, for x ∈ N+.

Let α̂n = 1− n
∑ Xi

be the maximum likelihood estimator of the parameter, and define the plug-in estimator:

M̌n = ∑
x∈N+

(1− α̂n)α̂
x
n1{np̂n(x) = 0}
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Then M̌n learns the missing mass in relative error with respect to G.

Proof. (Sketch) The proof consists of pushing forward the convergence of the parameter to that of the
entire distribution using continuity arguments, and then specializing to the missing mass. The details
can be found in the Appendix B.

3.4. Learning the Missing Mass in Additive Error and Learning Other Related Quantities

As mentioned in the introduction, a good part of the work on learning the missing mass focused
on additive error [2–4]. Recently, minimax lower bounds were given for the additive error in [11]
and [12]. Note however that relative error bounds cannot be deduced from these (nor any other
way, given the impossibility established here.) A related problem to learning the missing mass in
relative error is that of learning a distribution in KL-divergence loss. This averages all log-relative
errors (missing or otherwise). This averaging scales the log-relative errors by the rare probability
and attenuates the kind of gaps discussed in our present context. One thus hopes to have more
optimistic results. Indeed, the Good–Turing estimator was recently shown to be adaptive/competitive
for distribution learning in KL-divergence [13]. A similar result in the context of distribution learning in
total variation was given in [14]. In the language of Section 3.2, being competitive can be understood as
an intermediate characterization between weak and strong learning. Lastly, one could be interested in
learning other properties of distributions that are intimately related to the rare component. Entropy and
support size are two of these. In [15] a traditional minimax bound was established for these quantities,
which was then further distilled in [16]. Another related problem is predicting the growth of the
support as more observations are made. This was characterized very precisely in [17], where one can
find further pointers on this very old problem. Some of these results may give the impression that
nothing further can be gained from structural assumptions. However, rates can generally be refined
whenever such structure exists. See for example [18] for refined competitive rates in distribution
estimation and [19] for similar results in the predictive/compression setting. These results use tail
characterizations, similar to those in extreme value theory [10].

3.5. N-Gram Models and Bayesian Perspectives

One of the prominent applications of estimating the missing mass has been to computational
linguistics. In that context, it is known as smoothing and is used to estimate N-gram transition
probabilities. The importance of accurately estimating the missing mass, and in particular in
a relative-error sense, comes from the fact that N-grams are used to score test sentences using
log-likeliehoods. Test sentences often have transitions that are never seen in the training corpus,
and thus in order for the inferred log-likelihoods to accurately track the true log-likelihood, these rare
transitions need to be assigned meaningful values, ideally as close to the truth as possible. As such,
various forms of smoothing, including Good–Turing esimation, have become an essential ingredient of
many practical algorithms, such as the popular method proposed by Kneser and Ney [20].

In the context of N-gram learning, a separate Bayesian perspective was also proposed. One of the
earliest to introduce this were [21] using a Dirichlet prior. This was shown to not be very effective,
and we now understand that it is due to the fact that (1) the Dirichlet process produces light tails
while language is often heavy-tailed and, even if it were; (2) rare probabilities are hard to learn for
large light-tailed families. The natural progression of these Bayesian models led to the use of the
two-parameter Poisson-Dirichlet prior [22], which was suggested initially by [23]. Despite employing
sophisticated inference techniques, the missing mass estimator that resulted from these models closely
followed the Good–Turing estimator (for a sharp analysis of this correspondence, see Falahatgar et al.
[18].) In light of the present work, this is not surprising since the two-parameter Poisson-Dirichlet
process almost surely produces heavy-tailed distributions, and any two algorithms that learn the
missing mass are bound to have the same qualitative behavior.
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4. Summary

In this paper, we have considered the problem of learning the missing mass, which is the
probability of all unseen symbols in an i.i.d. draw from an unknown discrete distribution. We have
phrased this in the probabilistic framework of learning. Our main contribution was to show that it is
not possible to learn the missing mass in a completely distribution-free fashion.

In other words, no single estimator can do well for all distributions. We have given a detailed
account of the proof, emphasizing the intuition of how failure can occur in large light-tailed families.
We have also placed this work in a greater context, through some discussions and extensions of the
impossibility result to continuous tail probability estimation, and by showing that smaller, parametric,
light-tailed families may be learnable.

An initial impetus for this paper and its core message is that assuming further structure can be
necessary in order to learn rare events. Further structure, of course, is nothing more than a form of
regularization. This is a familiar notion to the computational learning community, but for a long time
the Good–Turing estimator enjoyed favorable analysis that focused on additive error, and evaded this
kind of treatment. The essential ill-posedness of the problem was uncovered by studying relative
error. But lower bounds cannot be deduced from the failure of particular algorithms. Our result thus
completes the story, and we can now shift our attention to studying the landscape that is revealed.

The most basic set of open problems concerns establishing families that allow learning of the
missing mass. We have seen in this paper some such families, including the heavy-tailed family
learnable by the Good–Turing estimator, and simple smooth parametric families, learnable using
plug-in estimators. How do we characterize such families more generally? The next layer of questions
concerns establishing convergence rates, i.e., strong learnability, via both lower and upper bounds.
The fact that a family of distributions allows learning does not mean that such rates can be established.
This is because any estimator may be faced with arbitrarily slow convergence, by varying the
distribution in the family. In other words we may be faced with a lack of uniformity. How do
we control the convergence rate? Lastly, when learning is not possible, we may want to establish how
gracefully an estimator can be made to fail. Understanding these limitations and accounting for them
can be critical to the proper handling of data-scarce learning problems.
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Appendix A. This Appendix Presents the Proof of Theorem 2.

Let us first consider the tail estimation problem in the discrete case. Wn is still well-defined here.
But in order to clearly delineate the discrete case, let us define/rename the tail probability as:

Tn := ∑
x>maxi Xi

p(x), (A1)

and let T̂n denote an arbitrary estimator of Tn. It is immediate that Tn is identical to Wn in the discrete
case. Next, note that in the proof of Theorem 1, the pivotal event Ak given by Equation 6 forces
the missing mass to be a tail probability (see the proof of Lemma 1.) That is, under Ak, Tnk = Mnk .
It therefore follows that Lemma 1 holds with Mn and M̂n replaced by Tn and T̂n respectively. Lemma 2
only depends on the definition of the pivotal event, not the missing mass. And the argument of
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Lemma 3 follows exactly identically with again Mn and M̂n replaced by Tn and T̂n respectively
everywhere in the statement and its proof. Consequently, the proof of Theorem 1 produces the
following parallel result. There exist γ > 1 and a sequence (nk)k=1,2,··· (both universal) such that
for every T̂n we can find a distribution p? (which does depend on T̂n), such that for all k (a slight
notational change):

Pp?

{
T̂nk

Tnk

/∈
[
γ−1, γ

]}
> γ− 1. (A2)

So essentially, Theorem 2 is a direct corollary of our main result if we allow any distribution on
the real line, including discrete ones. However, we want to show that the same result holds even
over the family of properly continuous distributions, which have a density on R with respect to the
Lebesgue measure (if the density is not otherwise restricted). The proof of this fact could be done by
paralleling the proof thus far, but by dithering a continuous distribution instead. However, for the
sake of novelty, we prove it instead via reduction from discrete to continuous.

We first make a minor generalization of the discrete framework. Observe that nowhere in the
proof of Theorem 1 was M̂n required to be a deterministic function of the observation. So M̂n and
T̂n could be randomized, i.e., depend on an additional random element ζn that is independent of the
observation and any of the parameters of the problem (see Definition 1.) More rigorously, we include
this randomness in the coupling of the proof by simply letting ζn = ζ ′n always. This way, the samples
being identical still implies that the values of the estimators are identical. This is the only property of
the estimator we used and thus all the arguments follow.

The rest of the proof basically reduces the ability to learn the discrete tail with a randomized
estimator to the ability to learn the continuous tail. The claimed impossibility follows from this
reduction. Let us thus assume, for the sake of contradiction, that there exists Ŵn s.t. for all continuous
distributions F, for all η > 1:

PF

{
Ŵn

Wn
∈
[
η−1, η

]}
→ 0, as n→ ∞. (A3)

Next, recall that by construction we more precisely know that p? from earlier can be chosen from
the (β = 1

4 , m = 1)-dithered geometric( 1
2 ) family. It is easy to check that for all such distributions,

the tail is comparable to its preceding symbol’s probability. In particular it is not much smaller: there
exists κ < ∞ such that for all p in this family

max
x

p(x)
∑x′>x p(x′)

≤ κ,

and we can always choose κ >
√

γ− 1 (by capping from below). For reasons that will shortly become
apparent, choose any m such that (

1−
√

γ− 1
κ

)m
<

γ− 1
2

.

Now let G be any continuous distribution on [0, 1]. Denote by G := 1− G the corresponding tail
probability function and let G−1

(t) := inf{z : G(z) ≤ t} denote its left inverse. Note two properties:
G(z) > t and z < G−1

(t) are equivalent, and G(G−1
(t)) = t.

Let Zi,` be i.i.d. draws from G, for i = 1, · · · , n and ` = 1, · · · , m. Let ζn = (Zi,`)i=1,··· ,n; `=1,··· ,m,
and for a given observation sequence x1, · · · , xn in Nn

+, define the randomized estimator:

T̂n(x1, · · · , xn, ζn) :=
m

min
`=1

Ŵn(x1 + Z1,`, · · · , xn + Zn,`). (A4)
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For this specific choice of estimator, let p? be the distribution that yields the impossibility result in
Equation (A2). Let Xi be i.i.d. drawn from p?, independently of the infinite array (Zi,`). Observe that
then , for each `, the sequence Yi,` := Xi + Zi,` is i.i.d. distributed according to a continuous distribution
F?, and has its own tail probability Wn,` := 1 − F?(maxi Yi,`). Also, let the estimate of this tail
probability for each ` be denoted by Ŵn,` := Ŵn(Y1,`, · · · , Yn,`). Accordingly, based on our assumption,
the limiting property in Equation (A3) holds and for any η > 1:

∀` P

{
Ŵn,`

Wn,`
/∈
[
η−1, η

]}
→ 0, as n→ ∞.

Please note that if for all ` we have η−1 < a`
b`

< η then also η−1 < min` a`
min` b`

< η. Thus:

P

{
min` Ŵn,`

min` Wn,`
/∈
[
η−1, η

]}
≤ P

m⋃
`=1

{
Ŵn,`

Wn,`
/∈
[
η−1, η

]}

≤ m P

{
Ŵn,1

Wn,1
/∈
[
η−1, η

]}
→ 0, as n→ ∞. (A5)

This means that min` Ŵn,` ≡ T̂n (recall the definition of Equation (A4)) is a good estimator of
min` Wn,`. The contradiction we’re after is to show that T̂n thus defined is also a good estimator of
Tn (given by Equation (A1) with p = p?), so we need to compare min` Wn,` and Tn and show that they
are close.

Let us first fix one instance of `. For clarity, let us momentarily drop the `-notation from subscripts.
For one fixed such instance, note that Wn is a continuous tail that is coupled with Tn: they are
related through the common values of X. For notational convenience, let Xmax := maxi Xi and
let Ymax = maxi Yi. Now observe that Tn is equal to ∑x>Xmax p(x) and it is exactly the F?-measure
of the interval [Xmax + 1, ∞), by construction. On the other hand Wn is the F?-measure of the
interval [Ymax, ∞). Since Ymax ∈ [Xmax, Xmax + 1], it follows that Wn ≥ Tn. How much larger
can it get? By at most p(Xmax). More formally, we can write F?(x) = ∑x′ p(x′)G(x − x′).
Thus Wn − Tn =

∫ Xmax+1
Ymax

F?(dx) = ∑x′ p(x′)
∫ Xmax+1−x′

Ymax−x′ G(dx) = p(Xmax)G(Ymax − Xmax), since the
inner integral is non-zero only for x′ = Xmax. Define the (random) set of maximizing observations as
Imax = {i : Xi = Xmax}. Now, let us bound the probability of any particular excess beyond p(Xmax)

times a factor t ∈ (0, 1):

P{Wn > Tn + p(Xmax) · t} = P
{

G(Ymax − Xmax) > t
}
= P

{
Ymax − Xmax < G−1

(t)
}

= P
{
∀i ∈ Imax, Zi < G−1

(t)
}

= E
[
P
(⋂

i∈Imax{Zi < G−1
(t)}

∣∣∣X1, · · · , Xn)
)]

= E
[
P|Imax|{Z < G−1

(t)}
]

≤ P{Z ≤ G−1
(t)} = G(G−1

(t)) = 1− t,

(A6)

where we conditioned over all Xi, used the independence of the Zi’s from the Xi’s to write the
probability of the intersection as a product, used the fact that the Zi have identical distribution to
a generic Z, and finally bounded |Imax| (the only term still depending on the Xi’s and thus influence by
the outer expectation) by 1. The only loss here is from this replacement. This, however, can be shown
to be rather tight. For intuition, note that a geometric- 1

2 has only a single maximizing observation

in expectation, i.e., E[|Imax|] = 1. This is not good news, since p(Xmax)/Tn = p(Xmax)
∑x>Xmax p(x) is lower

bounded away from zero in the dithered geometric family, and thus this shows that we cannot expect
Tn to be arbitrarily close to a single Wn with probability that is arbitrarily large. This is true regardless
of the choice of G. This is the motivation behind choosing the smallest of m continuous versions for the



Entropy 2019, 21, 28 15 of 21

reduction, which restores the needed maneuverability for the approximation. Indeed, now restoring
the `-notation:

P{minm
`=1 Wn,` > Tn + p(Xmax) · t} = P

⋂m
`=1{Wn,` > Tn + p(x) · t}

= P
⋂m
`=1

{
∀i ∈ Imax, Zi,` < G−1

(t)
}

= E
[
P
(⋂m

`=1
⋂

i∈Imax{Zi,` < G−1
(t)}

∣∣∣X1, · · · , Xn

)]
= E

[
Pm|Imax|{Z < G−1

(t)}
]

≤ Pm{Z ≤ G−1
(t)} = G(G−1

(t))m = (1− t)m,

(A7)

where the only notable observation is that the m replicated versions compound the number of
Zs that deviate. The rest is derived in the same way as in Equation (A6). Finally, using the fact
that p(Xmax)

Tn
≤ maxx

p(x)
∑x′>x p(x′) ≤ κ, we have:

P
{

minm
`=1 Wn,`

Tn
> 1 + κt

}
≤ (1− t)m.

Specializing to 1 + κt =
√

γ, using the fact that we chose m such that
(

1−
√

γ−1
κ

)m
< γ−1

2 ,
and recalling that the ratio cannot be less than 1, we have for all n that:

P
{

minm
`=1 Wn,`

Tn
/∈
[√

γ−1,
√

γ
]}

<
γ− 1

2
. (A8)

Also specializing Equation (A5) to η =
√

γ, we have that for n large enough:

P
{

minm
`=1 Wn,`

T̂n
/∈
[√

γ−1,
√

γ
]}
≤ γ− 1

2
. (A9)

By combining these two approximations, our reduction is complete. Namely, given our
assumption (A3) that we can estimate the continuous tail, we have that for n large enough we can
estimate the discrete tail to our desired accuracy:

P
{

T̂n

Tn
/∈ [γ−1, γ]

}
< γ− 1,

which clearly contradicts the impossibility (A2) of estimating the discrete tail. More precisely, since the
continuous vs. discrete tail approximation in Equation (A8) does not depend on the assumption, it must
be that it’s Equation (A9) that fails for each (nk). Recalling the bound of Equation (A5), we must have:

mP

{
Ŵnk

Wnk

/∈
[√

γ−1,
√

γ
]}
≥ P

{
min` Wnk ,`

T̂nk

/∈
[√

γ−1,
√

γ
]}

>
γ− 1

2
.

Finally, set ε = min
{√

γ− 1, 1−√γ−1, γ−1
2m

}
with the above, to obtain the exact claim of the

theorem. Namely, for this absolute constant ε and subsequence (nk), given any Ŵn we can construct

F? as we did (with an arbitrary G), such that PF?

{
Ŵnk
Wnk

/∈ [1− ε, 1 + ε]

}
> ε for all k.
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Appendix B. This Appendix Presents the Proof of Theorem 4

Appendix B.1. Notation and Outline

Let us first set some notation. Recall that the mean of the geometric distribution
pα(x) = (1− α)αx−1 is µ = 1

1−α and its variance is σ2 = α
(1−α)2 . Let us write the empirical mean

and our parameter estimate respectively as follows:

µ̂n =
1
n

n

∑
i=1

Xi, α̂n = 1− 1
µ̂n

.

The plug-in probability estimate can be expressed as:

p̌n(x) := (1− α̂n)α̂
x−1
n .

Using our notation for the missing symbols, En := {x ∈ N+ : p̂(x) = 0}, the missing mass is

Mn = pα(En) = ∑
x∈En

(1− α)αx−1

and the suggested plug-in estimator can be written as

M̌n := p̌n(En) = ∑
x∈En

(1− α̂n)α̂
x−1
n .

The following proof first establishes the convergence of the parameter estimate and then pushes
it forward to the entire distribution, specializing in particular to the missing mass. For the latter,
we establish some basic localization properties of the punctured segment of a geometric sample
coverage. This is related to the general study of gaps, see, for example, [24].

We have the following elementary convergence property for the parameter.

Lemma A1 (Parameter Convergence). Let δ > 0, and define:

εn :=
√

α

δn
·

max{1, 1−α
α }

1−
√

α
δn

 .

Then, at every n > α
δ , we have that with probability greater than 1− δ:∣∣∣∣ α̂n

α
− 1
∣∣∣∣ ≤ εn and

∣∣∣∣1− α̂n

1− α
− 1
∣∣∣∣ ≤ εn.

If we let ηn = εn/(1− εn), we can also write this as

1
1 + ηn

≤ α̂n

α
≤ 1 + ηn and

1
1 + ηn

≤ 1− α̂n

1− α
≤ 1 + ηn.

Proof. From Chebyshev’s inequality, we know that for all δ > 0:

P
{
|µ̂n − µ| ≤ σ√

δn

}
≥ 1− δ.
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We now simply have to verify that |µ̂n − µ| ≤ σ√
δn

implies that both
∣∣∣ α̂n

α − 1
∣∣∣ and

∣∣∣ 1−α̂n
1−α − 1

∣∣∣ are
smaller than εn. Indeed, using µ̂n ≥ µ− σ√

δn
:

∣∣∣∣ α̂n

α
− 1
∣∣∣∣ = ∣∣∣∣ (µ̂n − 1)µ

µ̂n(µ− 1)
− 1
∣∣∣∣ = ∣∣∣∣(µ̂n − µ)

1
µ̂n(µ− 1)

∣∣∣∣ ≤ |µ̂n − µ| 1
(µ− σ√

δn
)(µ− 1)

and ∣∣∣∣1− α̂n

1− α
− 1
∣∣∣∣ = ∣∣∣∣ µ

µ̂n
− 1
∣∣∣∣ = ∣∣∣∣(µ− µ̂n)

1
µ̂n

∣∣∣∣ ≤ |µ̂n − µ| 1
(µ− σ√

δn
)

.

Finally, since |µ̂n − µ| ≤ σ√
δn

, both of these bounds are smaller than:

σ√
δn

1
(µ− σ√

δn
)min{1, µ− 1} =

√
α

1−α√
δn

1

( 1
1−α −

√
α

1−α
1√
δn
)min{1, α

1−α}
,

which is equal to εn. The expression with ηn follows from 1− εn = 1
1+ηn

and 1 + ηn > 1 + εn.

It follows from Lemma A1 that with probability greater than 1 − δ, we have the following
pointwise convergence of the distribution.

(1 + ηn)
−x(1− α)αx−1 ≤ p̌n(x) ≤ (1 + ηn)

x(1− α)αx−1.

Since the rate of this convergence is not uniform, we need to exercise care when specializing to
particular events. We focus on the missing symbols’ event. We have:

∑x∈En(1 + ηn)−x(1− α)αx−1

∑x∈En(1− α)αx−1 ≤ M̌n

Mn
=

p̌n(En)

pα(En)
≤ ∑x∈En(1 + ηn)x(1− α)αx−1

∑x∈En(1− α)αx−1 . (A10)

The event En is inconvenient to sum over, because it has points spread out randomly. This is
particularly true for its initial portion, where the samples “puncture” it. It is more convenient to
approximate this segment in order to bound Equation (A10). We now formalize this notion, via the
following definition.

Definition A1 (Punctured Segment). The punctured segment of a sample is the part between the end of the
first contiguous coverage and the end of the total coverage. Its extremities are:

V−n := min En and V+
n := max Ec

n.

We have the following localization property for the punctured segment of samples from
a geometric distribution.

Lemma A2 (Localization of Punctured Segment). Let X1, · · · , Xn be samples from a geometric distribution
pα(x) = (1− α)αx−1 on N+. Let V−n and V+

n be the extremities of the punctured segment as defined in
Definition A1. Then, for all u > ( α

1−α )
2, we have:

P{V−n < log1/α(n)− log1/α(u)} < 2e−
1−α

α u <
α

(1− α)u
,

P{V+
n > log1/α(n) + 1 + log1/α(u)} <

1
u

.

In particular, for δ < (1− α)/α2, we have that with probability greater than 1− δ:

log1/α(n)− log1/α

[
1

(1−α)δ

]
≤ V−n < V+

n ≤ log1/α(n) + 1 + log1/α

[
1

(1−α)δ

]
.
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Proof. Given an integer a ≥ 2, the event that V−n < a implies that at least one of the symbols below
a did not appear in the sample. By using the union bound, we thus have that:

P{V−n < a} ≤ ∑a−1
x=1

[
1− (1− α)αx−1

]n

= ∑a−1
`=1

[
1− (1− α)nαa−1−`

n

]n

≤ ∑a−1
`=1 exp

[
−(1− α)nαa−1−`

]
≤ ∑∞

`=1 exp
[
−(1− α)nαa−1−`

]
By specializing to a(u, n) =

⌊
log1/α(n) + 1− log1/α(u)

⌋
:

P{V−n < log1/α(n)− log1/α(u)} ≤ P{V−n < a(u, n)}

≤ ∑∞
`=1 exp

[
−(1− α)nαlog1/α(n)−log1/α(u)−`

]
= ∑∞

`=1 exp
[
−(1− α)α−`u

]
.

Lastly, if u > ( α
1−α )

2, one can show by induction that (1− α)α−`u ≥ 1−α
α u + `− 1. This turns the

sum into a geometric series, giving:

P{V−n < log1/α(n)− log1/α(u)} ≤ e−
1−α

α u ∑∞
`=1 e−`+1 < 2e−

1−α
α u <

α

(1− α)u
.

Next, note that V+
n is nothing but the maximum of the samples. Thus, given an integer b ∈ N+,

the event V+
n > b is the complement of the event that all the samples are at b or below. Since the total

probability of the range 1, · · · , b is 1− αb, we thus have:

P{V+
n > b} = 1− (1− αb)n.

If we now specialize to b(u, n) =
⌈
log1/α(n) + log1/α(u)

⌉
, we have that:

P{V+
n > log1/α(n) + 1 + log1/α(u)} ≤ P{V+

n > b(u, n)}

≤ 1−
(

1− αlog1/α(n)+log1/α(u)
)n

= 1−
(

1− 1
u · n

)n
<

1
u

.

For the last part of the claim, we let u = 1
(1−α)δ

, followed by a union bound on the analyzed

events. This gives us that at least one of the two events holds with probability at most 1
u + α

(1−α)u = δ,
and therefore neither holds with probability at least 1− δ, as desired.

Appendix B.2. Completing the Proof

We now put together the pieces of the proof of Theorem 4. To show that our estimator learns
the missing mass in relative error with respect to G, we obtain the following equivalent statement.
Fix δ > 0 and η > 0. We prove that for n large enough with probability greater than 1− 2δ we have:

1
1 + η

<
M̌n

Mn
< 1 + η.

Without loss of generality, to satisfy the conditions of Lemmas A1 and A2, we restrict ourselves
to δ < (1− α)/α2 (we can always choose a smaller δ than specified) and n > α

δ (we can always ask
for n to be larger). As such, we have that with probability at least 1− 2δ, both events of Lemmas A1
and A2 occur. We work under the intersection of these events.
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We give the details of only the right tail of the convergence; all the steps can be directly paralleled
for the left tail. To see why the punctured set is a useful notion, we claim that the following quantity
upper bounds the right tail of Equation (A10):

∑x>V+
n
(1 + ηn)x(1− α)αx−1

∑x>V+
n
(1− α)αx−1 = (1 + ηn)

V+
n

∑y∈N+
(1 + ηn)y(1− α)αy−1

∑y∈N+
(1− α)αy−1 = 1

= (1 + ηn)
V+

n
(1− α)(1 + ηn)

1− α(1 + ηn)
. (A11)

where for the first equality we have used the change of variable y = x − V+
n and simplified the

common α factors in the numerator and denominator, and for the second equality we have used the
moment generating function of the geometric distribution: E[esX ] = (1− α)es/(1− αes). To prove this
claim, we proceed by induction, starting at step t = 1 with the set G(1) := {V+

n + 1, V+
n + 2, · · · } ⊂ En,

adding at every step t the largest element z(t) of En not yet in G(t−1) to obtain G(t), and proving that:

∑x∈G(t)(1 + ηn)x(1− α)αx−1

∑x∈G(t)(1− α)αx−1 ≤ ∑x∈G(t−1)(1 + ηn)x(1− α)αx−1

∑x∈G(t−1)(1− α)αx−1 .

We use the following basic property that for positive real numbers a1, b1, a2, b2, the following three
equalities are equivalent (these are mediant inequalities):

(i) a1/b1 ≤ a2/b2,
(ii) a1/b1 ≤ (a1 + a2)/(b1 + b2),
(iii) (a1 + a2)/(b1 + b2) ≤ a2/b2.

For the base case, let a2 = ∑x∈G(1)(1 + ηn)x(1− α)αx−1 and b2 = ∑x∈G(1)(1− α)αx−1. We then

choose the largest z(1) ∈ En \ G(1) and we let a1 = (1 + ηn)z(1)(1− α)αz(1)−1 and b1 = (1− α)αz(1)−1.
From (A11), noting that the fraction is always greater than 1, it follows that a2/b2 > (1 + ηn)V+

n > (1 +
ηn)z(1) = a1/b1. We can thus add z(1) to the sum, and obtain (a1 + a2)/(b1 + b2) ≤ a2/b2, establishing
the base case. Please note that this also shows that (a1 + a2)/(b1 + b2) ≥ a1/b1 = (1 + ηn)z(1) . We pass
this property down by induction, and we can assume this holds true at every step.

To continue the induction at step t, let a2 = ∑x∈G(t−1)(1+ ηn)x(1− α)αx−1 and b2 = ∑x∈G(t−1)(1−
α)αx−1. As noted, we assume that a2/b2 ≥ (1 + ηn)z(t−1)

from the previous induction step. We then
choose the largest z(t) ∈ En \ G(t−1) and we let a1 = (1 + ηn)z(t)(1− α)αz(t)−1 and b1 = (1− α)αz(t)−1.
Since z(t−1) < z(t), it follows that a2/b2 ≥ (1 + ηn)z(t−1)

> (1 + ηn)z(t) = a1/b1. We can thus add
z(t) to the sum, and obtain (a1 + a2)/(b1 + b2) ≤ a2/b2, as desired. Note that this also shows that
(a1 + a2)/(b1 + b2) ≥ a1/b1 = (1 + ηn)z(t) , and the induction is complete.

By combining this result with the equivalent argument on the left side, we have shown that we
can replace Equation (A10) by

∑x≥V−n
(1 + ηn)−x(1− α)αx−1

∑x≥V−n
(1− α)αx−1 ≤ M̌n

Mn
=

p̌n(En)

pα(En)
≤

∑x>V+
n
(1 + ηn)x(1− α)αx−1

∑x>V+
n
(1− α)αx−1

or equivalently by

(1 + ηn)
−V−n +1 (1− α)(1 + ηn)−1

1− α(1 + ηn)−1 ≤
M̌n

Mn
≤ (1 + ηn)

V+
n
(1− α)(1 + ηn)

1− α(1 + ηn)
. (A12)

In Lemma A1 we have set:
ηn = εn/(1− εn),
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with

εn :=
√

α

δn
·

max{1, 1−α
α }

1−
√

α
δn

 .

On the other hand, by Lemma A2, we have that:

V+
n ≤ log1/α(n) + 1 + log1/α

[
1

(1−α)δ

]
and

V−n ≥ log1/α(n)− log1/α

[
1

(1−α)δ

]
.

It follows that both bounds of Equation (A12) converge to 1, at the rate of roughly log(n)/
√

n,
instead of the parametric rate 1/

√
n. Regardless, for any desired η > 0, we get that there exists a large

enough n beyond which, with probability greater than 1− 2δ, we satisfy:

1
1 + η

≤ M̌n

Mn
≤ 1 + η.

This establishes that M̌n learns Mn, as desired.
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