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Abstract: We study a binary hypothesis testing problem in which a defender must decide whether a
test sequence has been drawn from a given memoryless source Py, while an attacker strives to impede
the correct detection. With respect to previous works, the adversarial setup addressed in this paper
considers an attacker who is active under both hypotheses, namely, a fully active attacker, as opposed to
a partially active attacker who is active under one hypothesis only. In the fully active setup, the attacker
distorts sequences drawn both from Py and from an alternative memoryless source P;, up to a certain
distortion level, which is possibly different under the two hypotheses, to maximize the confusion in
distinguishing between the two sources, i.e., to induce both false positive and false negative errors at
the detector, also referred to as the defender. We model the defender—attacker interaction as a game and
study two versions of this game, the Neyman-Pearson game and the Bayesian game. Our main result is
in the characterization of an attack strategy that is asymptotically both dominant (i.e., optimal no matter
what the defender’s strategy is) and universal, i.e., independent of Py and P;. From the analysis of the
equilibrium payoff, we also derive the best achievable performance of the defender, by relaxing the
requirement on the exponential decay rate of the false positive error probability in the Neyman-Pearson
setup and the tradeoff between the error exponents in the Bayesian setup. Such analysis permits
characterizing the conditions for the distinguishability of the two sources given the distortion levels.

Keywords: adversarial signal processing; binary hypothesis testing; statistical detection theory;
game theory; the method of types

1. Introduction

Signal processing techniques are routinely applied in the great majority of security-oriented
applications. In particular, the detection problem plays a fundamental role in many security-related
scenarios, including secure detection and classification, target detection in radar-systems,
intrusion detection, biometric-based verification, one-bit watermarking, steganalysis, spam-filtering,
and multimedia forensics (see [1]). A unifying characteristic of all these fields is the presence of
an adversary explicitly aiming at hindering the detection task, with the consequent necessity of
adopting proper models that take into account the interplay between the system designer and
the adversary. Specifically, the adopted models should be able to deal, on the one hand, with the
uncertainty that the designer has about the attack the system is subject to, and, on the other hand,
with the uncertainty of the adversary about the target system (i.e., the system it aims at defeating).
Game theory has recently been proposed as a way to study the strategic interaction between the choices
made by the system designer and the adversary. Among the fields wherein such an approach has
been used, we mention steganalysis [2,3], watermarking [4], intrusion detection [5] and adversarial
machine learning [6,7]. With regard to binary detection, game theory and information theory have
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been combined to address the problem of adversarial detection, especially in the field of digital
watermarking (see, for instance, [4,8-10]). In all these works, the problem of designing watermarking
codes that are robust to intentional attacks is studied as a game between the information hider and
the attacker.

An attempt to develop a general theory for the binary hypothesis testing problem in the presence
of an adversary is made in [11]. Specifically, in [11], the general problem of binary decision under
adversarial conditions is addressed and formulated as a game between two players, the defender and the
attacker, which have conflicting goals. Given two discrete memoryless sources, Py and P;, the goal of
the defender is to decide whether a given test sequence has been generated by Py (null hypothesis, H)
or P; (alternative hypothesis, H1). By adopting the Neyman-Pearson approach, the set of strategies
the defender can choose from is the set of decision regions for H( ensuring that the false positive
error probability is lower than a given threshold. On the other hand, the ultimate goal of the attacker
in [11] is to cause a false negative decision, so the attacker acts under H; only. In other words,
the attacker modifies a sequence generated by P;, in attempt to move it into the acceptance region of
Ho. The attacker is subjected to a distortion constraint, which limits his freedom in doing so. Such a
struggle between the defender and the attacker is modeled in [11] as a competitive zero-sum game;
the asymptotic equilibrium, i.e., the equilibrium when the length of the observed sequence tends
to infinity, is derived under the assumption that the defender bases his decision on the analysis of
first-order statistics only. In this respect, the analysis conducted in [11] extends the one of [12] to the
adversarial scenario. Some variants of this attack-detection game have also been studied; for instance,
in [13], the setting is extended to the case where the sources are known to neither the defender nor the
attacker, while the training data from both sources are available to both parties. Within this framework,
the case where part of the training data available to the defender is corrupted by the attacker has also
been studied (see [14]).

The assumption that the attacker is active only under H; stems from the observation that in many
cases Hy corresponds to a kind of normal or safe situation and its rejection corresponds to revealing
the presence of a threat or that something anomalous is happening. This is the case, for instance,
in intrusion detection systems, tampering detection, target detection in radar systems, steganalysis
and so on. In these cases, the goal of the attacker is to avoid the possibility that the monitoring
system raises an alarm by rejecting the hypothesis Hj, while having no incentive to act under Hj.
Moreover, in many cases, the attack is not even present under Hy or it does not have the possibility of
manipulating the observations the detector relies on when Hj holds.

In many other cases, however, it is reasonable to assume that the attacker is active under
both hypotheses with the goal of causing both false positive and false negative detection errors.
As an example, we may consider the case of a radar target detection system, where the defender
wishes to distinguish between the presence and the absence of a target, by considering the presence
of a hostile jammer. To maximize the damage caused by his actions, the jammer may decide to work
under both the hypotheses: when Hj holds, to avoid that the defender detects the presence of the target,
and in the Hy case, to increase the number of false alarms inducing a waste of resources deriving from
the adoption of possibly expensive countermeasures even when they are not needed. In a completely
different scenario, we may consider an image forensic system aiming at deciding whether a certain
image has been shot by a given camera, for instance because the image is associated to a crime such
as child pornography or terrorism. Even in this case, the attacker may be interested in causing a
missed detection event to avoid that he is accused of the crime associated to the picture, or to induce a
false alarm to accuse an innocent victim. Other examples come from digital watermarking, where an
attacker can be interested in either removing or injecting the watermark from an image or a video,
to redistribute the content without any ownership information or in such a way to support a false
copyright statement [15], and network intrusion detection systems [16], wherein the adversary may
try to both avoid the detection of the intrusion by manipulating a malicious traffic, and to implement
an overstimulation attack [17,18] to cause a denial of service failure.
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According to the scenario at hand, the attacker may be aware of the hypothesis under which
it is operating (hypothesis-aware attacker) or not (hypothesis-unaware attacker). While the setup
considered in this paper can be used to address both cases, we focus mainly on the case of an
hypothesis-aware attacker, since this represents a worst-case assumption for the defender. In addition,
the case of an hypothesis-unaware attacker can be handled as a special case of the more general case of
an aware attacker subject to identical constraints under the two hypotheses.

With the above ideas in mind, in this paper, we consider the game-theoretic formulation of the
defender-attacker interaction when the attacker acts under both hypotheses. We refer to this scenario
as a detection game with a fully active attacker. By contrast, when the attacker acts under hypothesis H;
only (as in [11,13]), it is referred to as a partially active attacker. As we show, the game in the partially
active case turns out to be a special case of the game with fully active, hypothesis-aware, attacker.
Accordingly, the hypothesis-aware fully active scenario forms a unified framework that includes the
hypothesis-unaware case and the partially active scenario as special cases.

We define and solve two versions of the detection game with fully active attackers, corresponding to
two different formulations of the problem: a Neyman-Pearson formulation and a Bayesian formulation.
Another difference with respect to [11] is that here the players are allowed to adopt randomized strategies.
Specifically, the defender can adopt a randomized decision strategy, while in [11] the defender’s strategies
are confined to deterministic decision rules. As for the attack, it consists of the application of a channel,
whereas in [11] it is confined to the application of a deterministic function. Moreover, the partially
active case of [11] can easily be obtained as a special case of the fully active case considered here.
The problem of solving the game and then finding the optimal detector in the adversarial setting is not
trivial and may not be possible in general. Thus, we limit the complexity of the problem and make the
analysis tractable by confining the decision to depend on a given set of statistics of the observation.
Such an assumption, according to which the detector has access to a limited set of empirical statistics
of the sequence, is referred to as limited resources assumption (see [12] for an introduction on this
terminology). In particular, as already done in related literature [11,13,14], we limit the detection
resources to first-order statistics, which are known to be a sufficient statistic for memoryless systems
(Section 2.9, [19]). In the setup studied in this paper, the sources are indeed assumed to be memoryless,
however one might still be concerned regarding the sufficiency of first-order statistics in our setting,
since the attack channel is not assumed memoryless in the first place. Forcing, nonetheless, the defender
to rely on first-order statistics is motivated mainly by its simplicity. In addition, the use of first-order
statistics is common in a number of application scenarios even if the source under analysis is not
memoryless. In image forensics, for instance, several techniques have been proposed which rely on
the analysis of the image histogram or a subset of statistics derived from it, e.g., for the detection
of contrast enhancement [20] or cut-and-paste [21] processing. As another example, the analysis of
statistics derived from the histograms of block-DCT coefficients is often adopted for detecting both
single and multiple JPEG compression [22]. More generally, we observe that the assumption of limited
resources is reasonable in application scenarios where the detector has a small computational power.
Having said that, it should be also emphasized that the analysis in this work can be extended to
richer sets of empirical statistics, e.g., higher-order statistics (see the Conclusions Section for a more
elaborated discussion on this point).

As a last note, we observe that, although we limit ourselves to memoryless sources, our results
can be easily extended to more general models (e.g., Markov sources), as long as a suitable extension
of the method of types is available.

One of the main results of this paper is the characterization of an attack strategy that is both
dominant (i.e., optimal no matter what the defense strategy is), and universal, i.e., independent of
the (unknown) underlying sources. Moreover, this optimal attack strategy turns out to be the
same under both hypotheses, thus rendering the distinction between the hypothesis-aware and the
hypothesis-unaware scenarios completely inconsequential. In other words, the optimal attack strategy
is universal, not only with respect to uncertainty in the source statistics under either hypothesis, but also
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with respect to the unknown hypothesis in the hypothesis-unaware case. Moreover, the optimal attack
is the same for both the Neyman-Pearson and Bayesian games. This result continues to hold also for
the partially active case, thus marking a significant difference with respect to previous works [11,13],
where the existence of a dominant strategy wasestablished with regard to the defender only.

Some of our results (in particular, the derivation of the equilibrium point for both the
Neyman-Pearson and the Bayesian games) have already appeared mostly without proofs in [23].
Here, we provide the full proofs of the main theorems, evaluate the payoff at equilibrium for both
the Neyman-Pearson and Bayesian games and include the analysis of the ultimate performance
of the games. Specifically, we characterize the so called indistinguishability region (to be defined
formally in Section 6), namely the set of the sources for which it is not possible to attain strictly positive
exponents for both false positive and false negative probabilities under the Neyman—-Pearson and the
Bayesian settings. Furthermore, the setup and analysis presented in [23] is extended by considering a
more general case in which the maximum allowed distortion levels the attacker may introduce under
the two hypotheses are different.

The paper is organized as follows. In Section 2, we establish the notation and introduce the
main concepts. In Section 3, we formalize the problem and define the detection game with a fully
active adversary for both the Neyman—Pearson and the Bayesian games, and then prove the existence
of a dominant and universal attack strategy. The complete analysis of the Neyman—Pearson and
Bayesian detection games, namely, the study of the equilibrium point of the game and the computation
of the payoff at the equilibrium, are carried out in Sections 4 and 5, respectively. Finally, Section 6 is
devoted to the analysis of the best achievable performance of the defender and the characterization of
the source distinguishability.

2. Notation and Definitions

Throughout the paper, random variables are denoted by capital letters and specific realizations are
denoted by the corresponding lower case letters. All random variables that denote signals in the system
are assumed to have the same finite alphabet, denoted by .A. Given a random variable X and a positive
integer n, we denote by X = (X1, Xp, ..., X»), X; € A, i =1,2,...,n, a sequence of n independent
copies of X. According to the above-mentioned notation rules, a specific realization of X is denoted
by x = (x1,x2,...,Xy). Sources are denoted by the letter P. Whenever necessary, we subscript P with
the name of the relevant random variables: given a random variable X, Px denotes its probability
mass function (PMF). Similarly, Pxy denotes the joint PMF of a pair of random variables, (X,Y).
For two positive sequences, {a,} and {b, }, the notation a,, = b, stands for exponential equivalence,
ie., nlglgol /nln(a,/by) =0, and a, < b, designates that limsupl/n1In (a,/b,) <O0.

n—o0

For a given real s, we denote [s] 2 max{s,0}. We use notation U(-) for the Heaviside
step function.

The type of a sequence x € A" is defined as the empirical probability distribution Py, that is,
the vector {Py(x), x € A} of the relative frequencies of the various alphabet symbols in x. A type class
T (x) is defined as the set of all sequences having the same type as x. When we wish to emphasize
the dependence of 7 (x) on Py, we use the notation 7 (Py). Similarly, given a pair of sequences (x,y),
both of length 7, the joint type class T (x, y) is the set of sequence pairs {(x’,y’)} of length n having
the same empirical joint probability distribution (or joint type) as (x,y), ny, and the conditional type
class T (y|x) is the set of sequences {y’} with ny/ = Pyy.

Regarding information measures, the entropy associated with Py, which is the empirical entropy
of x, is denoted by Hx(X). Similarly, Hxy(X,Y) designates the empirical joint entropy of x and y,
and ny(X |Y) is the conditional joint entropy. We denote by D(P||Q) the Kullback-Leibler (K-L)
divergence between two sources, P and Q, with the same alphabet (see [19]).

Finally, we use the letter A to denote an attack channel; accordingly, A(y|x) is the conditional
probability of the channel output y given the channel input x. Given a permutation-invariant distortion
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function d: A" x A" — R" (a permutation-invariant distortion function d(x, y) is a distortion function
that is invariant if the same permutation is applied to both x and y) and a maximum distortion A,
we define the class Cp of admissible channels { A(y|x), x,y € A"} as those that assign zero probability
to every y with d(x,y) > nA.

2.1. Basics of Game Theory

For the sake of completeness, we introduce some basic definitions and concepts of game theory.
A two-player game is defined as a quadruple (Si, S, ug,u2), where S; = {sy1...51,,,} and
Sy = {s2,1...50,n,} are the sets of strategies from which the first and second player can choose,
respectively, and u;(sy,;,52,7), ] = 1,2, is the payoff of the game for player /, when the first player chooses
the strategy s1,; and the second one chooses s; ;. Each player aims at maximizing its payoff function.
A pair of strategies (sy,;,52j) is called a profile. When u1(s1,5,52,7) + 2(s1,i,52,j) = 0, the game is said to
be a zero-sum game. For such games, the payoff of the game u(sy;, 52 ;) is usually defined by adopting
the perspective of one of the two players: that is, u(sy;,82;) = u1(s1,i,52j) = —u2(s1,i,52,) if the
defender’s perspective is adopted or vice versa. The sets §; and S, and the payoff functions are
assumed known to both players. In addition, we consider strategic games, i.e., games in which the
players choose their strategies ahead of time, without knowing the strategy chosen by the opponent.

A common goal in game theory is to determine the existence of equilibrium points, i.e., profiles that
in some sense represent a satisfactory choice for both players [24]. The most famous notion of equilibrium
is due to Nash [25]. A profile is said to be a Nash equilibrium if no player can improve its payoff by
changing its strategy unilaterally.

Despite its popularity, the practical meaning of Nash equilibrium is often unclear, since there is no
guarantee that the players will end up playing at the Nash equilibrium. A particular kind of games for
which stronger forms of equilibrium exist are the so-called dominance solvable games [24]. The concept
of dominance-solvability is directly related to the notion of strict dominance and dominated strategies.
In particular, a strategy is said to be strictly dominant for one player if it is the best strategy for
this player, i.e., the strategy that maximizes the payoff, no matter what the strategy of the opponent
may be. Similarly, we say that a strategy s, ; is strictly dominated by strategy s, ;, if the payoff achieved by
player I choosing s, ; is always lower than that obtained by playing s, ;, regardless of the strategy of the
other player. Recursive elimination of dominated strategies is a common technique for solving games.
In the first step, all the dominated strategies are removed from the set of available strategies, since no
rational player (in game theory, a rational player is supposed to act in a way that maximizes its payoff)
would ever use them. In this way, a new, smaller game is obtained. At this point, some strategies
that were not dominated before, may become dominated in the new, smaller version of the game,
and hence are eliminated as well. The process goes on until no dominated strategy exists for either
player. A rationalizable equilibrium is any profile which survives the iterated elimination of dominated
strategies [26,27]. If at the end of the process only one profile is left, the remaining profile is said to be the
only rationalizable equilibrium of the game, which is also the only Nash equilibrium point. Dominance
solvable games are easy to analyze since, under the assumption of rational players, we can anticipate
that the players will choose the strategies corresponding to the unique rationalizable equilibrium.
Another, related, interesting notion of equilibrium is that of dominant equilibrium. A dominant
equilibrium is a profile that corresponds to dominant strategies for both players and is the strongest
kind of equilibrium that a strategic game may have.

3. Detection Game with Fully Active Attacker

3.1. Problem Formulation

Given two discrete memoryless sources, Py and Pj, defined over a common finite alphabet A,
we denote by x = (x1,...,x,) € A" a sequence emitted by one of these sources. The sequence x is
available to the attacker. Let y = (y1, 12, ..., yn) € A" denote the sequence observed by the defender:
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when an attack occurs under both H and H, the observed sequence y is obtained as the output of an
attack channel fed by x.

In principle, we must distinguish between two cases: in the first, the attacker is aware
of the underlying hypothesis (hypothesis-aware attacker), whereas, in the second case, it is not
(hypothesis-unaware attacker). In the hypothesis-aware case, the attack strategy is defined by two
different conditional probability distributions, i.e., two different attack channels: Ay(y|x), applied when
Hop holds, and A;(y|x), applied under ;. Let us denote by Q;(-) the PMF of y under H;, i = 0,1.
The attack induces the following PMFs on y: Qo(y) = Yx Po(x)Ao(y|x) and Q1 (y) = Yx P1(x) A1 (y|x).

Clearly, in the hypothesis-unaware case, the attacker will apply the same channel under
Ho and Hj, that is, Ag = Aj;, and we denote the common attack channel simply by A.
Throughout the paper, we focus on the hypothesis-aware case as, in view of this formalism,
the hypothesis-unaware case is just a special case. Obviously, the partially active case, where no
attack occurs under H( can be seen as a degenerate case of the hypothesis-aware fully active one,
where Ay is the identity channel I.

Regarding the defender, we assume a randomized decision strategy, defined by ®(H;|y),
which designates the probability of deciding in favor of H;, i = 0,1, given y. Accordingly, the probability
of a false positive (FP) decision error is given by

P (@, Ag) = ) Qo(y)@(H1ly), 1
y

and similarly, the false negative (FN) probability assumes the form:

P (@, A1) = ) Qu(y)P(Holy). 2)
Yy

As in [11], due to the limited resources assumption, the defender makes a decision based on
first-order empirical statistics of y, which implies that ®(-|y) depends on y only via its type class 7 (y).

Concerning the attack, to limit the amount of distortion, we assume a distortion constraint. In the
hypothesis-aware case, we allow the attacker different distortion levels, Ag and A, under Hy and
H,, respectively. Then, Ay € C5, and Ay € Cp,, where, for simplicity, we assume that a common
(permutation-invariant) distortion function d(-, -) is adopted in both cases.

Figure 1 provides a block diagram of the system with a fully active attacker studied in this paper.

Ho/Py X | A,

RN
Y | ur | [0(Holy), o(Hly)]
Hi/p X | oA S

Figure 1. Schematic representation of the adversarial setup considered in this paper. In the case of
partially active attacker, channel Aj corresponds to the identity channel.

3.2. Definition of the Neyman—Pearson and Bayesian Games

One of the difficulties associated with the fully active setting is that, in the presence of a fully
active attacker, both the FP and FN probabilities depend on the attack channels. We therefore consider
two different approaches, which lead to different formulations of the detection game: in the first,
the detection game is based on the Neyman-Pearson criterion, and, in the second one, the Bayesian
approach is adopted.

For the Neyman-Pearson setting, we define the game by assuming that the defender adopts a
conservative approach and imposes an FP constraint pertaining to the worst-case attack under H.
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Definition 1. The Neyman—Pearson detection game is a zero-sum, strategic game defined as follows.

e The set Sp of strategies allowed to the defender is the class of randomized decision rules {®} that satisfy

(i)  D(Holy) depends on y only via its type.
(i)  maxy,ec Ay P(®, Ag) < e for a prescribed constant A > 0, independent of n.

o The set Sy of strategies allowed to the attacker is the class of pairs of attack channels (Ao, A1) such that
Ap € CAO/ A € CAl,' thatis, Sy = CAO X CAl‘

o The payoff of the game is u(®, A1) = Pry(P, A1), the attacker is in the quest of maximizing u(®, Aq)
whereas the defender wishes to minimize it.

In the above definition, we require that the FP probability decays exponentially fast with n,
with an exponential rate at least as large as A. Such a requirement is relatively strong, its main
consequence being that the strategy used by the attacker under Hj is irrelevant, in that the payoff is
the same whichever is the channel Ay € Cj, played by the attacker. It is worth observing that, to be
more general, we could have defined the problem as a non-zero sum game, where the defender has
payoff up (¢, A1) = —Pu (P, A1), whereas for the attacker we consider a payoff function of the form
ua(p, (Ao, A1)) = BPu(P, Ag) + YPen (P, Ay), for some positive constant § and . As is made clear in
the following section, this non-zero sum version of the game has the same equilibrium strategies of the
zero-sum game defined above.

In the case of partially active attack (see the formulation in [23]), the FP probability does not
depend on the attack but on the defender only; accordingly, the constraint imposed by the defender
in the above formulation becomes Py, (®) < e ", Regarding the attacker, we have Sy = Cy x Cy,,
where () is a singleton that contains the identity channel only.

Another version of the detection game is defined by assuming that the defender follows a less
conservative approach, that is, the Bayesian approach, and he tries to minimize a particular Bayes risk.

Definition 2. The Bayesian detection game is a zero-sum, strategic game defined as follow.

e The set Sp of strategies allowed to the defender is the class of the randomized decision rules {®} where
D (Holy) depends on y only via its type.

o Theset Sy of strategies allowed to the attacker is Sy = Cp, X Cp,.

o The payoff of the game is

u(q)/ (AO/ Al)) = PFN(q)/ Al) +eanPFP(q>/AO)/ ®)
for some constant a, independent of n.

We observe that, in the definition of the payoff, the parameter a controls the tradeoff between the
two terms in the exponential scale; whenever possible, the optimal defense strategy is expected to
yield error exponents that differ exactly by 4, so as to balance the contributions of the two terms of
Equation (3).

Notice also that, by defining the payoff as in Equation (3), we are implicitly considering for the
defender only the strategies ®(-|y) such that Py (P, Ag) < e~ ?". In fact, any strategy that does not
satisfy this inequality yields a payoff # > 1 that cannot be optimal, as it can be improved by always
deciding in favor of H regardless of y (u = 1).

As in [11], we focus on the asymptotic behavior of the game as n tends to infinity. In particular,
we are interested in the exponents of the FP and FN probabilities, defined as follows:

1 1
g = —limsup — In Py (P, Ap);  €m = — limsup . In Py (D, Aq). 4)

n—oo N n—co
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We say that a strategy is asymptotically optimal (or dominant) if it is optimal (dominant) with respect
to the asymptotic exponential decay rate (or the exponent, for short) of the payoff.

3.3. Asymptotically Dominant and Universal Attack

In this subsection, we characterize an attack channel that, for both games, is asymptotically
dominant and universal, in the sense of being independent of the unknown underlying sources.
This result paves the way to the solution of the two games.

Let u denote a generic payoff function of the form

u= ')’PFN((DI Al) + ,BPFP(q)I AO)/ (5)

where B and 7 are given positive constants, possibly dependent on #.

We notice that the payoff of the Neyman-Pearson and Bayesian games defined in the previous
section can be obtained as particular cases: specifically, ¥ = 1 and f = 0 for the Neyman-Pearson
game and v = 1 and = ¢ for the Bayesian one.

Theorem 1. Let ¢, (x) denote the reciprocal of the total number of conditional type classes {T (y|x)} that
satisfy the constraint d(x,y) < nA for a given A > 0, namely, admissible conditional type classes (from the
method of the types, it is known that 1 > ¢, (x) > (n + 1)~ IAFAISY for any x [19]).
Define:
Cn(x)
Ax(ylx) = { mrigny 4y) < nd

0 elsewhere

(6)

Among all pairs of channels (Ao, A1) € Sa, the pair (A} , A} ) minimizes the asymptotic exponent of u
for every Py and Py, every <y, B > 0 and every permutation-invariant ®(H|-).

Proof. We first focus on the attack under #; and therefore on the FN probability.
Consider an arbitrary channel A; € Cp,. Let IT: A" — A" denote a permutation operator that
permutes any member of 4" according to a given permutation matrix and let

An(ylx) £ A (TTy|TTx). @)

Since the distortion function is assumed to be permutation-invariant, the channel Ar(y|x)
introduces the same distortion as Aj, and hence it satisfies the distortion constraint. Due to the
memorylessness of P; and the assumption that ®(#H|-) belongs to Sp (i.e., that ®(Hy|-) depends on
the observed sequence via its type), both P; (y) and ®(Hy|y) are invariant to permutations on y. Then,
we have:

P (@, A1) = Zpl )An(y|x)®(Holy)

— Epl )AL (ITy |TTx) D (Holy)

= 2P1 (TTx) A (TTy[T1x) D(Ho |TTy) ®)
Xy

= ZPl )A1(y|x)P(Holy)

= pm(cp,Al),

thus P (®, A1) = Py (P, A), where we have defined

Alylx) = ZAH ylx) = ZAl (Ty|Tx), )
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which also introduces the same distortion as A;. Now, notice that this channel assigns the same
conditional probability to all sequences in the same conditional type class 7 (y|x). To see why this
is true, we observe that any sequence ¥’ € T (y|x) can be seen as being obtained from y through the
application of a permutation I'T’, which leaves x unaltered. Then, we have:

A(y'|x) = A(IT'y[1T'x) ZAl y)|[T1(IT'x))
72A1 ITy|T1x) = A(y|x). (10)

Therefore, since the probability assigned by A to the sequences in 7 (y|x) is surely less than or
equal to 1, we argue that

. 1
Alylr) <4 Tm) AEy) <nb
0 elsewhere
Al x
_ Al(y| ) an
cn(x)
<(n+ 1)\«4\-(|A|*1)AZ] (y|x),
which implies that, Py (P, A) < . (n+1)MA(AI-Dp P (AR (1))
Then,
Pou(®, A7) < (n+ 1)MIHAITR (AL, @), (12)
or equivalently
Pu(®, A3,) > (n+ 1)~ AR, (4, @). (13)

We conclude that A} minimizes the error exponent of Pry(®, Aq) across all channels in Cy, and
for every ® € Sp, regardless of P;.

A similar argument applies to the FP probability for the derivation of the optimal channel under
Ho; that is, from the memorylessness of Py and the permutation-invariance of ®(#|-), we have:

Pe(®, Ax) > (n+1)"MHAFD R, (4, @), (14)
for every Ag € Cp,. Accordingly, A} minimizes the error exponent of P (D, Ap). We then have:

'YPFN(CI)' Al) + ,BPFP(CDI AO)
< (n+ 1)AHAED (4P (@, AR ) + PPu(®, AL)) (15)
= ’yPFN(q), AZ]) + ‘BPFP(®, AZO),

for every Ag € Cp, and Ay € Cp,. Notice that, since the asymptotic equality is defined in the
exponential scale, Equation (15) holds no matter what the values of § and v are, including values that
depend on n. Hence, the pair of channels (AZO, Azl) minimizes the asymptotic exponent of u for any
permutation-invariant decision rule ®(Hy|-) and for any v, > 0. O

According to Theorem 1, for every zero-sum game with payoff function of the form in Equation (5),
if @ is permutation-invariant, the pair of attack channels which is the most favorable to the attacker
is (AZO, AZI ), which does not depend on ®. Then, the optimal attack strategy (AZO, AZI) is dominant.
The intuition behind the attack channel in Equation (6) is illustrated in Figure 2 and explained below.
Given x, generated by a source Py, the set {y : d(x,y) < nA} corresponds to a set of conditional type
classes (for a permutation-invariant distortion function, d(x, y) is the same for every y € T (y|x)).
We say that a conditional type class is admissible if it belongs to this set. Then, to generate y which
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causes a detection error with the prescribed maximum allowed distortion, the attacker cannot do
any better than randomly selecting an admissible conditional type class according to the uniform
distribution and then choosing at random y within this conditional type class. Since the number
of conditional type classes is only polynomial in 1, the random choice of the conditional type class
does not affect the exponent of the error probabilities; besides, since the decision is the same for all
sequences within the same conditional type class, the choice of y within that conditional type class
is immaterial.

T (y2|x)
T (y1lx)

set of admissible conditional (&(Holy)= cost)

type classes | I
{y 1 d(x,y) < nA} a

Py

Figure 2. Graphical interpretation of the behavior of the attack channel A}. The number of admissible
conditional type classes is polynomial in n, thatis {y : d(x,y) < nA} = T (y;]x) where p(n) is a
)

iep(n
polynomial of n.

As an additional result, Theorem 1 states that, whenever an adversary aims at maximizing a
payoff function of the form Equation (5), and as long as the defense strategy is confined to the analysis
of the first-order statistics, the (asymptotically) optimal attack strategy is universal with respect to the
sources Py and Py, i.e., it depends neither on Py nor on P;.

We observe that, if Ay = A; = A, the optimal attack consists of applying the same channel
A} regardless of the underlying hypothesis and then the optimal attack strategy is fully-universal:
the attacker needs to know neither the sources (Pp and P;), nor the underlying hypothesis.
In this case, it becomes immaterial whether the attacker is aware or unaware of the true hypothesis.
As a consequence of this property, in the hypothesis-unaware case, when the attacker applies the
same channel under both hypotheses, subject to a fixed maximum distortion A, the optimal channel
remains A}.

According to Theorem 1, for the partially active case, there exists an (asymptotically) dominant
and universal attack channel. This result marks a considerable difference with respect to the results
of [11], where the optimal deterministic attack function is found by using the rationalizability argument,
that is, by exploiting the existence of a dominant defense strategy, and it is hence neither dominant
nor universal.

Finally, we point out that, similar to [11], although the sources are memoryless and only first-order
statistics are used by the defender, the output probability distributions induced by the attack channel
A}, namely Qp and Q1, are not necessarily memoryless.

4. The Neyman-Pearson Detection Game

In this section, we study the detection game with a fully active attacker in the Neyman-Pearson
setup as defined in Definition 1. From the analysis of Section 3.3, we already know that there exists
a dominant attack strategy. Regarding the defender, we determine the asymptotically optimal
strategy regardless of the dominant pair of attack channels; in particular, as shown in Lemma 1,
an asymptotically dominant defense strategy can be derived from a detailed analysis of the FP
constraint. Consequently, the Neyman—Pearson detection game has a dominant equilibrium.
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4.1. Optimal Detection and Game Equilibrium

The following lemma characterizes the optimal detection strategy in the Neyman—Pearson setting.

Lemma 1. For the Neyman—Pearson game of Definition 1, the defense strategy

A A
o* = —n|A— i D(Py||P, , 16
(H1ly) eXP{ n[ x:d(a?yl?gwo (Px| o)L} (16)

is asymptotically dominant for the defender.

In the special case A9 = 0, ®*(H1|y) in Equation (16) is (asymptotically) equivalent to the
Hoeffding test for non-adversarial hypothesis testing [28].

The proof of Lemma 1 appears in Appendix A.1.

We point out that, when the attacker is partially active, it is known from [23] that the optimal
defense strategy is

@ (1aly) Sexp { - [ - DByl |, )

which is in line with the one in [11] (Lemma 1), where the class of defense strategies is confined to
deterministic decision rules.

Intuitively, the extension from Equations (16) and (17) is explained as follows. In the case of
fully active attacker, the defender is subject to a constraint on the maximum FP probability over Sy,
that is, the set of the admissible channels A € Cy, (see Definition 1). From the analysis of Section 3.3,
channel A} minimizes the FP exponent over this set. To satisfy the constraint for a given sequence
y, the defender must handle the worst-case value (i.e., the minimum) of D(Px||Py) over all the type
classes T (x|y) which satisfy the distortion constraint, or equivalently, all the sequences x such that
d(x,y) < nlp.

According to Lemma 1, the best defense strategy is asymptotically dominant. In addition, since ®*
depends on P) only, and not on P, it is referred to as semi-universal.

Concerning the attacker, since the payoff is a special case of Equation (5) withy =1and f =0,
the optimal pair of attack channels is given by Theorem 1 and corresponds to (AZO, A, ).

The following comment is in order. Since the payoff of the game is defined in terms of the FN
probability only, it is independent of Ag € Cp,. Furthermore, since the defender adopts a conservative
approach to guarantee the FP constraint for every Ay, the constraint is satisfied for every Ay and
therefore all channel pairs of the form (Ao, Azl), Ay € Sy, are equivalent in terms of the payoff.
Accordingly, in the hypothesis-aware case, the attacker can employ any admissible channel under H,.
In the Neyman-Pearson setting, the sole fact that the attacker is active under Hg forces the defender to
take countermeasures that make the choice of Ay immaterial.

Due to the existence of dominant strategies for both players, we can immediately state the
following theorem.

Theorem 2. Consider the Neyman—Pearson detection game of Definition 1. Let ®* and (AZO, Azl) be the
strategies defined in Lemma 1 and Theorem 1, respectively. The profile (P, (AZO, AL, )) is an asymptotically
dominant equilibrium of the game.

4.2. Payoff at the Equilibrium

In this section, we derive the payoff of the Neyman—Pearson game at the equilibrium of Theorem 2.
To do this, we assume an additive distortion function, i.e., d(x,y) = Y ; d(x;,y;). In this case, d(x, y)
can be expressed as Y ;; nxy (i, j)d(i, j), where nxy (i, j) = nﬁxy (i,7) denotes the number of occurrences
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of the pair (i,j) € A?in (x,y). Therefore, the distortion constraint regarding Ay can be rewritten as
L(ijea pxy(i, 7)d(i,j) < Ap. A similar formulation holds for A;.
Let us define A
Di(Py,P)= _  min D(Px||P), (18)
{Px‘yExyd(X,Y)SA}

where Exy denotes the empirical expectation, defined as

Exyd(X, Y) = Z pxy(l,])d(l,]) (19)
(i,j) e A?

and the minimization is carried out for a given ﬁy, Accordingly, the strategy in Equation (16) can be
rewritten as

" (Haly) éexp{—n [A—%(%P@L}. (20)

When n — oo, D} becomes (due to the density of rational numbers on the real line,
the admissibility set in Equation (18) is dense in that of Equation (21); since the divergence functional
is continuous, the sequence {ﬁg(py, P)},>1 tends to Da(Py, P) as n — o)

. A
DA(Py,P) = i D(Px||P), 21
A(Py, P) {PX\Y:EXI?H}&,Y)SA} (Px||P) (21)

where Exy denotes expectation with respect to Pxy.

The definition in Equation (21) can be stated for any PMF Py in the probability simplex in RM!.
Note that the minimization problem in Equation (21) has a unique solution as it is a convex program.

The function D, has an important role in the remaining part of the paper, especially in the
characterization of the asymptotic behavior of the games. To draw a parallelism, D, plays a role similar
to that of the Kullback-Leibler divergence D in classical detection theory for the non-adversarial case.

The basic properties of the functional Dy (Py, P) are the following: (i) it is continuous in Py;
and (i) it has convex level sets, i.e., the set { Py : Ds(Py, P) < t} is convex for every t > 0. Point (ii) is
a consequence of the following property, which is useful for proving some of the results in the sequel
(in particular, Theorems 3, 7 and 8).

Property 1. The function Da(Py, P) is convex in Py for every fixed P.

The proof follows from the convexity of the divergence functional (see Appendix A.2).
Using the above definitions, the equilibrium payoff is given by the following theorem:

Theorem 3. Let the Neyman—Pearson detection game be as in Definition 1. Let (®*, (A} , A} )) be the
equilibrium profile of Theorem 2. Then,

en(A) = — lim %lnPFN(CD*,AZl)

n—oo

=  min Da, (Py, Py). (22)
Py:Dp, (Py,Py)<A

In Equation (22), we made explicit the dependence on the parameter A in the notation of the error
exponent, since this is useful in the sequel.

The proof of Theorem 3, which appears in Appendix A.3, is based on Sanov’s theorem [29,30],
by exploiting the compactness of the set { Py : Da,(Py, Py) < A}.
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From Theorem 3 it follows that ex(A) = 0 whenever there exists a PMF Py inside the set
{Py : DAO (Py, Py) < A} with A;-limited expected distortion from P;. When this condition does not
hold, P (P, AZ1) — 0 exponentially rapidly.

For a partially active attacker, the error exponent in Equation (22) becomes

w(A) = i Du, (Py, Pyp). 23
em(A) L, a, (Py, Py) (23)

It can be shown that the error exponent in Equation (23) is the same as the error exponent of
Theorem 2 in [11] (and Theorem 2 in [31]), where deterministic strategies are considered for both
the defender and the attacker. Such equivalence can be explained as follows. As already pointed,
the optimal defense strategy in Equation (17) and the deterministic rule found in [11] are asymptotically
equivalent (see the discussion immediately after Lemma 1). Concerning the attacker, even in the more
general setup (with randomized strategies) considered here, an asymptotically optimal attack could be
derived as in [11], that is, by considering the best response to the dominant defense strategy in [11].
Such attack consists of minimizing the divergence with respect to Py, namely D(Py||P), over all the
admissible sequences y, and then is deterministic. Therefore, concerning the partially active case,
the asymptotic behavior of the game is equivalent to the one in [11]. The main difference between the
setup in [11] and the more general one addressed in this paper relies on the kind of game equilibrium,
which is stronger here (namely, a dominant equilibrium) due to the existence of dominant strategies for
both the defender and the attacker, rather than for the defender only.

When the distortion function d is a metric, we can state the following result, whose proof appears
in Appendix A 4.

Theorem 4. When the distortion function d is a metric, Equation (22) can be rephrased as

em(M) min  Dpyia, (Py, Pr). (24)

Py:D(Py||Py)<A

Comparing Equations (23) and (24) is insightful for understanding the difference between the
fully active and partially active cases. Specifically, the FN error exponents of both cases are the same
when the distortion under 1 in the partially active case is Ay 4+ A (instead of Aq).

When d is not a metric, Equation (24) is only an upper bound on ¢,y (A), as can be seen from the
proof of Theorem 4. Accordingly, in the general case (d is not a metric), applying distortion levels
Ap and A; to sequences from, respectively, H and H; (in the fully active setup) is more favorable to
the attacker with respect to applying a distortion Ag + A; to sequences from #g only (in the partially
active setup).

5. The Bayesian Detection Game

In this section, we study the Bayesian game (Definition 2). In contrast to the Neyman-Pearson
game, in the Bayesian game, the optimal defense strategy is found by assuming that the strategy played
by the attacker, namely the optimal pair of channels (Aj, A}) of Theorem 1, is known to the defender,
that is, by exploiting the rationalizability argument (see Section 2.1). Accordingly, the resulting
optimal strategy is not dominant, thus the associated equilibrium is weaker compared to that of the
Neyman-Pearson game.

5.1. Optimal Defense and Game Equilibrium

Since the payoff in Equation (3) is a special case of Equation (5) with 7 = 1 and = ¢, for any
defense strategy ® € Sp, the asymptotically optimal attack channels under Hy and #; are given by
Theorem 1, and correspond to the pair (AZO, A, ). Then, we can determine the best defense strategy
by assuming that the attacker will play (A3 , A} ) and evaluating the best response of the defender to
this pair of channels.
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Our solution for the Bayesian detection game is given in the following theorem, whose proof
appears in Appendix B.1.

Theorem 5. Consider the Bayesian detection game of Definition 2. Let Qj(y) and Q7 (y) be the probability
distributions induced by channels A} and A} , respectively.
Then,

1. Qi(y)
*(H :LI<10 D72 g (25)
( 1|y) n g QO (y)
is the optimal defense strategy.

If, in addition, the distortion measure is additive, the defense strategy

®* (Hly) = U (D3, (Py, Po) — D, (Py, Pr) — a) (26)
is asymptotically optimal.

It is useful to provide the asymptotically optimal strategy, ®*, in addition to the optimal one, ®*,
for the following reason: while ®* requires the non-trivial computation of the two probabilities Q1 ()
and Qy(y), the strategy @', which leads to the same payoff asymptotically, is easier to implement
because of its single-letter form.

According to the asymptotically optimal defense strategy defined by the above theorem, given the
observed sequence y, the decision is made by comparing the value of the difference T)ZO (ﬁy |Py) —
@Zl (Py |P; ) against the threshold. Then, the functions 7520 and @Zl take the role of the K-L divergence
functions when the likelihood ratio test is performed in the non-adversarial case [19].

We now state the following theorem.

Theorem 6. Consider the Bayesian game of Definition 2. Let (AZU, A}, ) be the attack strateqy of Theorem 1
and let &% and O be the defense strategies defined, respectively, in Equations (25) and (26). The profiles
(®F, (Ap, An,)) and (®F, (A}, Ap,)) are asymptotic rationalizable equilibria of the game.

The analysis in this section can be easily generalized to any payoff function defined as in
Equation (5), i.e., for any v, B > 0.

Finally, we observe that the equilibrium found in the Bayesian case (namely, a rationalizable
equilibrium) is weaker with respect to the equilibrium derived for the Neyman-Pearson game (namely,
a dominant equilibrium) is a consequence of the fact that the Bayesian game is defined in a less
restrictive manner than the Neyman-Pearson game. This is due to the conservative approach adopted
in the latter: while in the Bayesian game the defender cares about both FP and FN probabilities and
their tradeoff, in the Neymam-Pearson game the defender does not care about the value of the FP
probability provided that its exponent is larger than A, which is automatically guaranteed by restricting
the set of strategies. This restriction simplifies the game so that a dominant strategy can be found for
the restricted game.

5.2. Equilibrium Payoff

We now derive the equilibrium payoff of the Bayesian game. As in the Neyman-Pearson game,
we assume an additive distortion measure. For simplicity, we focus on the asymptotically optimal
defense strategy ®'. We have the following theorem.
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Theorem 7. Let the Bayesian detection game be as in Definition 2. Let (®7, (Ap, AR,)) be the equilibrium
profile of Theorem 6. The asymptotic exponential rate of the equilibrium Bayes payoff u is given by

— lim = In (u(CI)+, (AAOIAAl))) =

n—oon

min (max {Da, (Py, P1), (Da, (Py, Po) —a)}) - (27)

The proof appears in Appendix B.2.

According to Theorem 7, the asymptotic exponent of u is zero if there exists a PMF Py with
Aq-limited expected distortion from P; such that ﬁAO(P;;, Py) < a. Therefore, when we focus on
the case of zero asymptotic exponent of the payoff, the parameter a plays a role similar to A in
the Neyman—Pearson game. By further inspecting the exponent expressions of Theorems 7 and 3,
we observe that, when a = A, the exponent in Equation (27) is smaller than or equal to the one
in Equation (22), where equality holds only when both Equations (22) and (27) vanish. However,
comparing these two cases in the general case is difficult because of the different definition of
the payoff functions and, in particular, the different role taken by the parameters A and a. In the
Neyman-Pearson game, in fact, the payoff corresponds to the FN probability and is not affected by the
value of the FP probability, provided that its exponent is larger than A; in this way, the ratio between FP
and FN error exponent at the equilibrium is generally smaller than A (a part for the case in which the
asymptotic exponent of the payoff is zero). In the Bayesian case, the payoff is a weighted combination
of the two types of errors and then the term with the largest exponent is the dominating term, namely,
the one which determines the asymptotic behavior; in this case, the parameter a determines the exact
tradeoff between the FP and FN exponent in the equilibrium payoff.

6. Source Distinguishability

In this section, we investigate the performance of the Neyman-Pearson and Bayesian games as a
function of A and g, respectively. From the expressions of the equilibrium payoff exponents, it is clear
that increase (and then the equilibrium payoffs of the games decrease) as A and a decrease, respectively.
In particular, by letting A = 0 and a = 0, we obtain the largest achievable exponents of both games,
which correspond to the best achievable performance for the defender. Therefore, we say that two
sources are distinguishable under the Neyman—Pearson (respectively, Bayesian) setting, if there exists
a value of A (respectively, «) such that the FP and FN exponents at the equilibrium of the game
are simultaneously strictly positive. When such a condition does not hold, we say that the sources
are indistinguishable. Specifically, in this section, we characterize, under both the Neyman-Pearson
and the Bayesian settings, the indistinguishability region, defined as the set of the alternative sources
that cannot be distinguished from a given source Py, given the attack distortion levels Ay and A;.
Although each game has a different asymptotic behavior, we show that the indistinguishability regions
in the Neyman-Pearson and the Bayesian settings are the same. The study of the distinguishability
between the sources under adversarial conditions, performed in this section, in a way extends the
Chernoff-Stein lemma [19] to the adversarial setup (see [31]).

We start by proving the following result for the Neyman-Pearson game.

Theorem 8. Given two memoryless sources Py and Py and distortion levels Ay and Aq, the maximum achievable
EN exponent for the Neyman—Pearson game is:

lim e;y(A) = ex(0) Da, (Py, Py), (28)
A—=0

= min
{Py|x:Exyd(X,Y)<Ao, (Pxy)x=Po}

where gx(A) is as in Theorem 3.
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The theorem is an immediate consequence of the continuity of &gy (A)as A — 0%, which follows
by the continuity of D, with respect to Py and the density of the set {Py : Dy, (Py,P)) < A} in
{Py : Dp,(Py,Py) =0} as A — 07 (It holds true from Property 1).

We notice that, if Ay = Ay = 0, there is only an admissible point in the set in Equation (28),
for which Py = Py; then, €, (0) = D(P||P;), which corresponds to the best achievable FN exponent
known from the classical literature for the non-adversarial case (Stein lemma [19] (Theorem 11.8.3)).

Regarding the Bayesian setting, we have the following theorem, the proof of which appears in
Appendix C.1.

Theorem 9. Given two memoryless sources Py and Py and distortion levels Ag and A1, the maximum achievable
exponent of the equilibrium Bayes payoff is

— lim lim 1 In (u(CD+, (AZO,AZJ)) =

a—0n—oon

n})iyn (max { Dy, (Py, P1),ﬁAo (Py,Po)}), (29)

where the inner limit at the left hand side is as defined in Theorem 7.

Since D A, (Py, P1), and similarly D o (Py, Po), are convex functions of Py, and reach their minimum
in Py, respectively Py (the fact that ﬁAO (ﬁAl) is 0 in a Ag-limited (A;-limited) neighborhood of P
(P1), and not just in Py (P;), does not affect the argument), the minimum over Py of the maximum
between these quantities (right-hand side of Equation (29)) is attained when Dy, (P}, P1) = Da, (P}, ),
for some PMF Py. This resembles the best achievable exponent in the Bayesian probability of error
for the non-adversarial case, which is attained when D(Py||Py) = D(Py||P;) for some Py (see [19]
(Theorem 11.9.1)). In that case, from the expression of the divergence function, such Py is found in a
closed form and the resulting exponent is equivalent to the Chernoff information (see Section 11.9 [19]).
From Theorems 8 and 9, it follows that there is no positive A, respectively a, for which the
asymptotic exponent of the equilibrium payoff is strictly positive, if there exists a PMF Py such that
the following conditions are both satisfied:
Day(Py,Py) =0
{ Da, (Py,Py) = 0. (30)

In this case, then, Py and P; are indistinguishable under both the Neyman—Pearson and the
Bayesian settings. We observe that the condition Dy (Py, Px) = 0 is equivalent to the following:

I(l(’gl}i(l;I)X:PX Exyd(X,Y) <A, (31)
QX}/:(QXY)Y:PY
where the expectation Exy is with respect to Qxy. For ease of notation, in Equation (31), we used
(Qxy)y = Py (respectively (Qxy)x = Px) as short for }_, Qxy(x,y) = Py(y), Yy € A (respectively
Xy Qxy(x,y) = Px(x), Vx € A), where Qxy is a joint PMF and Px and Py are its marginal PMFs.

In computer vision applications, the left-hand side of Equation (31) is known as the Earth
Mover Distance (EMD) between Px and Py, which is denoted by EMD;(Px, Py) (or, by symmetry,
EMD,(Py, Px)) [32]. It is also known as the p-bar distortion measure [33].

A brief comment concerning the analogy between the minimization in Equation (31) and optimal
transport theory is worth expounding. The minimization problem in Equation (31) is known in the
Operations Research literature as Hitchcock Transportation Problem (TP) [34]. Referring to the original
Monge formulation of this problem [35], Px and Py can be interpreted as two different ways of piling
up a certain amount of soil; then, Pxy (x, y) denotes the quantity of soil shipped from location (source)
x in Px to location (sink) y in Py and d(x, y) is the cost for shipping a unitary amount of soil from x to y.



Entropy 2019, 21, 23 17 of 31

In transport theory terminology, Pxy is referred to as transportation map. According to this perspective,
evaluating the EMD corresponds to finding the minimal transportation cost of moving a pile of soil
into the other. Further insights on this parallel can be found in [31].

We summarize our findings in the following corollary, which characterizes the conditions for
distinguishability under both the Neyman-Pearson and the Bayesian setting.

Corollary 1 (Corollary to Theorems 8 and 9). Given a memoryless source Py and distortion levels Ay and A,
the set of the PMFs that cannot be distinguished from Py in both the Neyman—Pearson and Bayesian settings is
given by

r= {P : min EMDj(Py, P) < Al} . (32)
py:EMDd(Py,P(])SAO

Set I' is the indistinguishability region. By definition (see the beginning of this section), the PMFs
inside I' are those for which, as a consequence of the attack, the FP and FN probabilities cannot
go to zero simultaneously with strictly positive exponents. Clearly, if Ay = A; = 0, that is, in the
non-adversarial case, I' = { P}, as any two distinct sources are always distinguishable.

When d is a metric, for a given P € T, the computation of the optimal Py can be traced back to the
computation of the EMD between Py and P, as stated by the following corollary, whose proof appears
in Appendix C.2.

Corollary 2 (Corollary to Theorems 8 and 9). When d is a metric, given the source Py and distortion levels
Ao and Ay, for any fixed P, the minimum in Equation (32) is achieved when

A

PY:lXP[)‘i_(]._ﬂé)p, (X:].—W

(33)
Then, the set of PMFs that cannot be distinguished from Py in the Neyman—Pearson and Bayesian setting

is given by
I' ={P:EMDy(Py, P) < Ao+ A1} (34)

According to Corollary 2, when d is a metric, the performance of the game depends only on
the sum of distortions, Ay + A1, and it is immaterial how this amount is distributed between the
two hypotheses.

In the general case (4 not a metric), the condition on the EMD stated in Equation (34) is sufficient
in order for Py and P be indistinguishable, thatis T O {P : EMD4(Py, P) < Ap+ A1} (see discussion in
Appendix C.2, at the end of the proof of Corollary 2).

Furthermore, in the case of an Lﬁ distortion function (p > 1), ie., d(x,y) = L\ |xi —vil”,
we have the following corollary.

Corollary 3 (Corollary to Theorems 8 and 9). When d is the Lg distortion function, for some p > 1, the set
I' can be bounded as follows

rc{r: EMDL;(PO,P) < (MgYP + A VPP, (35)

Corollary 3 can be proven by exploiting the Holder inequality [36] (see Appendix C.3).

7. Concluding Remarks

We consider the problem of binary hypothesis testing when an attacker is active under
both hypotheses, and then an attack is carried out aiming at both false negative and false positive errors.
By modeling the defender-attacker interaction as a game, we defined and solved two different detection
games: the Neyman-Pearson and the Bayesian game. This paper extends the analysis in [11], where the
attacker is active under the alternative hypothesis only. Another aspect of greater generality is that here
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both players are allowed to use randomized strategies. By relying on the method of types, the main
result of this paper is the existence of an attack strategy, which is both dominant and universal, that is,
optimal regardless of the statistics of the sources. The optimal attack strategy is also independent of
the underlying hypothesis, namely fully-universal, when the distortion introduced by the attacker in
the two cases is the same. From the analysis of the asymptotic behavior of the equilibrium payoff,
we are able to establish conditions under which the sources can be reliably distinguished in the fully
active adversarial setup. The theory developed permits to assess the security of the detection in
adversarial setting and give insights on how the detector should be designed in such a way to make
the attack hard.

Among the possible directions for future work, we mention the extension to continuous alphabets,
which calls for an extension of the method of types to this case, or to more realistic models of finite
alphabet sources, still amenable to analysis, such as Markov sources. As mentioned in the Introduction,
it would be also relevant to extend the analysis to higher order statistics. In fact, the techniques introduced
in this paper are very general and lend themselves to extensions that allow richer sets of sufficient
statistics (as currently pursued in an ongoing work of the first two coauthors). This generalization,
however, comes at the price of an increased complexity of the analysis with regard to both the expressions
of the equilibrium strategies and the performance achieved by the two parties at the equilibrium.
More specifically, given the set of statistics used by the defender, it turns out that the optimal attacker
also uses the very same statistics (plus the empirical correlation with the source sequence, due to the
distortion constraint) and the optimal attack channel is given in terms of uniform distributions across
conditional types that depend on these set of statistics. Therefore, in a sequence of games, where the
defender exploits more and more statistics, so would the attacker, and it would be interesting to explore
the limiting behaviour of this process.

We also mention the case of unknown sources, where the source statistics are estimated from
training data, possibly corrupted by the attacker. In this scenario, the detection game has been studied
for a partially active case, with both uncorrupted and corrupted training data [13,14]. The extension of
such analyses to the fully active scenario represents a further interesting direction for future research.

Finally, we stress that, in this paper, as well as in virtually all prior works using game theory
to model the interplay between the attacker and the defender, it is assumed that the attacker is
always present. This is a pessimistic or worst-case assumption, leading to the adoption of an overly
conservative defense strategy (when the attacker is not present, in fact, better performance could be in
principle achieved by adopting a non-adversarial detection strategy). A more far-reaching extension
would require that the ubiquitous presence of the attacker is reconsidered, for instance by resorting to
a two-steps analysis, where the presence or absence of the attacker is established in the first step, or by
defining and studying more complex game models, e.g., games with incomplete information [37].
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Appendix A. Neyman-Pearson Detection Game

This appendix contains the proofs of the results in Section 4.
Appendix A.1. Proof of Lemma 1

Whenever existent, the dominant defense strategy can be obtained by solving:

in P (®,A;), Al
Juip (P, A) (A1)
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for any attack channel A;. Below, we first show that Py (®*, A1) < P (P, A;) for every ® € Sp
and for every Aj, that is, ®* is asymptotically dominant. Then, by proving that maxs¢¢ 5y Do (P*,A)
fulfills the FP constraint, we show that ®* is also admissible. Therefore, we can conclude that ®*(-|y)
asymptotically solves Equation (Al). Exploiting the memorylessness of Py and the permutation
invariance of ®(#4|y) and d(x,y), for every y’' € A" we have,

e™M >max ) Py(x) A(y|x)(Haly)
A g

=% (ZPO ) A%, ylx)> ®(Hly)

_ ) cn(x)
—§( ( Z Po(X) |T(y|X)) CID('Hlly)

x:d(X,Y) <nlg
Py(x)
>(n+ 1)~ MHAHAI=D 0| D(Hqly) (A2)
T s, T | O
Qo+ 760 [ max (Tl 2 ey
- x:d(x,Y')<nhg T (y'[x)]

—

Dn+1) MADo(ry[y)  max  Pylx) [T (x)]
x:d(x,y")<nhg
e—"D(Px||Po)

/
(Haly') dxy <y (1 + 1) AZTA-T)

exp { —nminy.gxy) <un, D(PxlPo) }

_ /
=2(hly) (1 + 1)AZ-(A-T) /

where (a) is due to the permutation invariance of the distortion function d and (b) is due to the identity
T T =TI IT*y)| =T (xy)l-

It now follows that

®(Hily) < exp {—n [/\ —  min D(prPo)] } : (A3)

x:d(X,Y)<ni

Since ®(H1|y) is a probability,

o B B . 5
®(H1|y) < min {1,exp [ n <)\ x:d(yglyl)n<nA0D(Px|P0)>] }
= O (Haly). (A4)

Consequently, ®*(Ho|y) < D (Holy) for every y, and so, Py (P*, A7) < Py (@, Aq) for every Aj.
For convenience, let us denote

k =)\— i D(Pyx||Py),
n(y) x:d(g}l/l)ngwo (Px||Po)

so that ®*(#|y) = min{1,e " (¥)}. We now show that ®*(#, |y) satisfies the FP constraint, up to a
polynomial term in #, i.e., it satisfies the constraint asymptotically.
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max Py (%, A) < (n+1)AA=U P (0%, A%)

AGCAO
= (n+ DAY Y py() 43 (y]) " (Haly)
Xy
(A n(x) *
(4 1A Py(x) - el - @ (M ly)
o, P 1]
< (n 4 1)ANA-D y B g4 1y)

(xy):d(x,Y)<nhg |7 (y|x)]

< (n 412404 ) ey A
_(Tl+ ) %(x:d(gja))(gnA()'T(x'y)' |T(]/|x)| ( 1|y) ( )

— (n+1)2AAI=D o~ Hn(Y) max T(x)] - Py(x) | +
(n+1) o TR

+ Z < max [T (x)] - Po(x)>

Byka(y)<0 x:d(X,Y)<nhg

< (1’1 + 1)2\A\~(|A|—1) Z e—n/\+
pykn(y)zo

* exp{—n min  D(Px|P
pyikglyko p{ x:d(X,Y)<ni (x| 0)}

< (n 4 1)MIIAPHAI-D) g-ni

Appendix A.2. Proof of Property 1

We next prove that for any two PMFs Py, and Py, and any A € (0,1),
Dp(APy, + (1= A)Py,, P) < ADA(Py,, P) + (1 — A)Dy(Py,, P). (A6)

Let us rewrite Dy in Equation (21) by expressing the minimization in terms of the joint PMF Pxy:

A

Da(Py,P) = D((Qxy)x|IP), (A7)

min
{Qxy:Exyd(X,Y)<A(Qxy)y=Py}

where we used (Qxy)y = Py as short for Y, Qxy(x,y) = Py(y), Yy, and we made explicit the
dependence of D(Px||P) on Qxy. Accordingly:

Da(APy, + (1 — A)Py,, P) = min D P). A8
a(APy; P P) {Qxy:Exyd(X,Y)<A, (Qxy)y=APy; +(1-A)Py, } ((Qur)xIP) (A9)

We find it convenient to rewrite the right-hand side of Equation (A8) by minimizing over pairs of
PMFs (QY, Q%) and considering the convex combination of these PMFs with weights A and (1 — A),
in place of Qxy; hence,

Da(APy, + (1= A)Py,, P) =  min  D(AMQxy)x + (1 —2A)(Qxy)xIIP), (A9)
(QxyQxy)EH
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where

H = {(Qxy, Qxy) : MQxy)y + (1 = A)(Qxy)y = APy, + (1 = A)Py,,
AEyyd(X,Y) + (1 — M) Eyd(X,Y) < A}. (A10)

Let
H' ={Q%y : Exyd(X,Y) < A, (Qxy)y = Py, } x {Qy : Exyd(X,Y) < A, (Qxy)y = P, }; (A1)

then, H' C H, where the set 1’ is separable in Q' and QY. Accordingly, Equations (A9) and (A10)
can be upper bounded by

min min D(AMQxy)x + (1 =AM (Q%y)xIIP). (A12)
Qy By d(X,Y) <A (Qly v =Py, QU iElyd(X,Y)<A(Qy )y =Py, (MQxv xv)x1P)

By the convexity of D((Qxy)x||P) with respect to Qxy (this is a consequence of the
fact that the divergence function is convex in its arguments and the operation (-)x is linear
(see Theorem 2.7.2, [19])), it follows that

D(MQxy)x + (1 =M (Qxy)xIIP) < AD((Qxy)x[IP) + (1= )P ((Qxy)xIIP)- (A13)

Note that the above relation is not strict since it might be that (Q%,)x = (Q%y)x = P. Then,
an upper bound for Dy (APy, + (1 — A)Py,, P) is given by

AD((Qy)xIIP) + (1=)D((Qxy)xIIP), (A14)

min min
Qly Ly Qxy =Py Exyd(X,Y)<A Q%y1(Q%y )y =Py, Exyd(X,Y)<A

thus proving Equation (A6).
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Appendix A.3. Proof of Theorem 3
We start by proving the upper bound for the FN probability:

P (@7, AR,) Zpl x)Ap, (y|x)®* (Holy)

— x Cn (%) _e—n[A—ﬁgo(py,pO)]+
Lo L AW (1 >

Y xd(x,y)<ni

Py(x) ( —n[A=DL (P ,Po>1+>
7 1 &VY
L TR\

x:d(x,Y)<ni;
=y y |T(px\y) | e_n[Hx(X)j-D(prPl)] (1 B en[AﬁgO(Py,pU)]+>
Y PxyExyd(X,Y)<M T (Pyx)|
- y |7 (Py) e~ Fx (X)+D(Px Py (1 B en[Aﬁgo(py,pUm)
py px\yﬂ:"xyd(x,y)gA1
- Z o~ D(Px|IPy) (1 3 e—n[A—ﬁgo(ﬁy,pO)]+> 15

- y y o~ nD(Px||Py) (1 N en(AﬁgO(ﬁy,po)))

pylﬁgo (py,P[)) <A px‘yExyd(X,Y) SAl

< Y Y e~ "D (Px||Py)

py:’[)go (py,PO) <A px‘yZExyd(X,Y) SAl

<(n +1)2AAY exp {—n ~_ min [ min D(ﬁxHPl)] }

Py:DZO (py,P0)</\ px‘yZExyd(X,Y)SA]

<(n41)2AAY exp { —n inf min D(Px||Py)
Py:Dpy (Py,Po)<A | Pxjy:Exyd(X,Y) <A

<(n+1)2AA=1) exps —n min min D(Px||P1)| ¢ -
Py:Dpy(Py,Po)<A | Pxjy:Exyd(X,Y) <A

Then:

lim su lnP D, A min min D(Px||Py) | . Al6
naoop n o = )< PyiﬁAo(Pero)S)\ [PX|yiExyd(XrY)§A1 (Pl 1)] ( )

We now move on to the lower bound.

P (@7, A} ZPl x) A, (y|x)®" (Haly)

Py (x) —n[A=D1 (Py,Po)]+
0+ 1)~ 1A (1,g o Py Po A17
= s s, TP (A7)

—na 1) MYy 3 o~ nD(Px|P1) (1 _ e—"M—ﬁZo(ﬁy'PO”)
py:ﬁgo (py,P0)<)L px‘y:Exyd(X,Y)SAl

> (14 1)~ M (A=) g=nD (P[P (1 _ eanfﬁZO(Py,Po)))l
where, for a fixed n, Py is a PMF that satisfies @ZO (py, Py) < A—(Inn)/nand px|y is such that the
distortion constraint is satisfied. Since the set of rational PMFs is dense in the probability simplex,
two such sequences can be chosen in such a way that (py, px\y) — (P}, P)*qy) (we are implicitly
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exploiting the fact that set {T)Xo(py, Py) < A} is dense in {Dy,(Py,Py) < A}, for every A > 0,
which holds true from Property 1), where

(Py,Pyy) =argmin _ min min D(Px||Py)| - (A18)
Y XY (P;‘;/PX‘Y) Py Dy (Py,Po) <A | PxjyiExyd(X,Y) <Ay

Therefore, we can assert that:
o 1 A% .1 —nD(Py||Py) —n(A=D% (Py,Py))
liminf — In Py (®*, A} ) > lim —In |[e” PP (1 —¢ 2\ Y
n—oo N 1 n—oo 1

= — lim D(Px||Py) (A19)
=—D(Px||P1)

=— _ min min D(Px||Py)| -
Py:Dpy(Py[|Po) <A | Pxjy:Exyd(X,Y) <A

By combining the upper and lower bounds, we conclude that limsup and liminf coincide.
Therefore, the limit of the sequence 1/7 In P, exists and the theorem is proven.

Appendix A.4. Proof of Theorem 4

First, observe that, by exploiting the definition of D,, Equation (22) can be rewritten as

€w = _ Mmin min D(Px||Py)
Py:Dpy (Py,Po) <A \ Pxjv:Exyd(X,Y)<Aq

min min min D(Px||Py) | - (A20)
Pz:D(Pz||[Po)<A Py|z:Eyzd(Y,Z)<Ag \ Pxjy:Exyd(X,Y)<A

To prove the theorem, we now show that Equation (A20) can be simplified as follows:

€n = _ min min D(Px||Py) |, (A21)
Pzip(le‘Po)S/\ PX‘Z:Exzd(X,Z)SAOJrA]

which is equivalent to Equation (24) (see Section 3). The equivalence of the expressions in Equations (A20)
and (A21) follows from the equivalence of the two feasible sets for the PMF Px. We first show that
any feasible Px in Equation (A20) is also feasible in Equation (A21). Let Px be a feasible PMF in

Equation (A20). By exploiting the properties of the triangular inequality property of the distance,
we have that, regardless of the specific choice of the distributions Py|z and Py in Equation (A20),

Exzd(X,Z) < Exyz[d(X,Y) +d(Y,Z)] = Exyd(X,Y) + Eyzd(Y, Z) < Ao+ Ay, (A22)

and then Py is a feasible PMF in Equation (A21). To prove the opposite inclusion, we observe that,
for any Pz and Py such that D(Pz[|Py) < A and Exzd(X,Z) < Ag+ Ay, it is possible to define
a variable Y, and then two conditional PMFs Py|; and Py, such that Exyd(X,Y) < A; and
Eyzd(Y,Z) < Ap. To do so, it is sufficient to let Py be the convex combination of Px and Py, that is
Py = aPx + (1 — a)Pz where & = Ag/ (Ao + Aq). With this choice for the marginal, we can define Py
so that Pxy satisfies

Pxy(i,j) = (1 —a)Pxz(i,j) Vi,Vj#i,
ny(i, l) = (1 — a)sz(i, Z) + Oépx(i) Vi. (A23)
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By adopting the transportation theory perspective introduced towards the end of Section 6, we can
look at Px and Py as two ways of piling up a certain amount of soil; then, Pxy can be interpreted as a
map which moves Py into Py (Pxy (i, j) corresponds to the amount of soil moved from position i to j).
The map in Equation (A23) is the one which leaves in place a percentage « of the mass and moves the
remaining (1 — «) percentage to fill the pile (1 — a) Pz according to map (1 — a)Pxz.

Similarly, Py|z can be chosen such that Pyz satisfies

Pyz(i,j) = apxz(i,j) VZ, V] 7é i,
Pyz(i,i) = aPxz(i,i) + (1 — &) Pz (i) Vi. (A24)

It is easy to see that, with the above choices, Exyd(X,Y) = (1 —a)Exzd(X,Z) and Eyzd(Y,Z) =
aExzd(X,Z). Then, Exyd(X,Y) < (1 —a)(Ap+ A1) < Ay and Eyzd(Y,Z) < Aj. Consequently,
any Px belonging to the set in Equation (A21) also belongs to the one in Equation (A20).

Appendix B. Bayesian Detection Game
This appendix contains the proofs for Section 5.

Appendix B.1. Proof of Theorem 5

Given the probability distributions Qo(y) and Q1(y) induced by A} and A} , respectively,
the optimal decision rule is deterministic and is given by the likelihood ratio test (LRT) [38]:

L Qi1(y) % a, (A25)

n Qoly) ,

which proves the optimality of the decision rule in Equation (25).
To prove the asymptotic optimality of the decision rule in Equation (26), let us approximate Qo (y)
and Q1 (y) using the method of types as follows:

Q(y) = ;Po(X)AZO (y[x)

= Y e nAx(0+D(Px )]y (V1Y)
X: d(X,Y)<nh

= max

Mxy (XIY) (e*”[Hx(X)JrD(prPo)]
X:d(x,Y)<nig

.e—ony(YX)> (A26)

C max oy (04D )]

X: d(x,Y)<nh

= exp {—n {Hy(Y)—l—

+ min D(Px”PO)] }

{Pxjy:Exyd(X,Y)<Ao}
= exp {—n[Hy(Y) + D}, (Py, Po)) } )

where in (a) we exploited the additivity of the distortion function d. Similarly,

Qu(y) = exp { —nlHy(Y) + D}, (By, )]} (a27)
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Thus, we have the following asymptotic approximation to the LRT:
A A Hy
D}, (Py, Py) — Dy (Py, P1) 5 a, (A28)
0
which proves the second part of the theorem.

Appendix B.2. Proof of Theorem 7

To make the expression of u(Pu(®*, (A}, AR,))) explicit, let us first evaluate the two error
probabilities at equilibrium. Below, we derive the lower and upper bound on the probability of y
under H1, when the attack channel is Azlz

(1’l—|— 1)—|A\|A—1\e*n[ﬂy(Y)+’5,’§1(nypl)] < Qi‘(y) < (n+ 1)\A\Zefn[Hy(Y)+7521(Py,Pl)]' (A29)

The same bounds hold for Q;(y), with T)Ao replacing T)AO- For the FN probability, the upper
bound is

PFN q>+ AA1 ZQl q)+ 7‘[0|]/)

= Y Qi(y)
y:ﬁgo (py'P0)7ﬁ21 (ﬁy,P1)<a
<(n+1)MP 5 ¢ Ay DL, (Py ) (A30)
y:f)go (py,P())*@Zl (py,P1)<H
<(n+ 1)‘“4‘2““4| max einﬁxl (Py.P1)
py:ﬁgo (py,Po)—'Dgl (py,P1)<u

=n+1)APH lexpl —n|  min Dj (Py,Py) | ¢
Py:DXO (Py,Po)—Dgl (Py,P1)<H

Then,

1 -
—limsup ~ In( Py (@, Aj)) < min Dp, (Py, Py). (A31)
n—eo M Py:Dpy (Py,Po)—Da, (Py,P1)<a

For the lower bound,

P (®F, A% ) >(n + 1)~ AIA Y oAy + DL, (Py 1))
)=
yiﬁgo (ﬁy,Po)fﬁg] (Py,P1)<a
>(n4+1)"MAAT - max o~ "Dh, (Py P1) (A32)
Py:DZO (Py,P())*DX] (Py,P] )<a
:(n + 1)_‘AHA_1‘ exp -n N = ~ mlrl.. N ﬁn (p /Pl) .
PyZDXO (Py,Po)fpgl (Py,P1)<ﬂ Al y
Then,
_hggggffln( Py (®F, A7) zr}g%oﬁzl(ﬁy,pl)
= min Da, (Py, Py), (A33)

PY Day (Py,Py)=Da, (Py,Pr)<a
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where Py is a properly chosen PMEF, belonging to the set { T)XU (Py, Py) — T)gl (Py, ) < a} for every n,
and such that Py — Py where

Py =arg min Da, (Py, Py). (A34)
Py:Dpy (Py,Po)—Da, (Py,Pr)<a

By Property 1, set {T)go(py, Py) — T)Xl (py, Py) < a} is dense in {Py : Dy, (Py, Py) — Da, (Py, Py) < a}

and then such a sequence of PMFs can always be found.
By combining Equations (A31) and (A33), we get

1 -
e = — lim — In(P(®F, A}))) = min Dy, (Py, Py). (A35)
n—oo 11 1 Py:Dy, (Py,Po)—Da, (Py,P1)<a

Therefore, from Equations (A30) and (A32) we have

Po(®Y, A} ) =exp¢—n| min Dy, (Py,Py) | ¢, (A36)
PyZDZO (Py,Pg)—Dgl (Py,P1)<a

and the limit of % In P, exists and is finite.
Similar bounds can be derived for the FP probability, resulting in

Pp(®*,Ay) =expq—n| min Dy, (Py, Po) | ¢, (A37)
Py:'Dgo (Py,Pg)—DZl (Py,Pl)Zu

and in particular

1 L
g = — lim = In(Pe(P*, A} )) = min D, (Py, Py). A38
- Jim (Per( A0)) Py, (PP, (BB 20 ao(Py, Po) (A38)

From Equation (A38), we see that, as argued, the profile (CI>+, (AZO, Azl)) leads to a FP exponent
always at least as large as a.

We are now ready to evaluate the asymptotic behavior of the payoff of the Bayesian
detection game:

U =Pex (DY, A})) + ¢ P (DT, A} )
= max{ P (P, A} ), " P (D', A} ) }

Zexp{—nmin| _ _ min D% (Py,Py), _  min (D} (By, Py) — a) (A39)
{ (Py:DZO(Py,PO)Dgl(Py,P1)<a MY Py:D}, (Py,Po)~D} (Py,Pr)>a MY

=exp {n nlgiyn (max {zﬁgl (By, P1), (D}, (By, Po) — a)}) }
=exp {—n n})}l{n (max {T)Al (Py, Py), (T)AO (Py,Py) —a)}) } ,

where the asymptotic equality in the last line follows from the density of the set of empirical
probability distributions of n-length sequences in the probability simplex and from the continuity of
the to-be-minimized expression in round brackets as a function of Py.

Appendix C. Source Distinguishability

This appendix contains the proofs for Section 6.
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Appendix C.1. Proof of Theorem 9

The theorem directly follows from Theorem 7. In fact, by letting
ea(Py) = max {Da, (Py, P1), Da,(Py, Py) —a}, (A40)
a > 0, the limit in Equation (29) can be derived as follows:

li ine,(Py) = min lim e, (P
3 T o) = rpin ()

= min (max { Dy, (Py, P1), Da,(Py, Po)}), (A41)
Y

where the order of limit and minimum can be exchanged because of the uniform convergence of e, (Py)

to eg(Py) as a tends to 0.

Appendix C.2. Proof of Corollary 2

The corollary can be proven by exploiting the fact that, when d is a metric, the EMD is a metric
and then EMD,(Py, P) satisfies the triangular inequality. In this case, it is easy to argue that the
Py achieving the minimum in Equation (32) is the one for which the triangular relation holds at
the equality, which corresponds to the convex combination of Py and P (i.e., the PMF lying on the
straight line between Py and P) with combination coefficient « such that EMD(Py, Py) (or equivalently,
by symmetry, EMD,(Py, Py)) is exactly equal to A.

Formally, let X ~ Py and Z ~ P. We want to find the PMF Py which solves

min EMD,/(Py, P). (A42)
PyIEMDd (Py,Po)SAO

Forany Y ~ Py and any choice of Pxy and Py (thatis, Py x and Py|y), by exploiting the triangular
inequality property of the distance, we can write

Exzd(X,Z) < Exyd(X,Y)+ Eyzd(Y,Z), (A43)
where Px7 can be any joint distribution with marginals Py and P. Then,
EMD(P(), P) < Exyd(X,Y) +Eyzd(Y, Z) (A44)

From the arbitrariness of the choice of Pxy and Py, if we let Py, and Py, be the joint distributions
achieving the EMD between X and Y, and Y and Z, we get

EMD(Py, P) < EMD(Py, Py) + EMD(Py, P). (A45)

From the above relation, we can derive the following lower bound for the to-be-minimized
quantity in Equation (A42):

EMD(Py, P) >EMD(Py, P) — EMD(P,, Py) (A46)
>EMD(Py, P) — A (A47)

We now show that Py defined as in Equation (33) achieves the above lower bound while satisfying
the constraint EMD(Py, Py) < Ap, and then get the minimum value in Equation (A42).

Let Py, be the joint distribution achieving the EMD between X and Z. Then, E%,d(X,Z) =
EMD(Py, P) (where the star on the apex indicates that the expectation is taken under Py,). Given the
marginal Py = aPy+ (1 — a)P, we can define Pxy and Pyyz, starting from Py, as in the proof of
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Theorem 4 (Equations (A23) and (A24)). With this choice, Exyd(X,Y) = (1 — a)EMD(P,, P) and
Eyzd(Y,Z) = aEMD(Py, P). Then, for the value of « in Equation (33) we have that Exyd(X,Y) = Ag and

Eyzd(Y,Z) = EMD(P,, P) — Ay. (A48)

By combining Equations (A47) and (A48), we argue that EMD(Py, P) = EMD(Py, P) — Ay (we
also argue that the choice made for Py; minimizes the expected distortion between Y and Z, i.e.,
it yields Eyzd(Y,Z) = EMD(Py, P). Furthermore, being Exyd(X,Y) = Ay, it holds EMD(Py,P) =
EMD(Py, P) — Exyd(X,Y) and then, from the triangular inequality in Equation (A45), it follows that
EMD(Py, Py) = Exyd(X,Y) = Ag) . Therefore, Py in Equation (33) solves Equation (A42).

To prove the second part of the corollary, we just need to observe that a PMF P belongs to the
indistinguishability set in Equation (32) if and only if

EMD(Py, P) = EMD(Py, P) — Ag < A, (A49)

that is EMD(Py, P) < Ag + Aq.

From the above proof, we notice that, for any P in the set in Equation (34), i.e., such that
EMD;(Py,P) < Ao+ Ay, the PMF Py = aPy+ (1 —a)P with a as in Equation (33) satisfies
EMD(Py, Py) = Ag and EMD(Py, P;) = A; for any choice of d. Then, when d is not a metric, the region
in Equation (34) is contained in the indistinguishability region.

Appendix C.3. Proof of Corollary 3

By inspecting the minimization in Equation (32), we see that, for any source P that cannot
be distinguished from P, it is possible to find a source Py such that EMD;(Py,P) < A; and
EMD,(Py, Py) < Ag. To prove the corollary, we need to show that such P lies inside the set defined in
Equation (35).

We give the following definition. Given two random variables X and Y, the Holder inequality
applied to the expectation function [36] reads:

Exy|XY| < (Ex[IXI) " (Ev[[Y)"", (A50)

where r > 1and g = r/(r — 1), namely, the Holder conjugate of r.
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We use the notation E%, for the expectation of the pair (X, Y) when the probability map is the

one achieving the EMD(Px, Py), namely Py ,. Then, we can write:

EMDy; (Po, P) = Exz[||X = Z||"]
r

(@)
<Exyz[([[X = Y[+ [[Y = Z[])"]

(b)
<Exyz [IIX—Y\I”H\Y—ZH”H- X = Y|P~ Y = Z] |+

= Exyz[[IX = Y|Pl + Exyz[[|lY = Z|[F] + p - Exyz[||X = Y|IP71 ||y = Z||]+

+p(p = 1)/2- Exyz | X = Y[P2 [|Y = Z[%] + ..

....... +pExyzllIX = Y| [y = Z||PY]

CExvz X YIP] + ExvzllIY — ZIP) + p - (Exvzll X — YIPD'F (ExvzlllY — ZIP) (A51)

+p(p =172 Exyz X = YIIP)'T (ExvzlllY = ZIP))7 + ..

ot p - (Exyzll|X = YIIP)) 7 (Exyz[IY — Z||P))
= Exy[lIX = YII?] + Eyz[lIY = ZIIP] + p- (Exy[[IX = YIIP]) 7
.

-1
4
4

p-1
P

(EvzIllY - Z||P))¥
T p(p—1)/2- (ExyllIX = YIIPD'F (EyzlllY - ZIIP)F + ...
et p- Exy X = YIPD) P (BvzlllY - 2] 7

= ((Bxvzll1X = YIIP)VP + (Exyzl[Y - ZIIP)?)"

< (A}/”+A}/”)p,

where in (2) we considered the joint distribution Pxy7 such that }-; Pxyz = Py, Yx Pxyz = Py,
(and, consequently, )"y Pxyz = Px,) and in (b) we developed the p-power of the binomial (binomial
theorem). Finally, in (c), we applied the Holder’s inequality to the various terms of Newton’s binomial:
specifically, for each term Exyz[||X — Y||P~! ||Y — Z||'], with t = 1,.., p — 1, the Holder inequality is
applied withr = p/(p—t) (and g =r/(r — 1)).
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