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Abstract: Conventional partial correlation coefficients (PCC) were extended to the non-Gaussian case,
in particular to independent component analysis (ICA) models of the observed multivariate samples.
Thus, the usual methods that define the pairwise connections of a graph from the precision matrix
were correspondingly extended. The basic concept involved replacing the implicit linear estimation
of conventional PCC with a nonlinear estimation (conditional mean) assuming ICA. Thus, it is better
eliminated the correlation between a given pair of nodes induced by the rest of nodes, and hence
the specific connectivity weights can be better estimated. Some synthetic and real data examples
illustrate the approach in a graph signal processing context.
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1. Introduction

1.1. Background

The partial correlation coefficient (PCC) [1] is a classical concept that has relevance in a variety
of statistical signal processing problems. Essentially, PCC measures the correlation between two
random variables conditioned to other observed random variables. Interest in it has recently increased
due to the emergence of graph signal processing (GSP) [2–4]. One key aspect of GSP is defining the
graph connectivity. Although this can be done considering the natural interactions from the context
where the graph signal is defined (e.g., time or space proximity between two nodes), it is desirable to
develop formal statistical methods; that is, given a set of multivariate samples where every sample
component is assigned to a node of the graph, the graph connectivity which best describes the implicit
dependences between any two nodes can be learned. Thus, PCCs are appropriate candidates to define
the connectivity as the effect of the rest of nodes is removed from the pairwise correlation. Actually, the
PCC is formally interpreted as the correlation between the residuals obtained after optimal estimation
of the values of the two involved nodes from the rest of nodes. Optimality is in the sense of minimum
linear mean square error (LMSE). Fortunately, it is not necessary to make an explicit estimation, as the
PCCs can be computed from the so-called precision matrix (inverse of the covariance matrix). Thus,
many efforts have focused onto estimating the precision matrix both in GSP [5,6] and in statistics [7–12].
However, the minimum LMSE estimator is optimum only if Gaussianity can be assumed. Accordingly,
we can say that methods based on the precision matrix are suboptimal in non-Gaussian scenarios.
The concept of PCC is extended to a Gaussian mixture model (GMM) in [13]. Apart from this work,
and to our knowledge, there have been no other attempts to consider non-Gaussian models in graph
connectivity learning.
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1.2. New Contributions and Paper Organization

In this work we consider the partial correlation computation under a non-Gaussian model,
in particular, a model of independent component analysis (ICA). ICA [14–17] is a consolidated
technique which has found a myriad of applications in statistical signal processing (e.g., blind source
separation [18–25]) and pattern recognition (see [26–31] and references therein). From the perspective
of this work, ICA is a model which incorporates non-Gaussianity through some independent variables
(sources), which are linearly mixed to create the observed samples. This makes it highly versatile and
allows for the modeling of non-Gaussian multivariate densities.

In the next Section we define a new partial correlation coefficient: ICA-PCC. The basic concept is
to replace the implicit linear estimation of conventional PCC by a nonlinear estimation (conditional
mean) assuming an underlying ICA model. Then, a general formula is presented to compute the
residual covariance matrix from where the ICA-PCCs are to be computed. An essential part of this
formula is a diagonal matrix having entries equal to the mean-square-errors of estimating the sources
of the ICA model. Then, in Section 3, a practical method is presented to estimate such a matrix from
the ICA model parameters. Finally, Section 4 includes some simulations to illustrate the improved
estimation of the partial correlation by ICA-PCC in non-Gaussian scenarios. A real data example
with EEG multichannel highly non-Gaussian signals is also included to quantify changes in brain
connectivity between normal and abnormal states of a patient during sleep.

2. The Partial Correlation of ICA Models

2.1. Statement of the Problem

Let x = [x1 . . . xN ]
T be the observation vector having covariance matrix E

[
xxT] = Cxx. We assume

that x obeys an ICA model, then
x = Us s = Wx (1)

where s = [s1 . . . sN ]
T is a vector of independent sources and U is a square and invertible mixing

matrix (W = U−1 is the de-mixing matrix). The sources are considered standardized (zero mean and
unit variance), otherwise they may have different non-Gaussian marginal densities, which factorize
the joint probability density function (pdf) p(s) = p(s1) · . . . · p(sN). Notice that

E[s] = 0 Css = E
[
ssT
]
= I E[x] = 0 Cxx = E

[
xxT
]
= E

[
UssTUT

]
= UUT (2)

Every component of x is assigned to every node of a graph G{V, E, A}, where V is the set of N
nodes, E is the set of edges connecting the nodes and A is the adjacency matrix. The generic element
anm is the weight (assumed real and nonnegative) corresponding to the edge connecting node m to
node n. We will consider undirected graphs, so anm = amn. The problem is to learn A from an available
set of observation vectors. PCCs are reasonable candidates as they can measure the correlation between
two nodes removing the effect of the rest of nodes. Moreover, PCCs can be computed from the precision
matrix Qxx = C−1

xx in the form
ρPCC

nm = − qnm√
qnnqmm

(3)

where qnm is the nm element of matrix Q and ρPCC
nm is the PCC of nodes n and m. Equation (3) could be

used for any underlying joint probability density p(x), however it is optimal only for the Gaussian
case. This is because the formal definition of ρPCC

nm is given by

ρPCC
nm =

E[(xn − L[xn/x−nm])(xm − L[xm/x−nm])]√
E
[
(xn − L[xn/x−nm])

2
]√

E
[
(xm − L[xm/x−nm])

2
] (4)
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where x−nm is the vector formed by all the samples of x except xn and xm, and L[xn/x−nm], L[xm/x−nm]

are respectively the minimum LMSE estimates of xn and xm from x−nm. However, optimum removal
of the effect of x−nm implies the use of the conditional means E[xn/x−nm] and E[xm/x−nm], which
respectively coincide with L[xn/x−nm] and L[xm/x−nm] only when p(x) is multivariate Gaussian. Thus,
in the non-Gaussian case, conventional PCC does not precisely capture the partial correlation, and so,
the graph connectivity. In [13] a generalized PCC (GPCC) is defined in the form

ρGPCC
nm =

E[(xn − E[xn/x−nm])(xm − E[xm/x−nm])]√
E
[
(xn − E[xn/x−nm])

2
]√

E
[
(xm − E[xm/x−nm])

2
] (5)

where the conditional mean E[xn/x−nm] depends on the specific model assumed for p(x). In this
paper we consider the ICA model (1). Then, the corresponding partial correlation coefficient is called
ICA-PCC, and it is represented by ρICA−PCC

nm to be specific with respect to the general definition (5).

2.2. A General Formula for the Residual Covariance

Let us define the vector xnm = [xn xm]
T . We can express x in the form

x = T−nmx−nm + Tnmxnm (6)

where T−nm is a matrix of dimension (N × (N − 2)) obtained from an (N × N) identity matrix by
dropping the n-th and m-th columns. Similarly, Tnm is a matrix of dimension (N × 2) obtained from
an (N × N) identity matrix dropping all but the n-th and m-th columns. Let us also define the residual
vector enm = [en em]

Ten = xn − E[xn/x−nm] em = xm − E[xm/x−nm]. Notice that the conditional
mean is an unbiased estimator, hence the residuals are zero mean and the residual covariance matrix
will be

Cenmenm = E
[
enmeT

nm

]
=

[
E
[
e2

n
]

E[enem]

E[emen] E
[
e2

m
] ]

(7)

We want to compute the residual covariance matrix so that (5) can be applied. We assume an ICA
model. First notice that enm = xnm − E[xnm/x−nm], but considering (1) and (6), we may write

E[s/x−nm] = W(T−nmx−nm + TnmE[xnm/x−nm]) (8)

Then, we can solve for E[xnm/x−nm]

E[xnm/x−nm] = (WTnm)
+(E[s/x−nm]−WT−nmx−nm) (9)

where (·)+ is the Moore-Penrose (left) pseudoinverse. Thus, in (9) we are expressing the conditional
mean of xnm in terms of the conditional mean of the sources and the ICA model parameters. This allows
us to derive the following general formula, which in spite of its simplicity requires a rather tedious
derivation that can be found in Appendix A

Cenmenm = (WTnm)
+Mnm

(
(WTnm)

+
)T

(10)

where Mnm is an (N × N) diagonal matrix having in its main diagonal the MSEs of optimally estimating
the sources from x−nm, that is,

Mnm(i, i) = msenmi = E
[
(si − E[si/x−nm])

2
]

(11)

Moreover, from (A7) (see Appendix A) we know that msenmi = 1 − var[E[si/x−nm]], hence
considering that, by definition, msenmi and var [.] are positive quantities, we conclude that 0 ≤
msenmi ≤ 1.
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Notice that (10) is a combination of the contributions of every source to the residual covariance
matrix. This can be better seen by expressing (10) in the alternative form

Cenmenm =
N

∑
i=1

msenmi · u+
nmiu

+T
nmi (12)

where u+
nmi is the i-th column of (WTnm)

+. Notice that WTnm is a (N × 2) matrix formed by the n-th
and m-th columns of W, i.e., by the coefficients that define the (demixing) contributions of xn and xm
to s. Thus, (WTnm)

+ is a (2× N) matrix, u+
nmi is a (2× 1) vector and u+

nmiu
+T
nmi is a (2× 2) matrix that

can be interpreted as the contribution of source si to Cenmenm . This contribution is weighted by msenmi.
Thus, msenmi = 0 indicates that source si is perfectly estimated by x−nm, hence si does not contribute
to the partial correlation between xn and xm. At the other extreme, msenmi = 1 indicates that si is
independent of x−nm, so it has maximum contribution to the partial correlation between xn and xm.

3. Estimating the ICA Partial Correlation Coefficients

We want to estimate ρICA−PCC
nm by

ρ̂ICA−PCC
nm =

Ê[enem]√
Ê
[
(en)

2
]√

Ê
[
(em)

2
] (13)

So, according to (7), we have to estimate Cenmenm . Considering (10), we need estimates of
W and Mnm. Estimates of W, the ICA model parameters, can be obtained using a variety of
algorithms [14–17,26–31] so, in the following, we concentrate on the estimation of Mnm, i.e., on
estimating msenmi = E

[
(si − E[si/x−nm])

2
]

i = 1 . . . N. To compute E[si/x−nm] we will consider a
particular form of the Wiener structure, which was proposed in [32], namely:

E[si/x−nm] ' E
[
si/ŝl

i

]
(14)

where ŝl
i

is the LMSE estimator of si from x−nm (we dropped the dependence on nm to ease the notation)
and the uni-dimensional conditional mean can be approximated by [32,33]

E
[
si/ŝl

i

]
=

∞

∑
k=1

1
k!

E
[

si ·
(

ŝl
in

)k
]

Hk

(
ŝl

in

)
(15)

where Hk(x) is the k-th Hermite polynomial and ŝl
in =

ŝl
i(

var
[
ŝl

i

]) 1
2

is a standardized Gaussian random

variable (this is justified in [32] by using the central limit theorem).
Let us approximate (15) by the first two terms. Taking into account that H1(x) = x H2(x) = x2− 1,

we can write

E
[
si/ŝl

i

]
= E

[
si · ŝl

in

]
ŝl

in + E
[

si ·
(

ŝl
in

)2
]
(

ŝl
in

)2
− 1

2

 (16)

but

E
[
si · ŝl

in

]
ŝl

in = E
[
si · ŝl

i

] ŝl
i

var
(
ŝl

i
) = E

[
ŝl

i · ŝl
i

] ŝl
i

var
(
ŝl

i
) = var

(
ŝl

i

) ŝl
i

var
(
ŝl

i
) = ŝl

i (17)

where we consider that E
[
si · ŝl

i

]
= E

[
ŝl

i · ŝl
i

]
(due to the orthogonality between the estimation error

and the linear estimate). As any LMSE estimator is unbiased, we know that E
[
ŝl

i

]
= E[si] = 0. Then,

we can express the conditional mean in (16) as the combination of a linear term ŝl
i plus a nonlinear
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term snl
i = E

[
si ·
(

ŝl
in

)2
](

(ŝl
in)

2−1
2

)
. Let us now compactly express the estimation of s from x−nm in

the form
E[s/x−nm] = ŝ = ŝl + ŝnl (18)

We can write

Mnm = diag
(

E
[
(s− ŝ)(s− ŝ)T

])
= diag

(
E
[((

s− ŝl
)
− ŝnl

)((
s− ŝl

)
− ŝnl

)T
])

= Ml
nm + diag

(
E
[

ŝnl
(

ŝnl
)T
])
− 2diag

(
E
[(

s− ŝl
)(

ŝnl
)T
]) , (19)

where Ml is a diagonal matrix whose elements are the MSEs corresponding to the linear estimation of
si from x−nm, that is,

Ml
nm = diag

(
E
[(

s− ŝl
)(

s− ŝl
)T
])

= diag
(

E
[
ssT
])
− diag

(
E
[

ŝl
(

ŝl
)T
])

(20)

In (20), we have considered the orthogonality between the error vector and the estimate vector.
However, ŝl is the minimum LMSE estimate, so it can be obtained from the Wiener-Hopft equations

ŝl = Csx−nm C−1
x−nmx−nm x−nm Csx−nm = E

[
sxT
−nm

]
Cx−nmx−nm = E

[
x−nmxT

−nm

]
. (21)

Hence, we can write:

Ml
nm = I− diag

(
E
[
Csx−nm C−1

x−nmx−nm x−nmx−nm
TC−1

x−nmx−nm CT
sx−nm

])
= I− diag

(
Csx−nm C−1

x−nmx−nm CT
sx−nm

)
(22)

Taking into account Csx−nm = WCxxT−nm, Cx−nmx−nm = TT
−nmCxxT−nm and Cxx = W−1

(
W−1

)T
,

we can finally express Ml
nm in terms of the ICA model parameters:

Ml
nm = I− diag

((
W−1

)T
T−nm

(
TT
−nmW−1

(
W−1

)T
T−nm

)−1
TT
−nmW−1

)
. (23)

Let us now consider the other two terms in (19). First, notice that ŝnl
i can be interpreted as a linear

estimate of si from
(

ŝl
in

)2
, because assuming that ŝl

in is a standardized Gaussian random variable, then(
ŝl

in

)2
is χ2 having a mean equal to 1 and variance equal to 2. Hence, we can apply orthogonality again:

diag
(

E
[(

s− ŝnl
)(

ŝnl
)T
])

= 0 ⇒ diag
(

E
[

s
(

ŝnl
)T
])

= diag
(

E
[

ŝnl
(

ŝnl
)T
])

. (24)

Consequently, we have

diag
(

E
[

ŝnl
(

ŝnl
)T
])
− 2diag

(
E
[(

s− ŝl
)(

ŝnl
)T
])

= −diag
(

E
[

s
(

ŝnl
)T
])

+ 2diag
(

E
[

ŝl
(

ŝnl
)T
])

. (25)

The second term in (25) is zero, because[
diag

(
E
[

ŝl
(

ŝnl
)T
])]

ii
= E

[
ŝl

i E
[

si ·
(

ŝl
in

)2
](

(ŝl
in)

2−1
2

)]
= 1

2 E
[

si ·
(

ŝl
in

)2
](

E
[

ŝl
i

(
ŝl

in

)2
]
− E

[
ŝl

i

])
(26)



Entropy 2019, 21, 22 6 of 16

where E
[
ŝl

i

]
= 0 and E

[
ŝl

i

(
ŝl

in

)2
]
=
(

var
[
ŝl

i

]) 1
2 E
[(

ŝl
in

)3
]
= 0, because we assume that ŝl

in is Gaussian

so its odd moments are zero. Regarding the first term in (25)[
diag

(
E
[

s
(

ŝnl
)T
])]

ii
= E

[
siE
[

si ·
(

ŝl
in

)2
](

(ŝl
in)

2−1
2

)]
= 1

2 E
[

si ·
(

ŝl
in

)2
](

E
[

si

(
ŝl

in

)2
]
− E[si]

)
= 1

2var2
[
ŝl

i

]E2
[

si ·
(

ŝl
i

)2
] (27)

Defining the vector ŝl(2) =

[(
ŝl

1

)2
. . .
(

ŝl
N

)2
]T

and taking into account that var
[
ŝl

i

]
=[

Csx−nm C−1
x−nmx−nm CT

sx−nm

]
ii

we can write

diag
(

E
[

s
(

ŝnl
)T
])

=
1
2

diag2
(

E
[

s
(

ŝl(2)
)T
])

diag−2
(

Csx−nm C−1
x−nmx−nm CT

sx−nm

)
, (28)

and considering (21) and (23), (28) can be expressed in terms of the ICA model parameters

diag
(

E
[

s
(

ŝnl
)T
])

= 1
2 · diag2

WE

x

((W−1
)T

T−nm

(
TT
−nmW−1

(
W−1

)T
T−nm

)−1
x−nm

)(2)
T



·diag−2

((
W−1

)T
T−nm

(
TT
−nmW−1

(
W−1

)T
T−nm

)−1
TT
−nmW−1

) (29)

So, in conclusion we can express the matrix Mnm as

Mnm = Ml
nm − diag

(
E
[

s
(

ŝnl
)T
])

, (30)

where Ml
nm and diag

(
E
[

s
(

ŝnl
)T
])

can be obtained from (23) and (29), respectively, using estimates Ŵ

of the model parameters and a sample mean to evaluate the expectation required in (29). Algorithm 1
below describes the estimation procedure.

Algorithm 1: Computing ICA-PCC.

1: Input: Learning data set x(l) l = 1 . . . L
2: Compute Ŵ from the learning data set (any ICA algorithm is a candidate)
3: for n = 1, 2 . . . N
4: for m = n . . . N
3: Compute M̂nm (Equations (23), (29), (30))

4: Compute Ĉenmenm = −
(
ŴTnm

)+M̂nm

((
ŴTnm

)+)T

5: Compute ρ̂ICA−PCC
nm (Equation (13))

6: Compute ρ̂ICA−PCC
mn = ρ̂ICA−PCC

nm
8: end for
9: end for
10: Output ρ̂ICA−PCC

mn n = 1 . . . N m = 1 . . . N

Equation (30) provides an interesting decomposition of msenmi. Let msel
nmi be called the entries

of the diagonal matrix Ml
nm, then msenmi can be expressed as msel

nmi minus a nonnegative term (see
Equation (29)), so that msenmi ≤ msel

nmi. The condition msenmi = msel
nmi ⇔Mnm = Ml

nm holds for the

Gaussian case, because then E
[

si ·
(

ŝl
in

)2
]

(see Equation (27)) becomes zero (it is an odd higher-order

moment of a multivariate Gaussian variable). In such a case, E[s/x−nm] = ŝl becomes a linear function
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of x−nm and so the same happens with E[x/x−nm] in (9). Hence, the second term in (30) is responsible
for the improved reduction in the influence of x−nm in the estimation of the partial correlation between
xn and xm, in the non-Gaussian case. Moreover, we should expect similar results for ICA-PCC and
PCC for the Gaussian case.

4. Experiments

4.1. Synthetic Data Experiments

In this experiment we evaluated the influence of the training set size in the estimation of ρICA−PCC
nm

as well as comparing the quality of the estimate with the one obtained from the precision matrix.
To this aim, we generated synthetic data corresponding to three different ICA models. In the first
one, the sources si were independent and identically distributed (i.i.d.) random variables having a
unit-variance zero-mean uniform pdf. This correspond to an example of sub-Gaussian distribution, as
the excess kurtosis is negative, κ − κG = −1.2, where κ is the kurtosis, and κG = 3 is the kurtosis of a
Gaussian pdf. In the second model, the sources si were i.i.d. random variables having a unit-variance
zero-mean Laplacian pdf. This is an example of super-Gaussian distribution, as the excess kurtosis is
positive κ − κG = 3. In the third model, some sources are uniform and the rest are Laplacian. Finally,
we also considered the Gaussian case by generating sources having a standard Gaussian pdf. Figure 1
shows the errors corresponding to the estimation of ρICA−PCC

nm for the four models.
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Every curve is an average of 10 curves corresponding to 10 different runs. In every run, an ICA
matrix U = W−1 was randomly selected; every entry was obtained by sampling a standard Gaussian
pdf. Then, a varying number of training vectors x was generated from source vectors s having
independent components sampled from the mentioned marginal pdfs: sub-Gaussian (Figure 1a),
super-Gaussian (Figure 1b), mixed of sub/super-Gaussian (Figure 1c) and Gaussian (Figure 1d).
The error was computed as
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∈ICA−PCC
ρ =

1
N2 − N

N

∑
n=1

∑
m 6=n

(∣∣∣ρICA−PCC
nm

∣∣∣− ∣∣∣ρ̂ICA−PCC
mn

∣∣∣)2
(31)

and averaged over the 10 runs for every training set size. Notice that 0 ≤∈ICA−PCC
ρ ≤ 1, because

∈ICA−PCC
ρmin = 0, when

∣∣ρICA−PCC
nm

∣∣ = ∣∣ρ̂ICA−PCC
nm

∣∣ ∀n ∀m 6= n and ∈ICA−PCC
ρmax = 1, when

∣∣ρICA−PCC
nm

∣∣−∣∣ρ̂ICA−PCC
nm

∣∣ = ±1 ∀n ∀m 6= n. In (31), ρICA−PCC
nm was obtained from Algorithm 1 using the true matrix

W and an extremely large number of instances for the sample mean required to compute the expectation
in (29). On the other hand, ρ̂ICA−PCC

mn was computed from Algorithm 1 using estimates of W obtained
with the corresponding finite training set. We used the Extended Infomax algorithm described in [34]
and the JADE algorithm [35]. Extended Infomax is an extension of the Infomax algorithm [36] used to
deal with mixed sub/super-Gaussian sources. It is representative of algorithms that iteratively optimize
some defined cost-function like Fast-ICA. JADE is based on matrix computation and diagonalization,
so, it is not sensitive to initialization or optimization path problems. The same finite training set was
also used to evaluate the expectation in (29). In all cases we considered N = 20. For comparison, we
also computed the error

∈PCC
ρ =

1
N2 − N

N

∑
n=1

∑
m 6=n

(∣∣∣ρICA−PCC
nm

∣∣∣− ∣∣∣ρ̂PCC
mn

∣∣∣)2
(32)

which corresponds to the PCCs obtained from empirical estimates Q̂ of the precision matrix as indicated
in (3): ρ̂PCC

nm = −q̂nm/
√

q̂nn q̂mm. Notice that it is also 0 ≤∈PCC
ρ ≤ 1.

Several conclusions may be drawn from Figure 1. First, we can see that in the non-Gaussian
cases (a) (b) and (c), PCC cannot decrease the error with increased training set size. This demonstrates
the model mismatch due to the implicit Gaussianity of PCC. In these three cases, ICA-PCC methods
improve on PCC after a sufficient number of training samples and maintain a decreased error for an
increased training set size. The minimum training set size required to improve on PCC depends on the
case and on the ICA-PCC method. Thus, this minimum number is smaller in Figure 1a (sub-Gaussians)
than in Figure 1b (super-Gaussians), and has an intermediate value in Figure 1c (mixed sub/super
Gaussians). However, notice that the non-decreasing error of PCC is much higher in Figure 1a,c, so
this suggests that ICA-PCC improvement begins from a smaller training set size. On the other hand,
this minimum value is smaller in JADE than in Extended-Infomax. This is due to the different nature
of both algorithms. JADE requires a matrix diagonalization, while Extended-Infomax requires iterative
learning. However the computational complexity of JADE is much larger, especially as N increases.
Regarding convergence for large values of the training set size, we can see that the error level of
the mixed case is clearly above the others. This is because, in general all ICA algorithms have more
difficulties in estimating the model in the mixed case. Actually, Extended-Infomax was conceived in
an effort to deal with the mixed case by incorporating a procedure to estimate the class (sub/super)
of every source. This explains the smaller error of Extended-Infomax in Figure 1c with respect to
JADE, after a given training set size. For the Gaussian case, PCC yields a very small error, which
decreases with increasing training set size. In this case, ICA-PCC is worse than PCC, although the
error is reasonably small. Remember that, in the Gaussian case, we expected similar results for both
methods, however, the estimation path followed is different: in PCC the precision matrix is directly
estimated, while in ICA-PCC the matrices W and Mnm are estimated in Algorithm 1. This could explain
the separation observed in the error curves of Figure 1d. Finally, most ICA algorithms decompose
the estimation of W into two steps: first, estimate a decorrelation matrix, and then, a rotation matrix.
When the independent components are Gaussian, any rotation matrix is valid, as all of them are
compatible with Gaussianity. However, in the non-Gaussian cases the rotation matrix must be properly
estimated for the corresponding non-Gaussian model. This can be interpreted as if a smaller number
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of model parameters (entries of the decorrelation matrix) should be actually estimated in the Gaussian
case. This explains the faster convergence of the curves in Figure 1d.

4.2. A Real Data Application

We applied the proposed method to quantify the significance of changes in brain connectivity
during sleep of patients having disorders like apnea or epilepsy [37]. These disorders are characterized
by regular arousal, which are stages of abnormal degraded sleep. The frequency of arousals in a
given period of time is related to the seriousness of the pathology. However, the intensity of the
arousals may also be relevant for an appropriate diagnosis. Assuming that an arousal is associated
to changes in brain connectivity [38], a measure related to the change magnitude may be useful to
quantify the significance of the pathology. To this aim, the patient was monitored during sleep by
19 channels of EEG recordings. Every signal channel was segmented into intervals of 2 s and a given
feature was computed in every interval and averaged in epochs of 26 s. Each epoch was manually
or automatically [22] labelled in two possible states: normal sleep (state 0) or arousal (state 1). Then,
associated to every epoch, an observation vector x was built with one feature extracted from all
the channels (the same type of feature for all of them), thus N = 19. In this experiment, a total of
2000 epochs were available in every state. Given these data sets, an average measure related to brain
connectivity was computed to quantify the importance of brain changes between the two states.

There are many possible definitions of overall connectivity, here, we considered the so called
algebraic connectivity [39], which can be computed as the second smallest eigenvalue λ2 of the graph
Laplacian matrix [40] L = D−A, being D a diagonal matrix with entries dnn = ∑

m 6=n
anm and A the

adjacency matrix with entries anm ≥ 0. The Laplacian matrix is semidefinite positive with the smallest
eigenvalue λ1 equal to zero, then λ2 ≥ 0. Moreover, it is demonstrated in [39] that λ2 = N for a
complete graph (a graph with anm = 1 ∀n 6= m). It is also demonstrated in [39] that

λ2 ≤
N

N − 1
min[dnn] (33)

Hence, assuming that 0 ≤ anm ≤ 1 (as it will be in our case), the greatest upper bound for λ2 in
(33) corresponds to the complete graph ( anm = 1 ∀n 6= m ⇒ dnn = N − 1 ∀n ), therefore 0 ≤ λ2 ≤ N.
Consequently, we proposed a normalized version of λ2 to measure the connectivity

ς =
λ2

N
0 ≤ ς ≤ 1 (34)

The lower bound ς = 0 corresponds to a disconnected graph, as it implies an order of multiplicity
greater than 1 of the smallest eigenvalue. The upper bound corresponds to a complete graph, which is
the one having maximum connectivity under the constraint 0 ≤ anm ≤ 1. We obtained connectivity
estimates for every state (0 or 1) and method (ICA-PCC or PCC): ς̂ICA−PCC

0 , ς̂ICA−PCC
1 , ς̂PCC

0 , ς̂PCC
1 .

This was made from (34) with N = 19, after computing the second smallest eigenvalue of the Laplacian
matrix, considering that the entries of the associated adjacency matrix are the respective magnitudes
of the partial correlation estimates obtained from the training set 0 or 1:

aICA−PCC
nm0 =

∣∣∣ρ̂ICA−PCC
nm0

∣∣∣, aICA−PCC
nm1 =

∣∣∣ρ̂ICA−PCC
nm1

∣∣∣
aIPCC

nm0 =
∣∣ρ̂PCC

nm0

∣∣, aPCC
nm1 =

∣∣ρ̂PCC
nm1

∣∣ (35)

Two different features were considered separately. The first is “amplitude” (Amp), which is the
maximum amplitude in the corresponding 2 s interval, the second is the “alfa-slow-index” (Asi), which
is the ratio of power in the alpha band (8.0–11 Hz) to the combined power in the delta (0.5–3.5 Hz)
and theta (3.5–8.0 Hz) bands. Tables 1 and 2 show the results corresponding to the Amp and the
Asi features, respectively, for 6 different patients. Together with the normalized connectivity, we
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included the connectivity variation between states defined as ∆ICA−PCC =
∣∣∣ς̂ICA−PCC

1 − ς̂ICA−PCC
0

∣∣∣
and ∆PCC =

∣∣ς̂PCC
1 − ς̂PCC

0

∣∣. We also included a kurtosis estimate for every patient and state. This
estimate was obtained as a mean of all the 19 empirical kurtosis separately calculated for every
component of vector x, i.e., the empirical kurtosis of the marginal distributions of x. Notice that the
estimated kurtosis is clearly above the Gaussian reference κG = 3, so Gaussianity assumption does not
hold in this case.

Table 1. Results corresponding to the amplitude (Amp).

Subj. κ0 κ1 ς̂ICA−PCC
0 ς̂ICA−PCC

1 ∆ICA−PCC ς̂PCC
0 ς̂PCC

1 ∆PCC

S1 6.46 4.58 0.30 0.33 0.03 0.03 0.03 0.00
S2 8.05 5.29 0.74 0.39 0.35 0.04 0.04 0.00
S3 9.84 6.76 0.57 0.28 0.29 0.03 0.02 0.01
S4 9.04 8.87 0.39 0.66 0.27 0.04 0.02 0.02
S5 9.61 15.13 0.31 0.44 0.13 0.02 0.03 0.01
S6 9.14 13.82 0.24 0.36 0.12 0.02 0.02 0.00

Table 2. Results corresponding to the alfa-slow-index (Asi).

Subj. κ0 κ1 ς̂ICA−PCC
0 ς̂ICA−PCC

1 ∆ICA−PCC ς̂PCC
0 ς̂PCC

1 ∆PCC

S1 16.32 22.51 0.31 0.51 0.20 0.02 0.02 0.00
S2 10.52 9.09 0.34 0.60 0.26 0.02 0.02 0.00
S3 9.91 7.05 0.68 0.48 0.20 0.02 0.03 0.01
S4 8.39 11.69 0.37 0.74 0.37 0.03 0.02 0.01
S5 7.72 13.15 0.22 0.71 0.49 0.02 0.03 0.01
S6 11.86 9.24 0.43 0.56 0.13 0.02 0.03 0.01

We can see in Tables 1 and 2 that the PCC method yields very small values of connectivity for all
subjects and states, therefore, it is not sensitive to possible changes between states. However, ICA-PCC
provides larger values of connectivity and significant changes between states. Figures 2 and 3 show
the estimated adjacency matrices corresponding to the different subjects, methods and states. We can
see that PCC magnitudes are, in general, much lower than ICA-PCC magnitudes, therefore, PCC has
more difficulty revealing the interrelations between the different EEG channels due to the brain activity.
This may be explained in terms of the residuals en and em. Notice from (12) that

E
[
e2

n

]
=

N

∑
i=1

msenmi
(
v+1nmi

)2 E
[
e2

m

]
=

N

∑
i=1

msenmi
(
v+2nmi

)2 (36)

where
{

v+1nmi
}

and
{

v+2nmi
}

are the elements of vectors v+
1nm and v+

2nm, respectively, and later, these
are the first and second row of (WTnm)

+, respectively. We showed in Section 3 that PCC should be
similar to ICA-PCC for msenmi = msel

nmi, but for non-Gaussian observations msenmi < msel
nmi, so it is

deduced from (36) that

E
[
e2

n
]
≤ El[e2

n
]
=

N
∑

i=1
msel

nmi
(
v+1nmi

)2

E
[
e2

m
]
≤ El[e2

m
]
=

N
∑

i=1
msel

nmi
(
v+2nmi

)2
(37)

where equality holds in the Gaussian case. So, PCC provides overestimated residuals where the actual
partial correlation between xn and xm may be eventually hidden. This masking effect should increase
with the non-Gaussianity character of the observations. In our experiment, the features are highly
non-Gaussian as demonstrated by the kurtosis values of Tables 1 and 2. So, when using PCC, the “true”
residuals seem to be overestimated by rather uncorrelated residuals that provide a too low estimation
of the actual interrelation between the different EEG channels.
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5. Conclusions and Extensions

Partial correlations may be used to define the weights of an undirected graph for subsequent
graph signal processing. Conventionally, partial correlations are obtained from the precision matrix,
but this is optimal only under the Gaussianity assumption. Hence, we have proposed a new method
for computing the partial correlation, assuming a non-Gaussian model (ICA). The latter is a versatile
model which suits a diversity of non-Gaussian pdfs.

The proposed method requires the computation of the ICA model parameters, which can
be made by using any of the many existing algorithms. Two different ICA methods have been
considered in the synthetic examples, which may be considered representative of two different kinds
of approaches to estimating the ICA model parameters. Both yield similar performance. Computing
the mean-square-errors corresponding to the optimal estimation of the sources is also required. Hence,
we have proposed a second-order approximation of the conditional mean. Higher orders could be
tried at the price of increased complexity.

We have verified, both by simulations and by real data experiments that the new method better
captures the pairwise and overall connectivity of the graph compared to the precision matrix in
non-Gaussian scenarios. The results could be extended to larger values of N but the training set sizes
should be correspondingly increased to keep the quality of the model parameter estimates.

Future extensions of this work can be devised. Some kind of regularization is desirable to
emphasize the relevant information provided by the graph connectivity and/or to establish more
natural relations between the connected nodes. Thus, sparsity is a common requirement of graph
learning (see [41] as a representative example). Considering Equation (10), sparsity could be imposed
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by selecting only those sources that significantly contribute to the partial correlation between xn and
xm, i.e., by soft or hard thresholding on msenmi. On the other hand, smoothness regularization could be
tried in a similar manner to the approach proposed in [42] for the Gaussian case. To this aim, it could
be considered that the representation matrix U can be factorized in a correlation matrix multiplied
by a rotation (unitary) matrix [43]. Understanding how this rotation relates to the graph connectivity
may allow the definition of cost functions, which include some possible smoothness related terms.
Other structural constraints [44] could also be compatible with the non-Gaussian model.
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Appendix A. Derivation of the General Formula

Due to the orthogonality between the error and the conditional mean, we can write

Cenmenm = E
[
xnmxT

nm

]
− E

[
E[xnm/x−nm]ET [xnm/x−nm]

]
(A1)

Let us define

f(x−nm) = E[s/x−nm] ≡ f q(x−nm) = −WT−nmx−nm = q (A2)

So, from (9), we may write E[xnm/x−nm] = (WTnm)
+(f + q), hence

Cenmenm = E
[
xnmxT

nm
]
− E

[
(WTnm)

+(f+q)
(

fT+qT
)(

(WTnm)
+
)T
]
= E

[
xnmxT

nm

]
︸ ︷︷ ︸

1

− (WTnm)
+E
[
qqT

](
(WTnm)

+
)T

︸ ︷︷ ︸
2

−(WTnm)
+E
[
ffT
](

(WTnm)
+
)T

︸ ︷︷ ︸
3

−
(
(WTnm)

+E
[
fqT
](

(WTnm)
+
)T

+ (WTnm)
+ET

[
fqT
](

(WTnm)
+
)T
)

︸ ︷︷ ︸
4

(A3)

We have to compute the 4 terms of (A3).

- Term 1

E
[
xnmxT

nm

]
= Cxnmxnm = TT

nmCxxTnm (A4)

- Term 2

E
[
qqT] = E

[
WT−nmx−nmxT

−nmTT
−nmWT

]
= WT−nmCx−nmx−nm TT

−nmWT = WT−nmTT
−nmCxxT−nmTT

−nmWT

= W
(
I− TnmTT

nm
)
Cxx

(
I− TnmTT

nm
)
WT) = WCxxWT + WTnmTT

nmCxxTnmTT
nmWT

−WTnmTT
nmCxxWT −WCxxTnmTT

nmWT

(WTnm)
+E
[
qqT]((WTnm)

+
)T

= (WTnm)
+
(
(WTnm)

+
)T

+ TT
nmCxxTnm

− TT
nmW−1

(
(WTnm)

+
)T
− (WTnm)

+
(

W−1
)T

Tnm

(A5)
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- Term 3
i 6= j
E
[
ffT
]
(i, j) = E

[
E[si/x−nm]E

[
sj/x−nm

]]
= E[E[si/x−nm]]E

[
E
[
sj/x−nm

]]
= E[si]E

[
sj
]
= 0

i = j
E
[
ffT
]
(i, i) = E

[
E2[si/x−nm]

]
= var[E[si/x−nm]] + E2[E[si/x−nm]]

= var[E[si/x−nm]] + E2[si] = var[E[si/x−nm]]

(A6)

Let us express var[E[si/x−nm]] in terms of msei as defined in (A7)

msenmi = E
[
(si − E[si/x−nm])

2
]
= E

[
s2

i
]
+ E

[
E2[si/x−nm]

]
− 2E[siE[si/x−nm]]

E[(si − E[si/x−nm])E[si/x−nm]] = 0
⇒ E[siE[si/x−nm]] = E[E[si/x−nm]E[si/x−nm]]

⇒ msenmi = E
[
s2

i
]
− E

[
E2

i [si/x−nm]
]
= 1− var[E[si/x−nm]]

(A7)

where we have taken into account that the conditional mean is an unbiased estimator. Then,
we know that E

[
ffT
]
(i, i) = var[E[si/x−nm]] = 1−msenmi and if we define Mnm as a (N × N)

diagonal matrix having in its main diagonal the values msenmi i = 1 . . . N, we can write

(WTnm)
+E
[
ffT
](

(WTnm)
+
)T

= (WTnm)
+(I−Mnm)

(
(WTnm)

+
)T

(A8)

- Term 4

E
[
fqT] = −E

[
fxT
−nmTT

−nmWT
]

E
[
E[si/x−nm]xj

]xj∈{x−nm}︷︸︸︷
=

∫
x−nm

xjE[si/x−nm]p(x−nm)dx−nm =
∫

x−nm
xj

[∫
si

si p(si/x−nm)dsi

]
p(x−nm)dx−nm

=
∫

si
si

[∫
x−nm

xj p(si/x−nm)p(x−nm)dx−nm

]
dsi =

∫
si

si

[∫
x−nm

xj p(x−nm/si)p(si)dx−nm

]
dsi

=
∫

si
si p(si)

[∫
x−nm

xj p(x−nm/si)dx−nm

]
dsi =

∫
sj

si p(si)
[∫

xj
xj p
(

xj/si
)
dxi

]
dsi

=
∫

sj

∫
xj

sixj p
(
si, xj

)
dsidxj = E

[
sixj
]

E
[
fqT] = −E

[
fxT
−nmTT

−nm
]
WT = E

[
sxT
−nmTT

−nm
]
WT = −E

[
WxxT

−nmTT
−nm

]
WT = −WCxx−nm TT

−nmWT

= −WCxxT−nmTT
−nmWT = −

(
W−1

)T(
I− TnmTT

nm
)
WT =

(
W−1

)T
TnmTT

nmWT − I

(WTnm)
+E
[
fqT]((WTnm)

+
)T

= (WTnm)
+
(

W−1
)T

Tnm − (WTnm)
+
(
(WTnm)

+
)T

(WTnm)
+ET[fqT]((WTnm)

+
)T

= TT
nmW−1

(
(WTnm)

+
)T
− (WTnm)

+
(
(WTnm)

+
)T

(A9)

Finally, considering (A3)–(A6) and (A8) we can write:

Cenmenm = TT
nmCxxTnm − (WTnm)

+
(
(WTnm)

+
)T
− TT

nmCxxTnm

+TT
nmW−1

(
(WTnm)

+
)T

+ (WTnm)
+
(

W−1
)T

Tnm − (WTnm)
+(I−Mnm)

(
(WTnm)

+
)T

−(WTnm)
+
(

W−1
)T

Tnm + (WTnm)
+
(
(WTnm)

+
)T
− TT

nmW−1
(
(WTnm)

+
)T

+ (WTnm)
+
(
(WTnm)

+
)T

= (WTnm)
+(Mnm)

(
(WTnm)

+
)T

(A10)
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