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Abstract: Complex Electromagnetic Space (CEMS), which consists of physical space and the
complex electromagnetic environment, plays an essential role in our daily life for supporting remote
communication, wireless network, wide-range broadcast, etc. In CEMS, the electromagnetic activities
might work differently from the ideal situation; the typical case is that undesired signal would
disturb the echo of objects and overlap into it resulting in the mismatch of matched filter and the
reduction of the probability of detection. The lacking mathematical description of CEMS resulting
from the complexity of electromagnetic environment leads to the inappropriate design of detection
method. Therefore, a mathematical model of CEMS is desired for integrating the electromagnetic
signal in CEMS as a whole and considering the issues in CEMS accurately. This paper puts forward
a geometric model of CEMS based on vector bundle, which is an abstract concept in differential
geometry and proposes a geometric detector for change detection in CEMS under the geometric
model. In the simulation, the proposed geometric detector was compared with energy detector and
matched filter in two scenes: passive detection case and active detection case. The results show the
proposed geometric detector is better than both energy detector and matched filter with 4∼5 dB
improvements of SNR (signal-to-noise ratio) in two scenes.

Keywords: complex electromagnetic space; vector bundle; change detection; information geometry;
geometric detector

1. Introduction

Complex electromagnetic space (CEMS), which consists of physical space and the complex
electromagnetic environment, plays an important role in our daily life for supporting remote
communication, wireless network, wide-range broadcast, etc. The complex electromagnetic
environment consists of plentiful varieties of radio waves from extensive sensors dynamically
overlapping in the time, frequency and power domain. Because of the complex electromagnetic
environment, electromagnetic activities, such as our daily communication, military mission and
disaster rescue, might be disturbed and unable to work normally. The typical case is that the matched
filter detection method would fail to discover the target resulting from the mismatch of received signal,
which contains many signals from other unknown radiation sources. Therefore, it is necessary and
important to study CEMS for building an appropriate model to express the electromagnetic signal and
propose a novel method for change detection, which is a basic issue but might be different in CEMS.

Electromagnetic signal in CEMS contains natural and artificial, deterministic and stochastic, and
antagonistic and non-antagonistic signals. The complexity of electromagnetic signal results in the
difficulty of describing the complex electromagnetic environment. There are many significant works
concerning the complex electromagnetic environment, achieving some pioneering research. The ECCM
(electronic counter-countermeasures) combat model is proposed to suit the needs of EW (electronic
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warfare) combat in [1]. The mathematical models of radio frequency noise jamming and range-gate
pull off is built in [2,3]. In [4], a method of calculating the complexity of CEMS is proposed and the
types of CEMS are listed according to the signals, radiation sources, etc. However, current research
does not provide a global and feasible model of CEMS to support expected works, such as change
detection and object sensing.

Actually, in the real work, the observed electromagnetic signal is not deterministic but stochastic,
resulting from the noise deriving from receiver or measurement. Moreover, the complexity and
uncertainty of electromagnetic signal resulting from the overlapping of sorts of signal and noise cause
the demand of probability distribution to describe the electromagnetic signal of each point in CEMS.
In current research concerning statistics inference, especially statistical signal processing, the statistical
issues are often treated in a geometrical view, in which a family of probability distributions is regarded
as a statistical manifold [5].

In CEMS, the probability distribution of each point could be parameterized as a vector, which
is also the coordinate of this distribution on the statistical manifold. The vectors over all points in
CEMS build up a vector field, which is described as a section of vector bundle in geometric view.
Vector bundle is a topological construction in differential geometry, which denotes a vector space
family parameterized by a manifold [6], and many fundamental concepts are the special cases of vector
bundle, such as electromagnetic field, gravitational field, energy field and other space-like concepts.
This paper combines the vector bundle and statistical manifold to build a statistical model of CEMS
that provides a global model to analyze the issues of CEMS such as change detection.

Moreover, change detection is one of the most critical issues in CEMS and is different from
traditional detection modes. One of the traditional modes is that radar emits a signal and receives
echos for detection [7–9]; this mode is effective but easily disturbed. Furthermore, passive mode
has advantage in terms of hiding, and has also been studied [10–13]. Passive mode utilizes signal of
radiation source, such as the communication signal, for detection. In CEMS, the knowledge concerning
the environment is often absent; the detection only depends on the collection of data. Therefore,
it is a data-driven detection mode in CEMS. Information geometry has the capacity of solving the
problems in CEMS because there are many achievements in statistical signal processing, especially
detection problem, based on information geometry. Information geometry was pioneered by Rao [14];
further developed by Chentsov [15], Efron [16,17] and Amari [18,19]; and has found a wide range
of applications [20–24]. In detection theory, Barbaresco et al. [25,26] are the pioneers and creatively
proposed a matrix CFAR based on Riemannian distance, which is a major breakthrough and has
better detection performance than classical CFAR detector. Based on these significant works, in our
previous studies [20,27–30], the geometric detector introduced from the matrix manifold utilizing
information divergence instead of Riemannian distance also achieves good performance and requires
little computation.

In this paper, the signal in CEMS is treated as a probability distribution of the complexity and
uncertainty. For considering the electromagnetic signal as an entirety, the mathematical model of CEMS
is proposed based on vector bundle and statistical manifold in this paper. In this model, a specific
CEMS corresponds to a section of the proposed vector bundle, so the change of CEMS corresponds
to the difference of sections. The difference between two sections is modeled as a function based on
Riemannian distance of statistical manifold and then the function is quantified as a real number using
the Lk norm. In addition, the quantified difference is proven to be a distance of section that satisfies
positive definiteness, symmetry and triangle inequality. The proposed detector of change detection
in this paper utilizes the distance of section as the test statistics. In the simulation, we compared the
detection performance of geometric detector with energy detector and matched filter in two scenes:
passive detection case and active detection case. The results show geometric detector is better than
both energy detector and matched filter with 3∼4 dB improvement of SNR (signal-to-noise ratio) in
the two scenes.
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The rest of the paper is organized as follows. In Section 2, the model of CEMS based on vector
bundle is introduced. In Section 3, the definition of distance of section is presented and the geometric
detection method based on the distance follows. Then, the related simulation scenes and the results
are presented in Section 4. Finally, the concise conclusion of the paper is provided in Section 5.

2. Vector Bundle Model

2.1. The Signal Model in CEMS

Complex electromagnetic space (CEMS) consists of a physical space, in which each point is
covered by electromagnetic signals. This processing can also be modeled mathematically, i.e., CEMS is
a mapping that maps the points in the physical space to electromagnetic signals in signal space.

In Figure 1, the mapping model of CEMS is illustrated. The mapping φ(p) indicates the CEMS,
in which the point p = (x, y, z) is mapped to the signal marked Sp(t) that is one of the elements in
the signal space. The form of electromagnetic signal is determined by the complex electromagnetic
environment and considers, e.g., the types and position of radiation source, reflection and other related
things, so it is sophisticated and unknown in CEMS. In fact, the electromagnetic signal we obtained
is often with noise, so we just directly consider the electromagnetic signal as observed signal Ip(t),
which consists of Sp(t) and noise as Equation (1),

Ip(t) = Sp(t) + wp(t) (1)

where wp(t) is often white Gaussian noise (WGN). Because of the complexity and uncertainty of
electromagnetic signal resulting from the overlapping of sorts of signal and noise, the signal is
desired to be treated in statistical way, i.e., the signal is modeled as a probability distribution. With
this connection, the signal space also can be regarded as a statistical manifold, which consists of a
parameterized family of distribution,

M = {px(x; ξ)|ξ ∈ Rm} (2)

where M is called a m-dimension manifold.
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Figure 1. The map model of complex electromagnetic space.

As shown in Figure 2, the electromagnetic signal on point p = (x, y, z) corresponds to a point
on the statistical manifold. Mapping the electromagnetic signals onto the manifold is convenient for
comparing the difference between two signals in statistical view, by calculating the distance between
two corresponding points on the manifold. That means the change of the electromagnetic signals can
be quantified as the distance on the manifold. Naturally, this concept could help us conceive a novel
method to detect the change of electromagnetic environment.
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Figure 2. The process of signal geometric model building.

2.2. The Vector Bundle Model of CEMS

After modeling the signal as a point on the manifold, CEMS is similar to a field, which is a basic
concept in physics and similarly related to a vector bundle on geometric view.

In differential geometry, a vector bundle is defined as a triple (E, N, π), which E is called the
bundle space, N is called the base space and π is called the bundle projection, which maps the elements
from E to N, i.e., π : E → N. Furthermore, the projection π should satisfy that ∀p ∈ N, π−1(p)
is differential homeomorphic to Rm. Then, the (E, N, π) is called a (real) m-dimensional vector
bundle [31].

The vector bundle model of CEMS is formulated as (E, N, π), in which base space N indicates the
physical space, bundle space E = N×M is a product space of N and statistical manifold M and bundle
projection π maps a pair (p, q) from N ×M to p from N, i.e., π : N ×M → N and π : (p, q) 7→ p.
For convenience, in the following, another projection πM : N ×M→ M is defined as

πM : (p, q) 7→ q. (3)

Then, naturally, the preimage set π−1(p) = {p} ×M is homeomorphic to the statistical manifold
M with projection πM. Because the statistical manifold that consists of a family of distributions often
has the global coordinate chart, the π−1(p) is also differential homeomorphic to Rm. Thus, the triple
(E, N, π) satisfies the definition of vector bundle.

However, the bundle space is not the model of CEMS; the meaning of bundle space is a higher
level to CEMS, where the CEMS is similar to a subset of bundle space, and even all possible statuses of
the CEMS correspond to a subset of the bundle space. In fact, the section of vector bundle corresponds
to the CEMS, which is a map s : N → E that satisfies π ◦ s = id : N → N. As illustrated in Figure 3,
the vector bundle also can be treated as a surface, and the section is a curve that can be projected to the
full base space. As shown in Figure 2, the electromagnetic signal of each point in the physical space is
mapped to a point on the statistical manifold, which is similar to the section of vector bundle model
and the ϕ(p) in Figure 2 can be connected to section s(p) with πM as ϕ(p) = πM(s(p)).
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Bundle Space

Base Space

Section 1

Section 2

Figure 3. The section in the vector bundle.

In general, because of the complexity and uncertainty of the electromagnetic signal, the signal
in CEMS is described in a statistical way. Thus, the electromagnetic signal of each point is described
as a vector that indicates a statistical parameter of a distribution and corresponds to a point on the
statistical manifold. The main idea of the proposed model is integrating these vector as a section of
vector bundle to describe the CEMS.

3. Change Detection

3.1. Framework of Detection Method

In CEMS, the change often means the presence of a target, the moving of object or other
emergencies and always results in the varying of electromagnetic signal. Meanwhile, in the vector
bundle model of CEMS, the section has also changed following the change of CEMS. Then, the problem
can be formulated as

H0 : s = s0

H1 : s 6= s0
(4)

where s means the section of current CEMS and s0 means the section of initial CEMS.
Therefore, it is possible to propose a method to detect the change of CEMS by comparing the

difference of two sections, as illustrated in Figure 4.
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Figure 4. The change of section by the presence of object.

Based on this idea, the framework of detection method consists of the following steps:

1. Model the initial CEMS as section s0.
2. Obtain the electromagnetic signals and estimate the probability distributions of them.
3. According to the estimated distribution, get the estimated section ŝ.
4. Judge the difference between s0 and ŝ.
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However, the difference of section is not clear, because there is no common definition about that.
To solve this problem, reviewing the important notions in information geometry is significant.

3.2. Distance on Statistical Manifold

On statistical manifold, the Riemannian metric is defined as Fisher information matrix G(ξ) [32]

[G(ξ)]ij = gij(ξ) = −E[
∂2 ln p(x; ξ)

∂ξ i∂ξ j ]. (5)

In Riemannian manifold, the length of curve γ(t), t0 ≤ t ≤ t1 is defined with the Riemannian
metric as [31]

‖ γ(t) ‖=
∫ t1

t0

√√√√∑
i,j

gij(γ(t))
dγi

dt
dγj

dt
dt. (6)

The distance between two distributions p(x; ξ1) and p(x; ξ2) is the minimum length over all
possible curves connecting the two points on the manifold [33]; it is named geodesic distance. However,
it is not easy to calculate the distance between two points on the manifold; an integration should be
calculated and differential equations should be solved first [31]. Fortunately, in local area, the geodesic
distance and Kullback–Leibler (KL) divergence satisfy [5,34],

2KL(p(x; ξ) ‖ p(x; ξ + dξ)) = ∑
i,j

gij(ξ)dξ idξ j. (7)

Therefore, Equation (7) provides another method to calculate the distance between two
neighboring points, by calculating the KL divergence [35]. Furthermore, KL divergence is defined as

KL(p(x; ξ1) ‖ p(x; ξ2)) =
∫

p(x; ξ1) ln
p(x; ξ1)

p(x; ξ2)
dx, (8)

which can be expressed as a closed form in general situations, such as normal distribution.

3.3. Metric of Section

The section s is a mapping from physical space N to bundle space E = N × M and satisfies
s(p) = (p, q). Therefore, for different sections, the images of point p are the same in the first element.
The difference among the images of point p depends on the second element, which is a point on the
statistical manifold. The distance on the statistical manifold, which is introduced in Section 3.2, can be
used for quantifying the difference among the images of same point under different sections. Actually,
the difference between two sections s1 and s2 consists of the differences between the images s1(p) and
s2(p) over all points p in the physical space.

Thus, as shown in Figure 5, we can introduce Equation (9) to consider the difference,

Γs1,s2(p) = DM(πM(s1(p)), πM(s2(p))), (9)

where DM(q1, q2) means the distance between q1 and q2 on statistical manifold, πM is introduced
in Section 2.2 and means the projection from N × M to M. This function means the distance
between images of the same point under two sections s1 and s2, and is often continuous, because the
electromagnetic signal is continuous in physical space. Furthermore, it is reasonable to quantify the
difference of sections based on the function, because there are many ways to define the distance of
function [36], such as the norm of function. Therefore, we can quantify the distance between s1 and s2

as the norm of function Γs1,s2 ,
Ds(s1, s2) =‖ Γs1,s2 ‖ . (10)
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The norm of function can introduce the distance and satisfies the positive definiteness,
homogeneity and triangle inequality. The widely used norm is Lk-norm, which is [37]

‖ f ‖k= (
∫

D( f )
| f (x) |k dx)

1
k , (11)

where k is a real number (often integer) that is no less than 1 and D( f ) means the domain of definition
of f . Especially, L∞-norm is [37]

‖ f ‖∞= sup
D( f )
| f (x)| (12)

where supD( f ) f (x) means the supremum of function f over D( f ).
Actually, when the norm in Equation (10) is Lk-norm, we have the following theorem.

N

M

E

(Difference)
⇡

⇡M

(Bundle space)

(Physical space)

(Statistical manifold)

DM (⇡M (s1(p), ⇡M (s2(p)))

s1

s2

(Bundle projection)
p

q

Figure 5. The difference between two sections.

Theorem 1. Ds satisfies the positive definiteness, symmetry and triangle inequality, if the norm of function
is Lk-norm.

The detailed proof of Theorem 1 is in Appendix A. Although the importance of Theorem 1 is
limited in the geometric detector, it is also with definite theoretical meaning.

As Theorem 1,Ds is actual distance of sections. Based on that, the rule of detection is formulated as

Ds(ŝ, s0)
H1
≷
H0

η, (13)

where η is the threshold, ŝ is the estimated section with observed signal and s0 is the initial section.
To sum up, the main idea of the proposed detection method is combining the quantified difference

in probability distribution of each point betweenH1 andH0 with the norm of function and utilizing it
as test statistic to judge whether the target is present or absent.

3.4. The Section of CEMS in Real Work

In fact, getting the section of CEMS might be impossible in our real work, because the point is
continuous in the physical space; it is infinite. Thus, one of the available methods is sampling the
physical space as finite points. Meanwhile, changing the Lk-norm to lk-norm, which are applied in
function and sequence, respectively, the distance of section is formulated as

Ds(s1, s2) = (
n

∑
i=1
| Γs1,s2(pi) |k)

1
k , (14)

where pk is the kth sampling point and n is the number of sampling points. Furthermore, the l∞-norm
would introduce

Ds(s1, s2) = max
i=1,...,n

| Γs1,s2(pi) |. (15)
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4. Simulation

4.1. Simulation Scene

The physical space in the simulation is a square region with side length 1500 m. Furthermore,
there are five radiation sources at points (375, 375), (375, 1125), (1125, 375), (1125, 1125), and (750, 750),
and the first four radiation sources emit single frequency signal ej2π fct with frequencies 1000 MHz,
1010 MHz, 1020 MHz and 1030 MHz. The last radiation source emits linear frequency modulation
(LFM) signal ej2π( fct+ 1

2 γt2) with carrier frequency 1000 MHz and bandwidth 200 MHz. The above scene
is illustrated in Figure 6.

y

15
00

 m

1500 m x

Radiation Sources

(375 m,375 m)

(375 m,1125 m)

(1125 m,375 m)

(1125 m,1125 m)

(750 m,750 m)
1000 MHz

1010 MHz
1000 MHz 200 MHz

1020 MHz

1030 MHz

Single Frequency

LFM

ej2⇡fct

ej2⇡(fct+ 1
2�t2)

Figure 6. Simulation scene.

As the radar equation, the power of signal declines approximately as the fourth power of range.
Thus, the electromagnetic signal is formulated as

Sr(x, t) =
ns

∑
i=1

Si(t− |x−xT |+|xi−xT |
c )

|x− xT ||xi − xT |
, (16)

where Sr(x, t) means the signal on points x at time t; Si(t) and xi means the emission signal and
position of the ith radiation source, respectively; xT is the position of target; and c indicates the velocity
of light. The direct propagated signal of radiation source is ignored in Equation (16), as it can be
eliminated with direct-path cancellation technique.

There are four receivers located uniformly in the simulated physical space, i.e., the receivers are
at positions (500, 500), (500, 1000), (1000, 500), and (1000, 1000). Actually, the real detection works in
CEMS are generally classified as two sorts, one is passive detection case, in which the information of
radiation sources is fully unknown including positions, waveforms and so on, such as passive radar
case, and the other is active detection case that some radiation sources are cooperative, which means
the information of part of radiation sources such as emission signal is known, but the rest of radiation
sources are still unknown.

4.2. Passive Detection

In passive detection case, the information of radiation sources is fully unknown including
positions, waveforms, etc. Because of the absence of the knowledge concerning signal, the traditional
detection method in this situation is the energy detector [38]. In the proposed geometric detector, the
little knowledge of the signal leads to preprocessing being unavailable, thus the observed signal would
be modeled as a distribution, directly. Because the noise is often Gaussian or asymptotical Gaussian
and the central limit theorem is usually satisfied, the observed data are modeled as normal distribution.
However, when the length of observed data is considerable, their covariance matrix is too large to
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operate. Therefore, their correlation length is assumed as Lc. Suppose that the observed signal is a
stationary stochastic process; the mean is estimated as the average of observed signal. Furthermore,
the covariance matrix is estimated as

Ĉ =


c0 c1 . . . cLc

c−1 c0 . . . cLc−1
...

...
. . .

...
c−Lc c−(Lc−1) . . . c0

 , (17)

where ck is the correlation sequence as

ck = c∗−k =
1
N

N

∑
i=1

(Ip(ti)− µ̂)(Ip(ti−k)− µ̂)∗, (18)

where the superscript ∗ means the conjugate number, µ̂ is the average of observed signal, Ip(t)
is the observed signal in position p, tk is the kth sampling time and N is the number of sampled
points. Furthermore, the parameters in initial condition, i.e., the parameters of H0 distribution, are
µH0 = 0, CH0 = σ2

H0
I, where σ2

H0
is the power of noise. In [28], the results show the detector using KL

divergence instead of Riemannian distance is easier to calculate and has better performance. Therefore,
in the simulation, the Riemannian distance between the estimated distribution andH0 distribution
was calculated by using KL divergence as

KL(µ̂, Ĉ ‖ µH0 , CH0) =
1
2
(tr(

Ĉ
σ2
H0

− I)− ln | Ĉ
σ2
H0

|+ µ̂H µ̂

σ2
H0

), (19)

where |Ĉ/σ2
H0
| means the determinant of matrix Ĉ/σ2

H0
and the superscript H means the

Hermitian transpose.
In passive detection case, energy detector is a traditional detection method for unknown signal.

In the simulation, energy detector was compared with geometric detector under same data. As
introduced in Section 3, in geometric detection method, the difference between initial CEMS and
current CEMS are modeled as a function Γŝ,sH0

, and the norm of the function is the test statistic of
geometric detector. Similarly, in energy detector, the difference of two CEMSs is modeled as energy
field as Equation (20) and the test statistic is the norm of energy field.

Epk =
N

∑
i=1
|Ipk (ti)|2 (20)

In Equation (20), pk is the position of kth receiver, tk is the kth sampling time and N is the number
of sampling points of electromagnetic signal.

The power of electromagnetic signal approximately declines as the fourth power of range
(Equation (16)). Therefore, the power of observed signal of the nearest point to the target is the
largest and points that are far away from the target might hardly detect the echo from target, tbhs both
the function Γŝ,sH0

(p) and energy field of the nearest point are supposed to be the largest, meaning the
position of the target can be regarded as the same as the position of the nearest point in the sampled
Γŝ,sH0

(p) and energy field. However, when the power of signal is not large enough, the accuracy of
estimated parameter might be extremely low, which means the energy and Γŝ,sH0

(p) of the nearest
point might not be the highest in all receivers. In general, when the target is more obvious in either
Γŝ,sH0

(p) or energy field, the detector has better performance.
Let the correlation length Lc = 20 and the sampling frequency be 10 GHz, the observed signal

is sampled for 1µs, thus the length of observed signal is 10,000. To simplify the related condition,
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the power of the five radiation sources are equivalent and the power of noise is the same of all four
receivers. Furthermore, the noise obeys complex normal distribution that the real part and imaginary
part are independent and have the same power. Furthermore, the power of noise was considered a
known parameter in the simulation. The radio signal of each receiver was calculated by Equation (16),
and SNR of each receiver was determined by the power of the signal and noise. Under the above
condition and when the target appears at position (450, 1050), the function Γŝ,sH0

(p) and energy field
under different maximum SNR of the four receivers are shown in Figure 7.

The detection performance curves are shown in Figure 8, which were obtained by 104 Monte
Carlo runs.
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Figure 7. Function Γŝ,sH0
and Energy field. The modeled difference of initial CEMS and current CEMS

in geometric detector and energy detector, respectively.
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In Figure 7, the results correspond to the above analysis that the target stands out in half of all
figures. Figure 7a,b, drawn under maximum SNR= −32 dB, shows the target is overwhelmed in due to
the low maximum SNR. In Figure 7e,f, maximum SNR= −22 dB, the Γŝ,sH0

(p) and energy in position
of target are relatively large compared to other places, but the target is more prominent in Γŝ,sH0

(p).
Moreover, it is more obvious that the target stands out in Figure 7c but is overwhelmed in Figure 7d,
in which maximum SNR is equivalent to −27 dB. Therefore, the relative difference between the nearest
point and far point to target is much more obvious in Γŝ,sH0

(p) than energy field, which means the
target might be easier to detect from noise with the detector using Γŝ,sH0

(p) than the detector using
energy field. As introduced in Section 3, the geometric detector utilizes the norm of Γŝ,sH0

(p) as test
statistic, and the norm can also be used in energy field. In the simulation, two relative extreme norms,
l1 norm and l∞ norm, were considered.

Through changing the power of radiation sources or the power of noise, the maximum SNR can
change to every positive number. Under different maximum SNR of the four receivers, we compared
the probability of detection of geometric detector and energy detector in two norms. The decision
strategies of two detectors are based on Neyman–Pearson criterion. The probability of false-alarm is
often equivalent to a relatively small value, and it was considered PF = 5× 10−3 in the simulation.
The two thresholds of geometric detector were obtained by 105 Monte Carlo [39] runs and the l1 norm
and l∞ norm thresholds of energy detector are formulated as Equations (21) and (22), respectively.

ηl1 =
1
2

Q−1
X 2(1800N)

(PF) (21)

ηl∞ =
1
2

Q−1
X 2(2N)

(1− 900
√

1− PF) (22)

In Equations (21) and (22), the function Q−1
X 2(k)(x) is the inverse Q-function of chi-squared

distribution with k degrees of freedom, N is the length of observed signal of one receiver and PF
is the false-alarm probability. Furthermore, the detailed derivation processes of Equations (21) and (22)
are in Appendix B.
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Figure 8. Detection performance curve.

In Figure 8, with the same norm, the performance of geometric detector is better than energy
detector with 4∼5 dB, and the l∞ norm is better than l1 norm in same detection method. The reason
for the better performance of l∞ norm is that the value of l1 norm consists of the entire difference
of sequence as Equation (14), but the change of CEMS often occurs in a local area, which would be
focused on by l∞ norm as Equation (15). It is worth mentioning that the target stands out in maximum
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SNR= −27 dB in Figure 7 but is not detected in such SNR. The reason is that, when the receivers are
not near the target, the Γŝ,sH0

is not obviously large in the receivers’ locations.

4.3. Active Detection

In active detection case, some radiation sources are cooperative in the detection. The information
of these radiation sources is known, but the rest of the radiation sources are still unknown. That means
the electromagnetic signal in CEMS consists of two parts. One is the desired signal emitted by us,
and the other is the interference signal deriving from the unknown radiation sources. In this case, the
matched filter (MF) [40] is a commonly used method to detect the emitted signal in the received signal.
Actually, in complex electromagnetic environment, the received signal contains not only the emitted
signal but also the signals from other radiation sources, which could result in the mismatch with the
template signal.

As the known information of cooperative radiation sources, modifying the geometric detection
method applied in passive detection case might achieve a better detection performance in this situation.
Different from the passive detection case, the observed signal is preprocessed with MF to obtain the
SNR gain, because the knowledge concerning some radiation sources is available, thus the processed
signal is input into geometric detector as passive detection case.

It should be mentioned that the noise is not white after matched filtering, which means the initial
section s0 is not the same as in the passive detection case. The correlation sequence of noise is

c′ = λF−1(|F (sT)|2), (23)

where F means the discrete Fourier transform (DFT), F−1 means the inverse DFT, sT indicates the
template signal and λ is power normalization factor. Therefore, the covariance matrix of received
signal underH0 is

CH0 =


c′0 c′1 . . . c′Lc

c′∗1 c′0 . . . c′Lc−1
...

...
. . .

...
c′∗Lc

c′∗Lc−1 . . . c′0

 , (24)

where c′k indicates the kth element of c′ and superscript ∗means the conjugate number. Equation (19)
would transform to the standard form

KL(µ̂, Ĉ ‖ µH0 , CH0) =
1
2
(tr(ĈC−1

H0
− I)− ln |ĈC−1

H0
|+ µ̂HC−1

H0
µ̂). (25)

In active detection simulation, the radiation source at (750, 750), which emits LFM signal, is
supposed to be cooperative in the detection, which means the emission signal of this source can be
utilized as template signal in MF. The other conditions, such as target and sampling frequency, are
as same as passive detection scene. The other method for comparison is based on MF, in which the
difference between initial CEMS and current CEMS is modeled as the maximum amplitude among the
processed signal by MF. The function Γŝ,sH0

(p) and maximal amplitude field of matched filtered signal
is shown in Figure 9. The target stands out in function Γŝ,sH0

(p) even though maximum SNR= −32 dB,
and the target is overwhelmed in passive detection case under same condition. In amplitude field,
target stands out under maximum SNR= −27 dB and maximum SNR= −22 dB but is overwhelmed
under maximum SNR= −32 dB, which is much better than energy field in passive detection case.
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Figure 9. Function Γŝ,sH0
and matched filter amplitude field. The modeled difference of initial CEMS

and current CEMS in geometric detector and matched filter, respectively.

Similarly, based on NP criterion and PF = 5× 10−3, we compared the probability of detection
of geometric detector and matched filter in two norms. The two thresholds of geometric detector
were also obtained by 105 Monte Carlo runs. Furthermore, the thresholds of l1 norm and l∞ norm of
matched filter might be hard to work out the analytical expressions due to the color noise, thus they
were also obtained by 105 Monte Carlo runs. The detection performance curves are shown in Figure 10;
the four curves were obtained by 104 Monte Carlo runs. With the same norm, the performance of
geometric detector is better than matched filter with 4∼5 dB. Because the knowledge of the four other
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radiation sources is absent, the echo of object mismatch the template signal of MF, which results
in the unexpected performance of detection. In geometric detector, the test statistic derives from
the difference of probability distribution, and the mismatch of MF would not disturb this character.
Therefore, the performance of geometric is better than MF in this situation. As in the passive detection
case, the performance of different norm correspond to the analysis of passive detection case: l∞ norm
also outperforms l1 norm approximately 4∼5 dB.
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Figure 10. Detection performance curve.

5. Conclusions

In this paper, the complex electromagnetic space (CEMS) is modeled as a section of vector bundle
that consists of statistical manifold and physical space. Then, the vital point of change detection
in CEMS is quantifying the difference of sections. Based on information geometry, the distance
between two sections is defined with Riemannian metric and the norm of function and a geometric
detection method is proposed with the section distance. In simulation, the performance of the proposed
geometric detector is compared with energy detector and matched filter detection method in passive
case and active case, respectively. The results show the geometric detector achieves better performance
than both energy detector and matched filter, with 4∼5 dB improvements of SNR, in the two scenes.
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Appendix A. The proof of Theorem 1

Proof. Positive definiteness.

Ds(s1, s2) =‖ Γs1,s2 ‖k

= (
∫

N
| Γs1,s2(p) |k dp)

1
k

= (
∫

N
| DM(πM(s1(p)), πM(s2(p))) |k dp)

1
k ≥ 0

(A1)
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Because the function Γs1,s2(p) is continuous, Equation (A1) equals to 0, if and only if Γs1,s2(p) ≡ 0,
which means DM(πM(s1(p)), πM(s2(p))) ≡ 0. Because DM is the distance on statistical manifold,
DM(πM(s1(p)), πM(s2(p))) ≡ 0 means that s1(p) ≡ s2(p) for each p, i.e., s1 = s2.

Symmetry.

Ds(s1, s2) =‖ Γs1,s2 ‖k

= (
∫

N
| Γs1,s2(p) |k dp)

1
k

= (
∫

N
| DM(πM(s1(p)), πM(s2(p))) |k dp)

1
k

(A2)

Because DM is the distance on statistical manifold, it satisfies the symmetry, and we can get

Ds(s1, s2) = (
∫

N
| DM(πM(s1(p)), πM(s2(p))) |k dp)

1
k

= (
∫

N
| DM(πM(s2(p)), πM(s1(p))) |k dp)

1
k

= (
∫

N
| Γs2,s1(p) |k dp)

1
k

= Ds(s2, s1)

(A3)

It means Ds(s1, s2) satisfies the symmetry.
Triangle inequality. At first, we should show that, for each pair non-negative function f1, f2, the

Lk-norms of them satisfy
‖ f1 + f2 ‖k≥‖ f1 ‖k (A4)

It is obvious because of

‖ f1 + f2 ‖k = (
∫
| f1(x) + f2(x) |k dx)

1
k

≥ (
∫
| f1(x) |k dx)

1
k =‖ f1 ‖k

(A5)

Because DM satisfies triangle inequality,

Γs1,s3 + Γs3,s2 − Γs1,s2

= DM(πM(s1(p)), πM(s3(p))) +DM(πM(s3(p)), πM(s2(p)))−DM(πM(s1(p)), πM(s2(p)))

≥ 0

(A6)

Then, because of Equation (A5),

Ds(s1, s2) =‖ Γs1,s2 ‖k

≤‖ Γs1,s2 + (Γs1,s3 + Γs3,s2 − Γs1,s2) ‖k=‖ Γs1,s3 + Γs3,s2 ‖k

≤‖ Γs1,s3 ‖k + ‖ Γs3,s2 ‖k= Ds(s1, s3) + Ds(s3, s2)

(A7)

Overall, Ds satisfies the positive definiteness, symmetry and triangle inequality, if the norm of
function is Lk-norm.

Appendix B. The Derivation Process of Equations (21) and (22)

UnderH0, the signal Ipk(ti) obeys complex normal distribution with zero mean and variance 1,
so the l1 norm of energy field is

‖ E ‖1=
900

∑
k=1

Epk =
900

∑
k=1

N

∑
i=1
|wpk (ti)|2 =

900

∑
k=1

N

∑
i=1
|w(r)

pk (ti)|2 + |w(i)
pk (ti)|2, (A8)
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where w(r)
pk (t) is the real part of wpk (t) and w(i)

pk (t) is the imaginary part, and both w(r)
pk (t) and w(i)

pk (t)
obey the normal distribution with zero mean and variance 1

2 . That means 2 ‖ E ‖1∼ X 2(1800N), thus
the threshold equals to the right side of Equation (21).

Similarly, the l∞ norm of energy field is

‖ E ‖∞= max
k=1,...,900

Epk = max
k=1,...,900

N

∑
i=1
|w(r)

pk (ti)|2 + |w(i)
pk (ti)|2. (A9)

Furthermore, according to the statistical theory [41],

P(‖ E ‖∞≥ ηl∞) = 1−
900

∏
k=1

(1− P(Epk ≥ ηl∞)), (A10)

where P means the probability. Because all of 2Epk (k = 1, . . . , 900) obey same distribution X 2(2N),
Equation (A10) can be expressed as

P(‖ E ‖∞≥ ηl∞) = 1− (1−QX 2(2N)(2ηl∞))
900. (A11)

Let P(‖ E ‖∞≥ ηl∞) = PF; we can get Equation (22).
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