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Abstract: Low-speed streaks in wall-bounded turbulence are the dominant structures in the near-wall
turbulent self-sustaining cycle. Existing studies have well characterized their spanwise spacing in
the buffer layer and below. Recent studies suggested the existence of these small-scale structures in
the higher layer where large-scale structures usually receive more attention. The present study is
thus devoted to extending the understanding of the streak spacing to the log layer. An analysis is
taken on two-dimensional (2D) wall-parallel velocity fields in a smooth-wall turbulent boundary
layer with Reτ = 440„2400, obtained via either 2D Particle Image Velocimetry (PIV) measurement
taken here or public Direct Numerical Simulation (DNS). Morphological-based streak identification
analysis yields a Re-independent log-normal distribution of the streak spacing till the upper bound of
the log layer, based on which an empirical model is proposed to account for its wall-normal growth.
The small-scale part of the spanwise spectra of the streamwise fluctuating velocity below y` = 100 is
reasonably restored by a synthetic simulation that distributes elementary streak units based on the
proposed empirical streak spacing model, which highlights the physical significance of streaks in
shaping the small-scale part of the velocity spectra beyond the buffer layer.

Keywords: turbulent boundary layer; low speed streaks

1. Introduction

Low-speed streaks in wall-bounded turbulence, which were first observed by Hama and
Nutant [1], Ferrell et al. [2], refer to narrow strips of low-momentum coherent motions extending
lengthwise in the streamwise direction. These structures populate in the near-wall region, present
quasi-regular distribution along the spanwise direction, and are always accompanied by trains of
quasi-streamwise vortices with shorter length located in higher layer [3,4]. The origin of these streaks
was attributed to the lift-up of low-momentum fluids from the wall under the induction of streamwise
vortices [3,5–9], which transfers the energy from mean shear to turbulent fluctuations [10–12] and can
be mathematically explained by a transient growth of three-dimensional (3D) disturbances due to the
non-orthogonal eigenmodes in the linearized Navier-Stokes operator [13–16].

Low-speed streaks have been widely accepted as the building block of the inner-layer turbulent
self-sustaining cycle [4,17–20]. The so-called bursting process, which usually denotes the whole
dynamic process of the streak lift-up, oscillation and breakdown [19,21–23], was found to contribute to
all the turbulent production and a large portion of the Reynolds stress generation in the buffer layer
and below [17,19,22,24]. The generation and self-sustaining of near-wall streamwise vortices can be
well explained by a streak transient growth mechanism [4], which was supported by observations that
streak breakdown leads to the generation of either streamwise vortices or hairpin vortices dependent
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on the symmetry of the streak perturbation [25–27]. Hwang and Bengana [23] and Hwang et al. [28]
recently reported a self-sustaining process of attached eddies in the log layer and above, in which
streaks and streamwise vortices with various length scales evolve in a way similar to those in the
near-wall region.

One of the ‘old’ issues related to low-speed streaks is their spanwise length scales. Note that in
early wall-parallel flow visualizations [29,30], streamwise vortices were not differentiated from streaks.
These two tightly-related structures contribute equivalently to the spanwise spectra of u component
fluctuating velocity, as has been evidenced in Hwang [8] and Hwang and Bengana [23]. The spanwise
spacing of neighboring streaks λ (abbreviated as streak spacing in the following) thus serves as
a typical measure of the lateral length scale of near-wall structures. It is well known that in the buffer
layer and below, the mean streak spacing scaled by inner variables is λ

`
“ λuτ{ν „ Op102q (uτ is

the friction velocity and ν the kinematic viscosity), and grows with respect to the wall-normal height
y` (y` “ yuτ{ν) [29,31–35]. An asymptotic linear scaling λ

`
„ 2y` beyond y`=10 was reported by

Nakagawa and Nezu [36], who attributed it to the streak pairing process. Smith and Metzler [30]
further suggested that merging and intermittency of streaks are responsible for the increase of λ

`
in

the region of 10 ă y` ă 30.
Previous studies examining the streak spacing using different methods are summarized in Table 1.

As can be seen, most of them focused on the streak spacing in the near-wall region and suggested
a Re-independency of the wall-normal growth of λ

`
below y` = 30. This idea is consistent with the

traditional viewpoint that near-wall energetic dynamics are independent of outer region, which is
supported by both a minimum turbulent channel DNS [19,37] and a turbulent channel DNS with
large-scale motions being artificially removed [8,28,38]. However, the existence of large- and very
large-scale motions (LSMs and VLSMs) in outer region, which significantly affect the production of
Reynolds shear stress (RSS), turbulent kinetic energy (TKE) and skin friction [39–49], forms a high-Re
effect [50,51] by the so-called outer-layer influence. Rao et al. [21] was one of the first to experimentally
show that the bursting frequency of near-wall cycle scales on the boundary layer thickness δ, which
implies that large scales exert influence in the near-wall region. Bradshaw and Langer [52] reported
a Re-dependency of the strength of near-wall streaks, which was recently deemed as an amplitude
modulation of small-scale fluctuations by LSMs or VLSMs [50,53–59]. To our regards, the amplitude
modulation does not conflict to the invariance of the length scale of small-scale coherent motions.
Nevertheless, spectral analysis by Hoyas and Jiménez [60], Jiménez and Hoyas [61] and Hwang [8] all
suggest a Re-dependency of the energetic small scales in spectral domain.

The value of studying the wall-normal variation of the lateral scale of small-scale streaks lies in
the following considerations. First, the attached-eddy hypothesis [62–66] implies a linear growth of
the spanwise length scale of energy-containing motions. Various scalings, i.e., y « 1λz in Tomkins
and Adrian [41], y « 1{3λz in Del Álamo and Jiménez [11] and y “ 0.1λz in Hwang [67], have been
proposed to characterize the wall-normal growth of the lateral length scale λz of certain kind of
large-scale structures. In addition, Baars et al. [68] recently identified a self-similar wall-attached
structure whose streamwise/wall-normal aspect ratio is λx{y « 14. None of these scalings seems
to be suitable for small-scale ones. Indeed, whether or not these small-scale structures present an
attached-eddy behavior is still unclear. Study on this issue might promote the understanding of how
small energetic scales originated from the near-wall region behave in higher flow layers and what
kind of influence large-scale structures exert on them. Secondly, to inhibit streak-centered near-wall
dynamics via riblet [69], discrete roughness elements [70] or active wall actuator [71], the streak
spacing is a key parameter to be known in advance. Moreover, large-eddy simulation (LES) might get
improved if the spanwise distribution of streaks in the near-wall region can be modeled correctly.
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Table 1. Summary of previous studies on the spanwise spacing of low-speed streaks.

Studies Flow Type Reτ y` λ
`

∆Z` Distribution Method

Coantic [32] Pipe flow 2500 (Reθ) y` ă 5 110–130 ´ ´ Hot-wire with correlation analysis
Schraub and Kline [72] Boundary layer 501 y` ă 5 100˘ 20 ´ ´ Dye and H2 bubble visualization
Kline et al. [29] Boundary layer 431, 501 y` « 2 91, 106 500 ´ Dye and H2 bubble visualization
Bakewell Jr and Lumley [73] Boundary layer „239 y` “ 0–7 80–100 ´ ´ Hot-wire with space-time correlation
Gupta et al. [33] Boundary layer 870–2160 y` “ 3.4–10.8 97.5–151.2 373 ´ Hot-wire with short duration correlation
Lee et al. [34] Pipe flow 1735–2045 (Reθ) y` ă 0.5 105-107 250 Lognormal Electrochemical measurement with spatial correlation
Nakagawa and Nezu [36] Channel flow 318, 696 y` “ 10–100 100–1000 3000 Lognormal Hot-wire with conditional correlation
Smith and Metzler [30] Boundary layer 1040 y` “ 1–30 93–146 1000 Lognormal Hydrogen bubbles visualization
Kim et al. [74] Channel flow 180 y` “ 1–23 100–125 1150 ´ Averaged correlation
Klewicki et al. [35] Atmospheric surface layer 3ˆ 105 y` “ 3.4 93.1 ´ ´ Fog visualization
Lagraa et al. [75] Boundary layer 1170 y` “ 0–50 100–180 216 ´ Electrochemical measurement with space-time correlation
Lin et al. [76] Boundary layer 7800 (Reθ) y` “ 15–50 110–120 320 Rayleigh Stereo-PIV with morphological analysis
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Based on these reasons, the present work is devoted to studying the streak spacing from the buffer
layer to the upper bound of the log layer at low-to-moderate Re. One may argue that streaks only
populate in the buffer layer and below, as has been stated by Smith and Metzler [30]: Due to the streak
merging and coalescence event, ‘for y` ě 30 streak identification becomes very uncertain, such that
a process of systematic visual streak counting becomes too subjective’. To our knowledge, this statement
only stresses the difficulty in detecting streaks in higher layers. Ganapathisubramani et al. [42] identified
eddy packets from PIV measured wall-parallel velocity fields via feature extraction algorithm, the most
probable length and width of these structures were found to follow inner scaling even in the log layer,
with magnitudes comparable to those of near-wall streaks (see Figure 3 in Ganapathisubramani et al. [42]
for illustration).

Hwang [8] took a numerical experiment to show that near-wall streaks and streamwise vortices
can survive in outer layer if large-scale motions in the log layer and the wake region are removed.
The velocity-vorticity correlation structure in turbulent channel flow at Reτ « 180, as recently identified
by Chen et al. [77], well captures the geometrical feature of near-wall streaks and streamwise vortices,
its spanwise width follows a scaling of λz

` “ 0.31y` ` 30.3 till y` « 140. Moreover, Lee et al. [48]
attributed the primary source of the generation of outer-layer LSMs as the growing and merging of
low-speed streaks which seem to lift from the near-wall region, which was supported by a DNS study
of a minimum turbulent channel flow at low Re [78]. These studies imply the existence of streaks in
higher layers. Here, we refer the term ‘streak’ as a generalized branch of small-scale structures, which
share geometric and kinematic similarity with near-wall streaks and streamwise vortices. Note that
LSMs and VLSMs are still streak-like, but are not included in this terminology due to their rather large
length scale.

To study the streak spacing in a turbulent boundary layer, 2D velocity fields in multiple
wall-parallel planes either measured by 2D planar PIV or sliced from 3D DNS dataset are analyzed.
The studied Reynolds number covers a range of Reτ = 440„2430. Section 2 gives a brief description of
the PIV/DNS dataset. Section 3 provides statistical evidence for the existence of small-scale streaks
in flow layer beyond the buffer region. Section 4 deals with a morphological streak identification
analysis, a log-normal distribution of the streak spacing with less Re-dependency is observed, and an
empirical model is developed to account for its wall-normal growth from the buffer layer to the upper
bound of the log layer. Finally, a simplified synthetic test is taken in Section 5. It is found that by only
considering the distribution of spanwise-spaced streaks, the small-scale part of the spanwise spectra
of the streamwise fluctuating velocity can be fairly well restored till the lower bound of the log layer.
Concluding remarks are then given in Section 6.

2. Description of the PIV/DNS Dataset

2.1. Experiment Facilities and PIV Measurement Details

In the present study, both PIV-measured 2D wall-parallel velocity fields and DNS-obtained 3D
volumetric velocity fields of a smooth-wall turbulent boundary layer are analyzed. The PIV dataset
includes two configurations. One has a small field-of-view (FOV) comparable to most of the previous
studies, and the other achieves a rather large FOV (on the order of δ) to clarify the effect of limited FOV
on the streak spacing statistics. In the following, x{y{z denotes the streamwise/wall-normal/spanwise
direction, and u{v{w the corresponding fluctuating velocity component.

For the first measurement, a flat-plate turbulent boundary layer was developed on the bottom
wall of the test section of a low-speed recirculating water channel in Beihang University. The test
section of this facility is made of hydraulic-smooth glass and has a size of 3 m in length, 0.7 m
in height, and 0.6 m in width. With a typical free-stream velocity U8= 0.2 m/s, the free-stream
turbulence intensity is about Tu “ 0.5%. Boundary layer transition was triggered by a tripping wire
with a diameter of 3 mm placed at 0.1 m downstream the test section inlet. The sampling station
located at 2.2 m downstream the tripping wire, where the boundary layer develops to full turbulence
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with satisfying zero-pressure-gradient (ZPG) condition. By changing U8, three frictional Reynolds
number Reτ “ uτδ{ν = 444, 761 and 1014 were achieved. They are labeled as SE1„SE3 in Table 2, with
‘S’ short for small FOV and ‘E’ for experiment.

The large FOV measurement was performed in a large low-speed recirculating water tunnel in
Beihang University. This facility has a main test section with a size of 18 m in length, 1.2 m in height,
and 1 m in width, and the typical Tu is about 0.8% when U8 = 0.5 m/s. A flat plate with a length of
15 m was vertically positioned in the main test section to develop a thick turbulent boundary layer.
This flat plate was assembled from 5 hydraulic-smooth Acrylic plates with lengths of 3 m, widths
of 1 m, and thicknesses of 20 mm. Its leading edge had a 4:1 half-elliptical shape to avoid local flow
separation. The working surface has a distance of 0.75 m from the tunnel’s side wall. For a typical
boundary layer thickness δ ă 0.2 m or about 25% of the gap, the effect of the side wall is negligible.
The water depth was 1.0 m, the wall-parallel PIV sampling region had a vertical span of about 0.268 m
and was centered at 0.47 m below the free water surface and 0.53 m above the bottom wall, far enough
to neglect the free-surface/bottom-wall effect. A tripping wire with a diameter of 3 mm was glued
onto the working surface at 0.4 m downstream the leading edge. The PIV sampling station was 12 m
downstream. More details of the setup of this measurement can be found in Wang et al. [79]. Two cases
with Reτ = 1135 and 2431 were measured, denoted as LE1 and LE2 in Table 2 (‘L’ for large FOV). Note
that due to the long distance of the development, the boundary layer in the measurement station
suffered a minor favorable pressure gradient (FPG), the acceleration parameter K (K “ pν{U2

8qdU8{dx)
was 0.4ˆ 10´7„0.5ˆ 10´7. According to Harun et al. [80], a slight FPG condition will not significantly
affect the energetic dynamics of large-scale structures in the outer region but only slightly increase their
amplitude modulation degree to near-wall small-scale ones. We thus infer that the present minor FPG
condition will not significantly bias the streak spacing statistics from other ZPG cases, this inference
will be evidenced later.

Figure 1 shows the wall-normal profiles of both the mean streamwise velocity U`py`q and the
streamwise velocity fluctuation intensity u`rmspy`q obtained by a side-view 2D PIV measurement in x-y
plane for all the SE and LE cases. Note that the frictional velocity uτ are estimated by the Clauser fit of
the U`py`q profiles with κ = 0.41 and B = 5.0 [81,82]. The empirical model of u`rmspy`q in Marusic and
Kunkel [83] is supplemented in Figure 1b for a comparison. Figure 1b evidences that the minor FPG
condition in the LE cases only slightly suppresses urms in the outer region. Table 2 summarizes the
characteristic boundary layer parameters, most of which in the SE and LE cases, i.e., the shape factor
H and the inner-scaled edge velocity U`8, are consistent with those in the canonical ZPG turbulent
boundary layers well studied in the past [84–88].

Two-dimensional PIV was used to obtain instantaneous 2D velocity fields in multiple wall-parallel
x-z planes. The flow field was seeded with hollow glass beads whose median diameter was 10 µm
and density 1.05 g/mm3, and was illuminated by a double-pulsed laser sheet with thickness of about
1 mm issued from a Nd:YAG laser generator (Beamtech Vlite-500, Beijing, China) at energy output of
200 mJ/pulse. For the small-FOV LE cases, one CCD camera (Imperx ICL-B2520M, Boca Raton, FL,
USA) with a resolution of 2456ˆ 2048 pixels was used for image recording. To guarantee a comparable
inner-scaled magnification, a Nikkor 50 mm f/1.8D lens was used for the SE1 case and a Tamron
90 mm f/2.8D lens for the SE2 and SE3 cases. The FOV was 85ˆ 101 mm2 (streamwise span ∆X ˆ
spanwise span ∆Z) and 36ˆ 43 mm2, respectively. The corresponding magnification were 0.24, 0.2 and
0.285 wall units/pixel. In the large-FOV LE cases, 8 synchronized CCD cameras (Imperx ICL-B2520M)
mounted with Nikkor 50 mm f/1.8D lens were arranged in a 4ˆ 2 array with 10„15 mm overlap in
the image plane, and jointly provided a total FOV of 636 ˆ 268 mm2. The magnification was 0.39
and 0.96 wall units/pixel in the LE1 and LE2 case, respectively. The inner-scaled FOV are listed in
Table 2. To explore the effect of the FOV truncation effect (in Section 4.1), velocity fields in the LE2
case will be sliced to a FOV span ∆Z` = 1500, the same to that of the LE1 case when necessary. In both
PIV configurations, around 3600 pairs of particle images were recorded at each measurement plane.
The sampling repetition rate was 7.5 Hz in the SE cases and 5 Hz in the LE cases. The whole sampling
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duration Tuτ{δ, as listed in Table 2, was large enough for the convergence of the second-order statistics
of the fluctuating velocity.
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Figure 1. Wall-normal variation of (a) the mean streamwise velocity U`py`q and (b) the streamwise
velocity fluctuation intensity u`rmspy`q in the SE and LE cases. Straight dashed lines in (a) indicate
the linear law and the log law, respectively. Curves in (b) are u`rmspy`q predicted by the empirical
model of Marusic and Kunkel [83]. The present cases are represented by solid markers listed in Table 2.
The same legend will be used in the following unless mentioned specifically.

Table 2. Summarization of characteristic boundary layer parameters. SE1„SE3 are small-field-of-view
(FOV) particle image velocimetry (PIV) cases; LE1 and LE2 are large-FOV PIV cases; LD0„LD3 are
large-FOV direct numerical simulation (DNS) cases from Simens et al. [89] and Sillero et al. [90,91].

Cases U8 Reθ
δ H uτ Reτ

FOV Spatial Res. Tuτ{δ Marker(mm/s) (mm) (mm/s) ∆X` ˆ ∆Z` ∆x` ˆ ∆z`

SE1 146 908 75.5 1.46 6.7 444 480ˆ 600 6 ˆ 6 43 ‚

SE2 299 2044 65.8 1.39 13.1 761 400ˆ 500 5 ˆ 5 97 ‚
SE3 455 3125 62.1 1.37 18.6 1014 560ˆ 700 7 ˆ 7 144 ‚
LE1 145 2983 202 1.32 5.6 1135 4000ˆ 1500 9 ˆ 9 22 ˛
LE2 340 5076 174 1.30 13.7 2431 8900ˆ 3750 23 ˆ 23 57 ˛

(8900ˆ 1500q
LD0 999 945 2.6 1.43 47.8 440 2000ˆ 1500 6 ˆ 4 - ‚

LD1 1001 3100 7.6 1.38 40.3 1100 2000ˆ 1500 7 ˆ 4 - ‚

LD2 1002 4800 11.4 1.37 38.1 1500 2000ˆ 1500 7 ˆ 4 - ‚
LD3 1001 6500 15.4 1.36 36.8 2000 2000ˆ 1500 7 ˆ 4 - ‚

An optical flow solver based on the Lucas-Kanade algorithm was used to calculate 2D velocity
fields from particle image pairs via GPU acceleration [92,93]. The interrogation window in the final
pass was 48ˆ 48 pix with an overlap of 75%. The spatial resolution was about 6 wall units/vector in
the SE cases and increased to 9 and 23 wall units/vector in the LE cases. The straddle time within the
image pairs was selected to keep the maximum particle offset around 14„16 pixels in the image plane.
The relative error of the velocity measurement was estimated to be less than 1%.

The optical system was mounted on a linear stage, allowing the wall-normal offset of the laser
sheet at a resolution of 0.01 mm. A comparison of the U`py`q and u`rmspy`q profiles obtained by the
wall-parallel PIV measurement with those by side-view measurement showed satisfying consistency
(not shown here for simplicity). The uncertainty of the laser sheet positioning was estimated to be
around σ`y = 1„3. In the large-FOV LE cases, a 450 inclined reflective mirror with length of 100 mm
and width of 10 mm was positioned at 0.8 m downstream the end of the FOV, it reflected the laser sheet
towards upstream to provide a large illumination extent without substantially affecting the upstream
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flow field. Cylindrical lenses with long focus length were used to keep the laser sheet thickness
be around 1 mm over a distance of 2 m. The wall-parallel condition was checked by keeping the
variation of the height of the laser sheet less than 0.5 mm over a distance of 1.5 m. Table 3 summarizes
the wall-parallel planes being measured. According to Klewicki et al. [94] and Marusic et al. [82],
the upper bound of the log layer can be estimated as around y{δ = 0.15. The planes above this height
are labeled with asterisks ˚. Note that the lowest measurement position was constrained by the laser
sheet thickness, the wall reflection and the width of the immersed mirror, and was ymin = 3 mm above
the wall for the SE cases and ymin = 5 mm for the LE cases.

2.2. DNS Dataset

Four DNS datasets of a spatially developing turbulent boundary layer over a smooth wall are
also analyzed. As shown in Table 2, the LD0 case (‘L’ for large FOV and ‘D’ for DNS) with Reτ = 440
was obtained by Simens et al. [89], and the LD1„LD3 cases with Reτ = 1100„2000 were obtained by
Sillero et al. [90,91]. Readers can refer to Simens et al. [89], Sillero et al. [90,91], Borrell et al. [95] for
detailed description about these DNS datasets.

Each LD case analyzed here contains 20 snapshots of instantaneous 3D volumetric velocity fields,
which are available online (http://torroja.dmt.upm.es/ftp/blayers/). Planar velocity fields in multiple
x-z planes (as indicated in Table 3) were sliced from these snapshots with streamwise extent of 2000 wall
units and spanwise extent covering the whole simulation domain (i.e., 6000 wall units for the LD0 case
and about 16,000 wall units for the LD1„LD3 cases). They were then cut into smaller sections with
a size of ∆X` ˆ ∆Z` = 2000 ˆ 1500, making ∆Z` comparable to those in the LE cases. This formed an
ensemble of about 80 realizations in the LD0 case and 200 realizations in the LD1„LD3 cases. As will
be shown in Section 4.1 and Appendix B.3, the ensemble size is large enough for the convergence of
the probability density function (PDF) of the streak spacing in the log layer and below. One advantage
of DNS dataset is that the inner-layer is fully-resolved, which provides an ideal supplement for the
PIV experiment which is limited by the lowest measurement plane.

Table 3. Summarization of wall-parallel planes being studied. Those planes at y{δ ą 0.15 are indicated
by asterisks.

Case Reτ ∆Z` Wall-Normal Height y`

SE1 444 600 17 24 29 35 47 59 76 * 94 * 118 * 147 * 182 * 223 *
SE2 751 500 35 46 58 70 93 116 * 150 * 185 * 231 *
SE3 1014 700 49 65 81 98 131 163 * 212 *
LE1 1135 1500 28 57 113 226 *
LE2 2431 1500 70 140 280

LD0„LD3 440„2000 1500 5„223

3. Existence of Small-Scale Streak in Higher Layer

To study the streak spacing beyond the buffer layer, the first issue to be clarified is whether they
exist in higher flow layer with statistical significance. Figure 2 illustrates typical instantaneous upx, zq
fields in the LE1 case at y` = 28 (in the buffer layer) and y` = 226 (above the upper bound of the
log layer). It can be visually identified that small-scale streaks and LSMs are dominant structures at
y` = 28 and y` = 226, respectively. But structures with length scales far from the local most energetic
scale are also observable in both flow layers.

For a quantitative description of such a multi-scale feature, a flow-field scale separation is
desired. Fourier-based scale filtering was commonly used for this purpose [48,54], its limitation
is the arbitrariness in the selection of the scale cutting-off threshold. Another popular method is
the Empirical Mode Decomposition (EMD) and its derivatives [79,96], which empirically separates
the length scales without reference to a fixed scale threshold. Nevertheless, EMD-based method
usually requires a predetermined mode number, and its physical interpretation is not as clear as

http://torroja.dmt.upm.es/ftp/blayers/
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Fourier decomposition. In the present study, Proper Orthogonal Decomposition (POD) is used as an
alternative. POD has been used as a scale-filtering tool to isolate large-scale structures from small-scale
ones in wall-bounded turbulence [45,97]. In essence, it decomposes a given space-time realization
Vpx, tq into a linear combination of a set of orthogonal bases whose spatial and temporal dimension
are fully decoupled as:

V px, tq “
N
ÿ

n“1

an ptq φn pxq “
s
ÿ

n“1

an ptq φn pxq
loooooooomoooooooon

VL

`

N
ÿ

n“s`1

an ptq φn pxq
loooooooooomoooooooooon

VH

. (1)

In Equation (1), anptq is the time coefficient of the nth mode, φnpxq is the corresponding mode
basis function and N is the total number of the POD modes. The decomposition is based on an optimal
energy recovery criteria, i.e., the TKE recovery using the POD mode bases is always the best for each
level of reconstruction. In this sense, POD decomposes the flow-field ensemble by energy content,
in distinct contrast to the scale-based decomposition methods (FFT filtering or EMD). The multi-scale
structures in wall-bounded turbulence have different TKE contribution, so that they are projected onto
different POD modes.

Figure 2. A snapshot of streamwise fluctuating velocity field u{U (pseudo-color maps) in the LE1
case at (a,b) y` = 28 and (c,d) y` = 226. Proper orthogonal decomposition (POD)-separated high-
and leading-order field, i.e., uH and uL, are superimposed in (a,c) and (b,d) as isolines, respectively.
The solid isolines represent low-speed regions with the level of uH|L “ ´0.05U. The bold isoline in (b)
indicates a region of the amalgamation of several small-streak streaks to form a large-scale structure
in uL, while bold isolines in (c) indicate streaks which are isolated from large-scale motions (LSMs)
revealed in uL.

Snapshot POD analysis [98,99] is applied to all the SE and LE cases. As a supplementary
illustration, Appendix A illustrates the cumulative TKE contribution of all the POD modes, the
characteristic spanwise length scale carried by each mode and the typical mode basis functions in the
LE1 case. Since the POD modes are ranked by their relative TKE contribution Ek “ λk{ΣN

n“1λn with
λn the eigenvalue of the nth mode, a cumulative energy cut-off threshold Ps “ Σs

n“1En can be set to
separate all the POD modes into a leading-order group including the first s modes and a high-order
group containing the rest N ´ s` 1 ones. Similar to Wu and Christensen [45] and Deng et al. [97],
velocity field reconstruction using these two mode groups via the right part of Equation (1) is taken.
This separates the original full-order V into a leading-order VL and a high-order VH . In the following,
the energy cut-off threshold is set as Ps = 0.5, i.e., VL and VH equally contribute to 50% of the total
TKE. Additional tests showed that a moderate change of Ps around 0.5 will not significantly affect



Entropy 2019, 21, 24 9 of 29

the characteristic scales contained in VL and VH . Appendix A further shows that all the modes with
spanwise scale larger than δ are fully sorted into the leading-order group when Ps = 0.5.

The scale-separated velocity fields are visualized as the isolines of uH|L = 0.05U superimposed
onto the full-order u field in Figure 2a–d, respectively. In the near-wall region, the footprint of
outer-layer LSMs can be visualized as the amalgamation/coordination of several small-scale streaks to
a larger one (see the structure highlighted with bold isolines in Figure 2b for example). While in the
log layer and above, uH captures the core regions of LSMs. Small-scale structures independent from
LSMs also appear now and then in uH (as indicated bold isolines in Figure 2c). They have reduced
streamwise extent and expanded spanwise scale if compared to the near-wall streaks.

Figure 3 further shows the pre-multiplied spanwise spectra kzΦuupλ
`
z q of the LE1 case (with

Reτ = 1135, bold solid curves) at various y`. Agreement with those of the LD1 case (with Reτ = 1100,
dashed curves in Figure 3) is observed. Both cases present a quick increase of the most energetic length
scale from λΦ

z
`
„ Op102q at y` = 28 (in Figure 3a) to λΦ

z „ δ at y` = 113 (in Figure 3c). The spectra
profiles kzΦuLuLpλ`z q and kzΦuHuH pλ`z q of the POD-separated uL and uH are also shown in Figure 3
(as thin solid curves): the inner-scaled and outer-scaled spectrum peak can be now distinguished from
each other at each flow layer. This evidences that the decoupling of TKE via POD does lead to the
separation of length scales. More importantly, a distinct peak always appears in the kzΦuHuH spectra
till the upper bound of the log layer. To our regards, this spectra peak is attributed to the streak-liked
structures in uH as visualized in Figure 2, the corresponding peak λz can thus be interpreted as the
characteristic spanwise scale of these structures. This is supported by the observation that λz of the
kzΦuHuH peak always has correspondence with the most probable streak spacing (dashed lines in
Figure 3), which will be discussed in Section 4.

Figure 3. Comparison of premultiplied spanwise spectra kzΦuu of the full-order u fields with
kzΦuL|H uL|H of the POD-separated leading- or high-order uL|H fields in the LE1 case at (a) y` “ 28;
(b) y` “ 57; (c) y` “ 113 and (d) y` “ 226. kzΦuu in the LD1 case is also given for a comparison.

: kzΦuu of LE1; : kzΦuu of LD1; : kzΦuL|H uL|H of LE1 with Ps = 0.5. Vertical dashed lines
are the most probable streak spacing λ`mp predicted by the empirical model in Section 4.2.



Entropy 2019, 21, 24 10 of 29

The prevalence of small-scale streak-liked structures in higher layers can be further
evidenced by the map of two-point correlation coefficient R, which was widely used in previous
researches [36,41,43,53,73,91]:

Rχχprx, rz, yre f q “
xχpx, yre f , z, tq ¨ χpx` rx, yre f , z` rz, tqy

σ2
χ

(2)

In Equation (2), χ is u, uL or uH , rx and rz are the x{z offset from the reference point, σχ is the
standard deviation of χ, and x¨y the average over both the spatial and temporal domain. Figure 4 plots
RuHuH and RuLuL at y` = 28 and 226 in the LE1 case with Ps = 0.5. Ruu of the full-order u fields are
supplemented in Figure 4b,d (as bold isolines). As shown in Figure 4b,d, RuHuH and RuLuL in inner and
outer region are both characterized as streamwise elongated structures with length scales sufficiently
gaped from each other, resembling those instantaneous structures shown in Figure 2. A characteristic
spanwise scale λc can be defined as the gap between the two negative valleys as illustrated in Figure 4a.
The spanwise scale of RuLuL and Ruu are both λc „ δ, consistent with previous studies that showed
the validity of the outer scaling of Ruu even in the buffer region of high Re TBL [41,43,53]. Figure 4a,c
shows that RuHuH present streak-liked pattern in both y` = 28 and y` = 226. This provides a statistical
evidence for the existence of small-scale streaks beyond the buffer region. Furthermore, λc of RuHuH

is much smaller than those of RuLuL , the the magnitude is rather close to the most probable streak
spacing to be shown in Section 4.2.

Figure 4. Two-point correlation map of POD-separated uL|H fields in the LE1 case with Ps = 0.5.
(a) RuH uH at y` = 28; (b) RuLuL at y` = 28; (c) RuH uH at y` = 226; (d) RuLuL at y` = 226. Thin solid/dashed
isolines represent positive/negative correlation with contour level uniformly spaced from ´0.1 to 0.9
with a gap of 0.2. Ruu of the full-order u fields are superimposed in (b,d) as bold solid/dashed isolines.
The interval between the horizontal thin dashed lines in (a,c) indicates the most probable streak spacing
λmp predicted by the empirical model in Section 4.2.

4. Streak Spacing Based on Morphological Identification

To further study the spanwise spacing of neighboring streaks, the morphological-based streak
identification algorithm proposed by [76] is used in this section with slight modification. The essence
of this algorithm is to isolate low-speed streak-liked regions by binarizing upx, zq snapshots with
a pre-given velocity deficit threshold and extract their skeletons with the aid of computer vision
technique. The streak spacing is then counted as the spanwise gap between two adjacent low-speed
streak skeletons only if at least one high-speed streak skeleton is clapped in between. The algorithm
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details are given in Appendix B.1. It is stressed that this algorithm does not differentiate small-scale
structures from large-scale ones, but only finds the nearest gap between two neighboring streak-liked
structures. Nevertheless, Figure 2 shows that even the core region of LSMs is clustered with small-scale
coherent motions, thus the streak spacing obtained by this algorithm will represent the typical spanwise
scale of the smallest energetic structures.

In this algorithm, there are a set of parameters, i.e., the velocity deficit threshold, the non-streak
filter, and the skeleton extracting parameters, that should be set manually. As shown in Appendix B.2,
their influence on the streak skeleton extraction is rather weak, any moderate change from the selected
parameter combination will only lead to a change of the statistics of the streak spacing less than 15%.

This morphological algorithm is applied to all the present studied cases. The ergodic state to
account for the streak pattern variation, i.e., streak splitting or merging, is achieved by counting the
streak spacing at streamwise stations gaped as ∆x` « 30 in every snapshot. This forms an ensemble
with samples more than Op106q for the SE cases, Op107q for the LE cases and Op106q for the LD cases in
the near-wall region. However, due to the reduced streak population (to be discussed in Section 4.2),
the ensemble size drops to Op104q, Op105q and Op104q in the log layer, respectively. A convergence test
is taken in Appendix B.3 to show that for all the studied cases, both the PDF of the streak spacing and
the related statistics get acceptable convergence till the upper bound of the log layer.

4.1. Streak Spacing Distribution

Figure 5 gives an overview of the wall-normal variation of the PDF of inner-scaled streak spacing
λ` in the SE and LD cases. Every PDF profile Ppλ`q presents a single peak without a sign of
bi-modal pattern even in the upper bound of the log layer. The long tail of Ppλ`q extends towards
the large value side to form a left-skewed shape. The most probable streak spacing λ`mp increases
monotonically with y`, while Ppλ`mpq decreases, in together with a distinct growth of the long tail.
However, a so-called ‘truncation effect’ is observed in higher layers of the SE cases: due to the
limited FOV span (∆Z` = 500„700), those events with potentially large λ` are not detected, making
a remarkable shortening of the long tails of Ppλ`q if compared to those in the LD cases. Note that
truncation effect has been inferred by Smith and Metzler [30] as ‘This result (biased streak spacing) was
felt to be a consequence of the narrowness of the data window’. A detailed inspection of all the Ppλ`q
profiles shows that for the LE and LD cases whose FOV span ∆Z` = 1500 is rather large, the truncation
effect is minor; while for the LE cases, once λ`mp is far from ∆Z`, the truncation of the long tail part of
Ppλ`qwill not bias the value of λ`mp but change the overall probability level.

As summarized in Table 1, Lee et al. [34] and Smith and Metzler [30] reported a log-normal
distribution of the streak spacing λ` in the near-wall region, while an alternative Rayleigh distribution
was claimed by Lin et al. [76]. These two distributions are:

Ppλ`q “
1

λ`σ
?

2π
exp

ˆ

´
plnλ` ´ µq2

2σ2

˙

, (3)

Ppλ`q “
λ`

s2 exp
ˆ

´
λ`2

2s2

˙

, (4)

with free parameters (µ, σ) and s, respectively. Both models are evaluated by the raw Ppλ`q profiles
via a least-square fitting. The fitting determination coefficients R2, as shown in Figure 6a, suggests
that the log-normal model outperforms the Rayleigh model everywhere, but the former still presents
a performance drop beyond y` « 30, which is more prominent in the SE cases with smaller FOV
span. This is attributed to the deteriorated truncation effect that begins to distort the Ppλ`q profiles in
higher layer.
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Figure 5. Wall-normal variation of the PDF of the streak spacing Ppλ`q. (a) SE1; (b) SE2; (c) SE3;
(d) LD1; (e) LD2; (f) LD3. The local maxima of the probability density function (PDF) are projected on
the λ`-y` plane as solid dots.
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Figure 6. Wall-normal variation of the determination coefficient R2 in all the studied cases. (a) R2 of
both the log-normal fitting via Equation (3) (solid circular, diamond, or rectangle) and the Rayleigh
fitting via Equation (4) (diagonal cross, star, and cross); (b) R2 of the dimensional constraint log-normal
fitting via Equation (5).

A dimensional constraint log-normal fitting is proposed to compensate for the truncation effect.
This fitting is based on the observation that in a non-severe truncation case where the most probable
λ`mp is far from the FOV span ∆Z`, only the long tail of Ppλ`q close to ∆Z` is truncated, in together
with the enhancement of the probability level of smaller λ` events. This is clearly seen in Figure 7
which highlights the difference in the Ppλ`q profiles between the SE3 case and the LE1/LD1 cases
with similar Reτ . A log-normal fitting can then be applied to the dimensional frequency number
distribution npλ`q instead of the non-dimensional probability Ppλ`q via

npλ`q “
α

λ`σ
?

2π
exp

˜

´

`

ln λ` ´ µ
˘2

2σ2

¸

, 0 ă λ` ă C∆Z`. (5)

In Equation (5), only npλ`q on the left of λ` “ C∆Z` is fitted. The parameter C regulates the
fitting range and is manually fixed as 0.8 here, i.e., the right 20% part of the npλ`q profile is rejected in
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this fitting. An additional free parameter α appears in Equation (5), it allows the floating of the integral
area of the npλ`q profile.

The validity of this dimensional constraint fitting is illustrated in Figure 7. It shows that even in
the log layer (y` « 130), the raw Ppλ`q profiles in the LE1/LD1 cases present Gaussian shape with
satisfying symmetry in a logarithmically scaled x axis. In contrast, the truncation of the long tails of
Ppλ`q of the SE3 case (hollow square markers), due to the insufficient FOV span, leads to asymmetrical
profiles. The raw Ppλ`q profiles (hollow square markers) of the SE3 case at y` « 60 and 130 are then
fitted via both canonical log-normal model (Equation (3)) and the dimensional constraint version
(Equation (5)). The latter leads to a more reasonable prediction of Ppλ`q (diagonal cross markers) if
compared to the raw profiles in the LE1/LD1 cases (dashed/solid lines) which are believed to be less
affected by the truncation effect.
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Figure 7. Illustration of the feasibility of the dimensional constraint log-normal fitting via Equation (5)
in the SE3 case at (a) y` = 65; (b) y` = 131. Dashed and solid curves are Ppλ`q at similar y` in the LD1
and LE1 cases where the field-of-view (FOV) truncation effect are minor and Reτ are similar. Rectangle
markers are the raw Ppλ`q profiles in the SE3 case, diagonal cross markers are the estimations via
Equation (5), while cross markers are the estimations via Equation (3).

With this truncation compensation strategy, the performance of the log-normal model, as can
be seen in Figure 6b, gets persistently improved. The enhancement of R2 is quite remarkable for the
SE cases. For the LE/LD cases, the magnitude of R2 in higher layer (y` ą 100) elevates above 0.98,
indicating a good accordance to the log-normal model. Nevertheless, R2 in the SE1/SE2 cases beyond
y` “ 100 is still smaller than 0.9, the reason is that the most probable part of these Ppλ`q profiles are
rather close to ∆Z, making the full compensation of the truncation effect rather difficult.

4.2. An Empirical Model for Streak Spacing

Given a log-normal distribution of Ppλ`q, the mean and the most probable streak spacing, i.e., λ
`

and λ`mp, can be determined by the controlling parameters µ and σ2 in Equation (3) or (5):

λ
`
“ eµ`σ2{2

λ`mp “ eµ´σ2 . (6)

Figure 8 summarizes µ and σ2 in all the studied cases estimated by the dimensional constraint
fitting via Equation (5). Except for the SE1 case with y` ą 100, µ is independent from Re till y` « 220.
In contrast, σ2 presents a non-negligible scattering beyond y`=100. Note that the scattering level is
∆σ2 „ Op10´1q, more than one-order smaller than the magnitude of µ; therefore, its contribution to
λ
`

and λ`mp in Equation (6) is comparably small. The smaller magnitude of µ in the SE1 case with
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y` ą 100 is attributed to the inability of compensating the truncation effect when λmp is rather close
to the FOV span ∆Z. For a test, the LD0 case with a similar Reτ is resampled with the same FOV as
SE1, i.e., ∆Z`=600. The magnitudes of µ (hollow squares with cross markers in Figure 8a) are now
comparable to those of the SE1 case, and σ2 (in Figure 8b) also get distinctly reduced.
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Figure 8. Wall-normal variation of the free parameter (a) µ and (b) σ2 in log-normal distribution. Solid
markers are the estimations by dimensional constraint model (Equation (5)) in all the studied cases,
and bold solid lines are the two-stage linear model of Equations (7) or (8). Hollow squares with cross
markers indicate the truncated LD0 case with ∆Z` = 600.

µ and σ2 in the LD cases, which are less affected by the truncation effect, are used to construct
an empirical model from the buffer layer to the upper bound of the log layer (y{δ „0.15):

µ “

#

0.02y` ` 4.4, 10 ă y` ă 50
4.2ˆ 10´3y` ` 5.60, 100 ă y` ă minp0.15δ`, 220q

(7)

σ2 “

#

3.2ˆ 10´3y` ` 0.15, 10 ă y` ă 50
0.36, 100 ă y` ă minp0.15δ`, 220q

(8)

This empirical model includes two linear stages of µpy`q and σ2py`q, i.e., within y`=10„50 and
beyond y` = 100, which are bridged by a cubic fitting in the middle. As shown in Figure 8, it fairly
predicts µpy`q and σ2py`q of the SE and LE cases till the upper bound of the log layer. Using this
model, the wall-normal variation of λ

`
and λ`mp can be predicted via Equation (6).

The validity of this empirical model can be evidenced by the following two aspects. Firstly,
as shown in Figure 9, λ

`
py`q and λ`mppy`q of the SE and LE cases (solid dots), which are not used

to construct this model, generally collapse onto the model’s prediction (bold solid lines) till the
upper bound of the log layer. Moreover, λ

`
in the near-wall region reported by most of previous

studies [30,72,74,75] (hollow markers in Figure 9a) are also compatible with it. Two exceptions are
Nakagawa and Nezu [36] and Lin et al. [76], who reported remarkably smaller λ

`
beyond y` = 30.

To our regards, this might be related with either the condition invoked in the conditional correlation
calculation in Nakagawa and Nezu [36] or the insufficient FOV span (∆Z` = 320) in Lin et al. [76].
For the latter, the LD3 case with similar Re is resampled by ∆Z` = 300, this leads to a reduced λ

`

(hollow squares with cross markers in Figure 9a) consistent with those in Lin et al. [76].
Secondly, the linear scaling of µ and σ2 in Equations (7) and (8) leads to a two-stage exponential

growth of λ
`

. Since the mean streak population density Π, which measures the average number of
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streaks per unit span, is the inverse of λ
`

, a two-stage exponential decay of Π is expected. As shown
in Figure 10a, Πpy`q obtained by counting the number of the identified streaks in the whole snapshot
ensemble, present less scattering among all the studied cases. The general trend follows a two-sectional
decay gaped at y` « 50, and fairly agrees with the prediction of the empirical model till the upper
bound of the log layer, again evidencing the validity of the latter.

 15% tolerance

+

y+

(a)

Re =444

Re =1500

Re =1000

Re =761

Re =444

 

 

+
mp

Figure 9. Wall-normal variation of (a) λ
` and (b) λ`mp till the upper bound of log layer. Solid markers

are the estimations by Equation (5) in all the studied cases. Only the data below the upper bound
of the log layer, i.e., y{δ „ 0.15 indicated as dashed horizontal lines for typical Reτ in (a), is shown.
The same in Figures 10 and 11. Hollow markers in (a) are λ

` obtained by previous studies listed in
Table 1. Hollow squares with cross markers indicate the truncated LD3 case with ∆Z` = 300. Bold solid
curves are predictions of the empirical model of Equations (6)„(8), with shaded regions indicating
a ˘15% tolerance.
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Figure 10. Wall-normal variation of (a) the mean streak population density Π; (b) the streak merging
frequency ρm{Π and (c) the ratio between the streak merging and splitting frequency ρm{ρs till the
upper bound of the log layer (y{δ „ 0.15). In (a), bold solid lines are the prediction of the empirical
model of Equations (6)„(8), with the shaded regions indicating a ˘20% tolerance. Vertical dashed lines
indicates the flow layer of y` “ 50, the same in Figure 11.
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4.3. Discussion on the Empirical Model for Streak Spacing

The proposed empirical model (Equations (6)–(8)) describes a Re-independent two-stage
exponential growth of the mean streak spacing along the wall-normal direction, the second stage of
which has a reduced growth rate beyond y` = 50. For a kinematic explanation of such a growth trend,
the wall-normal variation of the streak amplitude As is first investigated. Here, As measures the peak
momentum deficit within one streak. In the present study, it is simplified as the normalized local
streamwise fluctuation velocity u{U on the identified streak skeleton.

Figure 11a shows the PDF of As at typical y` in the LE1 and LD1 cases with equivalent Reτ.
Both cases present similar PpAsq profiles with a single peak and a long tail extending towards the
left side. With the increase of y`, a shrink of the spread of As is seen, in together with the right
shift of the most probable value As,mp. Figure 11b shows the wall-normal variation of As,mp in all
the studied cases. It reveals a minor growth of the magnitude of As,mp below y` = 10, where As,mp

is mildly correlated with Reτ. This indicates both the active streak generation events in this region
and the Re-dependent amplitude modulation effect that is consistent with the previous observation by
Bradshaw and Langer [52]. Beyond y` = 10, As,mp shows a constant decay till y` = 50, and then slowly
asymptotes to the streak binarization threshold u{U “ ´0.1 used in the streak identification algorithm.

The correlation coefficient RAs,λ between As and λ`, which measures the degree of the relationship
between the strength of one streak and its spanwise spacing to the nearest neighborhood, are
summarized in Figure 11c. A minor negative correlation, i.e., RAs,λ « ´0.1 is observed above the viscous
sublayer, indicating that stronger streaks prefer to be spaced further away from its neighborhood. Such
a correlation gradually relaxes towards RAs,λ = 0 in higher layers, and the relaxation rate sharply
accelerates beyond y` = 50.
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Figure 11. (a) Comparison of the PDF of the streak strength As between the LE1 case (markers) and the
LD1 cases (curves) at various y`; (b) wall-normal variation of the most probable As,mp; (c) wall-normal
variation of the correlation coefficient RAs ,λ between As and λ` in all the studied cases till y{δ “ 0.15.

To our regards, the first fast growth stage of λ`py`q below y` = 50 can be mainly attributed to
the streak merging scenario. Smith and Metzler [30] proposed that the streak merging behavior is most
active in the range of 10 ă y` ă 30. Tomkins and Adrian [41] observed that neighboring streaks merge
with each other frequently at 20 ă y` ă 100, but the merging frequency remarkably drops beyond
y` = 100. Note that for exponential decay of a variable, e.g., the streak population density Πpy`q
shown in Figure 10a, the decay rate is proportional to the variable’s magnitude. This is the case for the
streak merging scenario: The more crowded streak distribution, the more chance for the occurrence of
streak merging, thus leads to both the sharp reduction of Π and As and the quick growth of λ`.

Another attractive property of streak merging scenario is that it does not destroy the log-normal
distribution of the streak spacing beyond the buffer region, which is clearly shown in Section 4.2.
As stated by Smith and Metzler [30], ‘a random variable will develop a log-normal distribution when
the independent influences cause variations which are proportional to the variable. Thus the log-normal
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distribution of streak spacing would seem to indicate that the independent physical influences which
affect the variations in streak spacing are in some manner dependent up on the relative value of the
streak spacing itself.’ On considering that the merging rate is strongly dependent on the streak spacing,
the streak merging scenario, to our regards, might be a possible candidate for such ‘physical influences’.

For a quantitative description, the streak merging events are counted from instantaneous
snapshots as where a pattern of two neighboring low-speed streak skeletons converging into one is
identified. The related detection algorithm is briefly described in Appendix B.1. Figure 10b summarizes
the merging frequency ρm{Π, in which ρm is the average number of the streak merging event per unit
span. Figure 10c further shows the ratio between the streak merging and splitting frequency ρm{ρs,
the latter is counted via a similar scheme. It is clearly shown that ρm{Πpy`q of all the studied cases
follow a two-sectional decay gapped at about y` = 50, similar to that of Πpy`q. This is consistent
with the observation of Smith and Metzler [30] and Tomkins and Adrian [41], and highlights a strong
correlation between the streak population and the streak merging frequency: the amalgamation of
two neighboring streaks will leave the signature of only one streak in higher layer; as a consequence,
the increased streak spacing there will lower the local streak merging frequency.

Interestingly, the streak splitting event, which serves as a counter-acting role of inhibiting the
streak spacing growth, has a slightly higher frequency than that of the streak merging event in the
near-wall region. However, such an in-equilibrium gradually diminishes with the increase of y`.
A detailed examination of instantaneous velocity fields show that new-born streaks through streak
splitting always have comparably weaker strength and shorter length; while in a streak merging event,
the merged streak tends to pose weaker peak strength but broader width. Therefore, both events
contribute to the wall-normal decay of the streak strength, and the latter weighs more to promote the
quick growth of the streak spacing in the near-wall region.

For those streaks with stronger strength and gaped further away from others, they have more
chance to survive through the active streak instability process in the near-wall region. Recalling that
the second stage of the empirical streak spacing model presents a linear growth of µ with reduced
slope but a quasi-constant σ2 beyond y` = 100. Since σ2 characterizes the width of the Ppλ`q profile,
the constant σ2 implies a passive streak dynamics in this region: due to the rather large streak spacing,
the streak merging/splitting in higher flow layer is inactive; instead, those small-scale streak-liked
structures, most of which might be the remnants of near-wall streaks, act as being ‘frozen’, i.e., they
can be either synchronized to larger scales to form the core region of LSMs or gradually dissipated
by viscosity.

5. Synthetic Simulation of the Spanwise Spectra

In this section, we attempt to restore part of the spanwise spectra of u through synthetic simulation
by only considering the spanwise distribution of streaks that is independent of Re. One of the practical
meanings of this attempt is that it might promote the understandings on how large-scale structures
affects the spectra to formulate a Re-dependency, and it might provide useful information for the
development of the near-wall model in LES.

The idea is to randomly distribute multiple elementary streak units along spanwise direction with
spacing determined by the empirical model developed in Section 4.2. For simplicity, only 1D scenario,
i.e., the spanwise variation of the u component fluctuation velocity, is considered here. The elementary
streak unit follows the model proposed by Hutchins and Marusic [43]:

θ pziq “ πzi{λz,´
3
2

λz ă zi ă
3
2

λz, (9)

us pθ pziqq “ As

ˆ

´
3
4
´

1
4

sgn pcos pθqq
˙

cos pθq . (10)
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In this model, θpziq is the phase angle at zi; uspziq, which is actually a 3{2 periods of cosinusoid
modulated by a box function, represents a spanwise profile of one single low-speed streak centering at
zi = 0; λz sets the wavelength of the streak; As is the nominal streak amplitude and sgnpcospθqq returns
the sign of cospθq. Figure 12a shows a typical streak unit with λ`z “ 100 and As = 1. For a given y`,
multiple streak units whose λ`z are randomly generated via the empirical streak spacing model of
Equations (3), (7), and (8) are successively added along the spanwise direction till the whole span is
full, i.e.,

u
`

z`
˘

“

N
ÿ

i“1

us,i
`

z` ´ z`i
˘

, z` P r1, 213s. (11)

in which us,i is the ith streak unit centering at zi with wavelength of λzi, and upz`q is the full signal
with a total length of 213 wall units. To avoid severe overlap which causes unexpected wavelength
growth, one streak is gaped from its neighborhoods by the following constraint:

´

z`i ´ z`i´1

¯2
ě λ`2

z,i and
´

z`i ´ z`i`1

¯2
ě λ`2

z,i . (12)

Finally, a Gaussian smooth is applied to upz`q to eliminate discontinuity. An example of the
upz`q profile is shown in Figure 12b with λ

`

z “ 100 and As = 1. Section 4.2 already shows that the
streak amplitude As is only weakly correlated with the streak spacing λ in the near-wall region. Here,
we assume As to be constant at each flow layer with magnitude equal to the local urms. This actually
attributes all the u component TKE to small-scale streaks and ignores the TKE contribution from either
large-scale structures or their modulation effect on smaller ones. Although this assumption is far from
the real case, it provides an artificial scenario to infer the effect of the unconsidered large-scale motions
on the velocity spectra.
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Figure 12. (a) Profile of the elementary streak unit described by Equations (9) and (10); (b) an example
of a synthetic signal of upz`qwith λ

`

z = 100 and As = 1.

Figure 13 compares the kzΦuu spectra of the fabricated upz`q fields (dashed isolines) to the original
ones (pseudo-color maps) in the LD0 and LD3 cases. Combing with other cases that are not shown,
it can be concluded that the present simulation, despite its simplicity, is capable of restoring the core
region of the inner-layer spectra patch within y` ă 50 and λ`z ă 300. The reason, to our regards,
is that the ridge of the inner-layer spectra patch is well predicted by the empirical streak spacing model,
which in turn is fully utilized when modeling the upz`q fields. More interestingly, Figure 13a show
that if the outer-layer spectra patch is absent, the general shape of kzΦuu can be acceptably captured
till y` « 100. This describes a scenario of the penetration of small-scale streaks into higher layer,
which is further supported by the observation that with the presence of the outer-layer spectra patch,
the small-scale part of the kzΦuu spectra on the left side of the mean streak spacing (bold dashed lines
in Figure 13b) is roughly predicted till y` « 100.

Since LSMs and their near-wall footprints are not considered in the present synthetic simulation,
the yielded kzΦuu significantly differs from the original spectra in the large-scale domain with λ`z ą 400,
as is shown in Figure 13. One can get an impression on the Re-dependency of these large-scale
structures by subtracting the simulated kzΦuupλ

`
z q profiles from the original ones. Recalling that
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the full u component TKE (measured as urms), part of which is originally carried by large-scale
structures, is arbitrarily assigned to small-scale streaks during the fabrication of upz`q, this leads to
an overestimation of the energy content in the small-scale near-wall domain, which becomes more
prominent at higher Re (comparing the near-wall profiles in Figure 13a,b for an illustration).

Figure 13. Comparison of the premultiplied spanwise spectra kzΦuu simulated by the simplified
synthetic method (dashed isolines) with the original one (pseudo-color maps) in (a) the LD0 case and
(b) the LD3 case. kzΦuupλ

`
z q are all normalized by the maximum value in the near-wall region, and the

contour labels are evenly spaced from 0.2 to 0.9 with interval of 0.1. Dashed lines are λ
` predicted by

the empirical model in Section 4.2.

Such an overestimation might be improved by assigning not the whole urms but the
streak-contributed portion of urms to As. A scale-based decomposition, instead of the energy-based
POD filtering used in Section 3, is thus needed to quantify the TKE contribution from streaks. This is
an issue to be studied in the future. Nevertheless, on considering that the present synthetic simulation
only relies on the knowledge of both the urmspyq profile that is dependent on Re and the streak spacing
distribution that seems to be independent of Re, the slight difference in the simulated small-scale
energy content is acceptable, and will not undermine the practical value of such a test. Of course,
more complicated issues, like accounting streaks’ streamwise extent and modeling both the dynamical
process of the streak instability [4] and their response to outer-layer large-scale structures [54,55],
should be taken into consideration. But one of the particular attractions of the present idea is that
due to the Re-independence of the streak distribution, the modeling of the streak dynamics might be
obtained from a low-Re DNS database via either the techinque of reduced-order modeling [100,101] or
minimum flow unit simulation [102] , and then applied to high-Re case through proper scaling.

6. Concluding Remarks

In summary, the present work deals with the wall-normal variation of the characteristic
lateral length scale of small-scale streak-liked structures in a smooth-wall turbulent boundary layer.
The primary aim is to extend the existing knowledge on the streak spacing in the near-wall region to
higher flow layers. Morphological analysis on the u component fluctuating velocity is taken in a range
of Reτ = 440„2400. It is found that the streak spacing λ keeps a log-normal distribution till the upper
bound of the log layer. The inner-scaled mean and most probable value, i.e., λ

`
and λ`mp, follows

a two-stage exponential wall-normal growth that is less dependent on Re and can be well described by
a two-sectional empirical model.

The first fast growth stage of λ
`
py`q and λ`mppy`q below y` = 50 can be attributed to the active

streak merging event, which results in a quick drop of both the streak strength and the streak population
density there. A simplified synthetic simulation, which only models the spanwise distribution of streak
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elements via the proposed empirical model, fairly restores the core region of the inner-layer kzΦuu

spectra patch residing in this region. The second stage beyond y` = 50 presents a reduced growth rate
in λ

`
py`q and λ`mppy`q, consistent with the relaxation of the decay of the streak strength, the streak

population density and the streak merging frequency. This suggests that most of the small-scale streaks
identified beyond the buffer layer might be the remnants of near-wall structures. Despite of their
sparse population, they contribute to the small-scale part of the kzΦuu spectra till y` = 100, which can
be fairly restored by the simplified synthetic simulation.

To our regards, the exponential scaling of the streak spacing proposed here, i.e., y` ∝ ln λ
`

and y` ∝ ln λ`mp till the upper bound of the log layer, is different from the linear scaling of
wall-attached large-scale structures [11,41,67,68]. This suggests that small-scale streaks do not behave
in an attached-eddy way. Instead, those structures that survive through the active near-wall streak
instability events passively lift to higher layers, either gradually fading out due to viscous dissipation
or being synchronized into larger-scale structures. It is believed that more detailed information in this
aspect will provide helpful insight into the origin of LSMs, and thus deserves to be studied later.

Finally, since the Re-independency of the streak spacing suggests that the amplitude modulation
does not alter the geometric characteristics of small-scale structures, this provides a justification for the
so-called ‘universal’ signal that was used by Marusic et al. [55] and Zhang and Chernyshenko [103] to
predict the near-wall fluctuating velocity statistics given the knowledge of the log-layer large-scale signal.
Nevertheless, the failure of restoring the large-scale part of kzΦuu in the simplified synthetic simulation
stresses the accumulated importance of large-scale motions with the increase of Re. To fully restore the
whole spectra, the geometrical characteristics of these large-scale motions should be modeled properly.
Note that the scale separation tool and the morphological identification algorithm used in the present
study can be also applied for such a purpose in the future.
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Appendix A. Scale and Mode Shape of POD Modes

Snapshot POD is used to decompose the fluctuating velocity fields into discrete POD modes.
It has been checked that the ensemble size of the SE and LE cases are large enough for a converged
decomposition. Since POD is based on an optimal energy recovery criteria, the relationship between
the energy content of POD modes and their characteristic length scale should be checked before POD
method can be used for scale separation.

The characteristic spanwise scale λ
φn
c carried by the nth rank POD mode can be estimated from

Rφu
n φu

n przq, the two-point correlation of the u component mode basis function φu
n . In the present work,

λ
φn
c is defined as the gap between two negative valleys in the Rφu

n φu
n przqmap, similar to λ`z illustrated

in Figure 4. Figure A1 shows λ
φn
c as a function of the mode rank n at typical y` in the LE1 case,

in together with the cumulative TKE contribution curve Pnpnq. In general, λ
φn
c monotonically decreases

with the increase of n, indicating a distinct correlation between the energy content and the length scale
in the hierarchy of POD mode set.
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Figure A1. The cumulative turbulent kinetic energy (TKE) contribution Pn (lines) and the characteristic
spanwise scale λ

φn
c (solid symbols) carried by each POD mode at various y` in the LE1 case.

φu
n of the first POD mode (n = 1) at y` = 28 and 226 in the LE1 case are illustrated in Figure A2a,c.

Both characterize high- and low-speed strips aligned in spanwise direction with quasi-periodicity.
Their spanwise scales are Opδq, and the streamwise coherence extends beyond 3δ. On considering its
TKE significance, the first POD mode is regarded as the projection of LSMs onto the mode subspace.
The geometrical similarity of φu

n“1 between the inner layer (y` = 28) and the outer layer (y` = 226)
implies a scale invariance when LSMs extend their influence into the near-wall region, consistent with
the outer-layer spectra patch shown in Figure 13b.

As a comparison, Figure A2b,d show φu
s of a sth rank POD mode whose Ps is 0.5 at y` = 28 and

226, respectively. Recalling that Ps = 0.5 is the POD energy cutoff threshold used in Section 3. Figure A1
shows that the mode rank s with Ps = 0.5 decreases with the increase of y`, the corresponding λ

φs
c

increases with y`, but the magnitude is always far from Opδq. Such a small-scale feature can be
evidenced by Figure A2b,d, where small-scale streaky pattern of φu

s is observed in both inner and outer
layer, in together with a clear tendency of the scale growth. Finally, it can be concluded from Figure A1
that the leading-order VL fields constructed in Section 3 includes all the POD modes whose spanwise
scales are larger than δ.

Figure A2. Typical mode basis function φu
n in the LE1 case. (a) n = 1, y` = 28; (b) n = s = 100, y` = 28;

(c) n = 1, y` = 226; (d) n = s = 61, y` = 226. In (b,d), the mode rank s is chosen to make the POD energy
cutoff threshold Ps = 0.5.
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Other SE and LE cases reveal a similar relation between the TKE content and the length scale in
the POD mode set. The only difference is that the streaky pattern in the leading-order POD modes in
the SE cases poses smaller length scale due to the FOV limitation.

Appendix B. Morphological-Based Streak Identification Algorithm

Appendix B.1. Algorithm Description

The morphological method used in Section 4 identifies streak-liked structures from instantaneous
u component field. As shown in Figure A3, this algorithm poses 3 steps: binarization, cleaning,
and skeletonization.

Binarize

Step 1 Step 1

Low speed streaks High speed streaks

Step 2 Cleaning Step 2 Cleaning

Step 3 Step3

Skeleton Skeleton

Binarize

Figure A3. Schematic illustration of the morphological-based streak identification algorithm. Circle
and cross makers in the final streak skeleton subplot indicate the detected streak merging and splitting
event, respectively.

Step 1, binarization. According to the definition of streak described in Section 1, the instantaneous
u component fluctuating velocity in wall-parallel x-z plane is binarized into low- and high-speed
elements Fl

i and Fh
i by:

Fl
i “

#

1, Fd ă ´Cl
t

0, Otherwise
, Fh

i “

#

1, Fd ą Ch
t

0, Otherwise
. (A1)

The detection function Fd in Equation (A1) is the ratio of the fluctuating velocity to the mean
velocity of the investigated flow layer: Fd “ u{U. Following previous studies [41,46,48,104], the streak
strength threshold Cl

t in Equation (A1) was set to be 0.1. And the ratio between Ch
t and Cl

t was fixed as
0.5 since Smith and Metzler [30] reported that the momentum flux ratio between high- and low-speed
streaks was about 0.5.

Step 2, cleaning. A combination of closing and opening operation, based on a rectangle filter
template, is applied onto Fl and Fh to fill small holes and remove isolated noise. To simulate the large
aspect ratio of streaks, the length/width of this filter template is set to be 50/10 wall units, the same as
in Lin et al. [76]. Those connecting regions in Fl whose aspect ratio is smaller than 2 are also discarded,
this guarantees that only streamwise elongated connecting regions are considered. After the closing
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and opening operation, there are still some connecting regions in Fl too small to be taken as streaks.
An area cutting-off threshold of 800 wall units2 is then set to reject these small structures.

Step 3, skeletonization. A simple morphological skeleton operation widely used in computer
vision [105] is taken to shrink the identified structures into a skeleton. This operation will generate
unexpected branches whose length scale is quite small compared to that of the main stem. The spur
operation is then followed to trim the branches whose length is smaller than 12 wall units.

The above three procedures are conceptually similar to that of Lin et al. [76]. An additional
concern here is that some streaks might not be well separated from others due to the streak merging
or splitting event; moreover, the branched pattern can be also caused by the skeleton operation,
as mentioned above. Therefore, the location of high-speed streaks (or high-speed regions in higher
layers) are used as a supplemental criterion: the gap between two neighboring low-speed skeletons is
counted only if there is at least one high-speed skeleton between them. This is consistent with Smith
and Metzler [30], who considered streaks to be completely merged if there is no high-speed region
between them.

Finally, on considering the possibility that the streaks close to the FOV edge are incompletely
captured, the skeletons crossing the streamwise boundary of the FOV are cut-off by a length of 50 wall
units. In a similar sense, the skeletons whose distance to the spanwise FOV extent are smaller than
20 wall units are also discarded. The influence of the parameters on the statistics of the streak spacing
will be further discussed in Appendix B.2.

After the streak skeleton identification, the streak merging and splitting event can be detected by
examining the topology around a node on one streak skeleton where a new branch grows towards
either downstream or upstream. Those branches shorter than 50 wall units, which might be caused
by local expansion of streaks, are rejected as an additional streak skeleton. The streak skeleton nodes
are detected by a connectivity evaluation scheme that is commonly used in computer vision [105].
An example of the detected streak merging/splitting events is shown in Figure A3 for qualitative
evidence of the feasibility of this detecting method.

Appendix B.2. Effect of Algorithm Parameters on the Streak Spacing Statistics

In the present morphological algorithm, several parameters need to be manually selected;
therefore, their influence on the streak identification should be evaluated carefully. The default
baseline parameters are set as: the binary threshold Cl

t “ 0.1, the size of cleaning structure element
50ˆ 10 wall units, the spur length 12 wall units and the area cutting-off threshold 800 wall units2.
This parameter set is used in Section 4 for the streak identification. The effect of each parameter is
then inspected by examining the relative change of the mean streak spacing λ

`
from the baseline case.

Here, only the SE1 and LD1 cases are illustrated, all the other cases pose similar behavior and are not
presented. In the following test, the spanwise FOV span of the LD1 case is truncated to ∆Z` = 600 for
a direct comparison with the SE1 case.

The streak strength threshold Cl
t defines the boundary of the low-momentum region, and thus

directly determines the size and population of the identified streaky structures. Figure A4a gives the
relative deviation of λ

`
from the baseline case (Cl

t “ 0.1) as Cl
t varying from 0.05 to 0.15. For flow layers

beneath y` “ 10, λ
`

is only weakly correlated with Cl
t; beyond that, the dependency becomes a bit

more strong: ˘25% variation of Cl
t results in about ˘10% variation of λ

`
. Moreover, the correlation

between λ
`

and Cl
t quantitatively holds for all the higher layers, this makes the trend of the wall-normal

growth of λ
`

decoupled from the selection of Cl
t .

Except for Cl
t, all the other parameters pose little influence on λ

`
. As shown in Figure A4b,

the cleaning structure elements with two different sizes, 24ˆ 4 and 72ˆ 12 wall units, are tested.
They only result in˘6% variation of λ

`
from the baseline case. Two different area cutting-off thresholds

of 400 and 1200 wall uints2 (with˘50% variation) make the relative change of λ
`

within˘3%, as shown
in Figure A4c. Finally, Figure A4d shows that in the procedure of removing small branches from the
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main stem of the streak skeleton, ˘66% variation of the spur length threshold leads to a variation of
λ
`

smaller than ˘2%.
In short, only the choice of Cl

t has a relatively large influence on the streak spacing statistics.
The default value of Cl

t “ 0.1 is chosen to be consistent with a majority of previous researches
[41,46,48,104].

C l
t

0.05 0.1 0.15

y
+

5

10

20

50

100

200 -5

10

10

5

10

10

5

1
0

1
0

5
5

1
0

5

-5

-5

-5

-1
0

-5

-1
0

-1
0

-5

-10

(a)

-10

y+
0 50 100 150 200

∆
λ
+
/
λ
+ ba
se

(%
)

-10

-5

0

5

10

(b)

y+
0 50 100 150 200

∆
λ
+
/
λ
+ ba
se

(%
)

-5

-2.5

0

2.5

5

(c)

y+
0 50 100 150 200

∆
λ
+
/
λ
+ ba
se

(%
)

-5

-2.5

0

2.5

5

(d)

Figure A4. Percentage of the change of the mean streak spacing λ
` from the baseline case due to

the change of the following parameters in the morphological algorithm: (a) the binary threshold Cl
t ;

(b) the size of the cleaning structure element, baseline 48ˆ 8, M 72ˆ 12 and İ 24ˆ 4 wall units2; (c) the
area cutting-off threshold, baseline 800, M 400, İ 1200 wall units2 and (d) the spur length threshold,
baseline 12, M 20, İ 4 wall units. In (a), solid and dashed isolines indicate the SE1 case and the LD1
case, respectively; in (b–d), markers with solid lines indicate the SE1 case and markers with dashed
lines the LD1 case.

Appendix B.3. Effect of Ensemble Size on the Streak Spacing Statistics

The convergence state of the streak spacing is essential for estimating the related streak statistics.
The dependency of the first and second-order statistics of the streak spacing, i.e., λ

`
and σλ` , on the

number of the analyzed frames N f is shown in Figure A5 at four y` in the SE1 case. Note that λ
`

and
σλ` is directly calculated from the whole ensemble, instead of being estimated by the log-normal fitting
in Section 4.1. It is clearly shown that more snapshots are needed for a stable λ

`
and σλ` at higher

flow layer. This is reasonable since the streak population decays with the increase of y`, as is shown in
Figure 10. The convergence of σλ` is relatively slower than that of λ

`
, but a total ensemble size of

around 3000 frames is sufficient. Moreover, it reminds us that careful inspection of the convergence
of the PDF profile Ppλ`q is critical. Figure A6 compares the insufficiently sampled Ppλ`q profiles
with the converged ones in both the LE2 and LD3 cases. It is evidenced that half the total ensemble
is enough to yield a converged Ppλ`q in the log layer (y` « 140). The low-sampled profiles present
multi-modal shape; however, increasing the ensemble size will smooth all the non-physical PDF peaks
and form a single-peak left-skewed shape. Using this inspection, we have checked that Ppλ`q gets
acceptable convergence till y` « 220 in all the studied cases.
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Figure A5. Effect of the analyzed frame number N f on (a) the mean streak spacing λ
` and (b) the

r.m.s of the streak spacing σλ` in the SE1 case at ‚ y` = 17; � y` = 29; N y` = 76; İ y` = 147. Error
bars indicate ˘3% variation.
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Figure A6. Effect of the analyzed frame/snapshot number on the shape of Ppλ`q in (a) the LE2 case at
y` “ 140 and (b) the LD3 case at y` “ 147. In (a), ˆ36 frames, ˝ 1800 frames, ‚ 3600 frames; in (b),
ˆ1 snapshot, ˝ 10 snapshots, ‚ 20 snapshots. Note that for the LE2 case, 1800 instantaneous frames
lead to more than 105 samples of streak spacing. While in the LD3 case, 1 snapshot of the DNS velocity
field is sliced into 10 frames with FOV of 2000 ˆ 1500 wall units, the total number of 20 DNS snapshots
correspond to 200 frames, with more than 104 samples being recorded.
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