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Abstract: In order to overcome the difficulty of key management in “one time pad” encryption
schemes and also resist the attack of chosen plaintext, a new image encryption algorithm based on
chaos and SHA-256 is proposed in this paper. The architecture of confusion and diffusion is adopted.
Firstly, the surrounding of a plaintext image is surrounded by a sequence generated from the SHA-256
hash value of the plaintext to ensure that each encrypted result is different. Secondly, the image is
scrambled according to the random sequence obtained by adding the disturbance term associated
with the plaintext to the chaotic sequence. Third, the cyphertext (plaintext) feedback mechanism
of the dynamic index in the diffusion stage is adopted, that is, the location index of the cyphertext
(plaintext) used for feedback is dynamic. The above measures can ensure that the algorithm can
resist chosen plaintext attacks and can overcome the difficulty of key management in “one time pad”
encryption scheme. Also, experimental results such as key space analysis, key sensitivity analysis,
differential analysis, histograms, information entropy, and correlation coefficients show that the
image encryption algorithm is safe and reliable, and has high application potential.

Keywords: chaotic system; image encryption; permutation-diffusion; SHA-256 hash value;
dynamic index

1. Introduction

In recent years, with the rapid development of computer technology, digital image processing
technology has also rapidly developed and penetrated into all aspects of life, such as remote sensing,
industrial detection, medicine, meteorology, communication, investigation, intelligent robots, etc.
Therefore, image information has attracted widespread attention. Image data security is very important,
especially in the special military, commercial and medical fields. Image encryption has become one
of the ways to protect digital image transmission. However, the image data has the characteristics of
large amounts of data, strong correlation and high redundancy, which lead to low encryption efficiency
and low security, so the traditional encryption algorithms, such as Data Encryption Standard (DES)
and Advanced Encryption Standard (AES), cannot meet the needs of image encryption [1]. Chaos has
the characteristics of high sensitivity to the initial conditions and system parameters, no periodicity,
pseudo randomness, ergodicity and chaotic sequences can be generated and regenerated accurately,
so it is especially suitable for image encryption. Therefore, many image encryption algorithms have
been put forward using chaotic system. In 1998, the American scholar Fridrich put forward the classical
substitution-diffusion architecture for image encryption [2]. This structure subsequently has drawn
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world-wide concern, and nowadays, most of the image encryption schemes based on chaos adopt this
structure and achieved satisfactory encryption effect, such as pixel-level scrambling approaches [3–5],
enhanced diffusion schemes [6], improved hyper-chaotic sequences [7], linear hyperbolic chaotic
system [8], and bit-level confusion methods [9–11]. However, only using low dimensional chaotic
system to encrypt images cannot guarantee enough security. Some works on cryptanalysis [12–18] show
that many chaos-based encryption schemes were insecure, and the main reason is that the encryption
key has nothing to do with the plaintext. For examples, an image encryption algorithm with only one
round diffusion operation is proposed in [19]. The algorithm has the advantages of easy implementation,
low complexity and high sensitivity to cyphertext and plaintext, but Diab et al. [20] cryptanalyzed this
algorithm and broke the algorithm with only one chosen plaintext. Akhavan et al. [21] cryptanalyzed
an image encryption algorithm based on DNA encoding and the curve cryptography and found
that the algorithm cannot resist chosen plaintext attacks. Using a skew tent chaotic map, Zhang [22]
proposed a novel image encryption method, which adopted a cyphertext feedback mechanism to resist
chosen plaintext attacks, but Zhu et al. [23] cracked the algorithm by applying a chosen plaintext
combined with chosen cyphertext attack. Various plaintext-related key stream generation mechanisms
have been proposed to improve the ability to resist chosen plaintext attacks [24–27]. In most of these
algorithms, the SHA-256 hash value of image is used as the external key of the encryption system, so
that the encryption keys of different images are different, so as to achieve the effect of “one time pad”.
Taking the scheme in [28] as an example, firstly, the initial values and parameters of the two-dimensional
Logistic chaotic map are calculated from the SHA 256 hash of the original image and given values.
Secondly, the initial values and system parameters of the chaotic system are updated by using the
Hamming distance of the original image. So the generated random sequence is related to the plaintext
image. This encryption method has the advantages of high sensitivity to plaintext and strong attack
against plaintext. However, the decryption end needs not only the initial key which is not related to the
plaintext, but also the key related to the plaintext. Therefore, decrypting different cyphertext requires
different plaintext-related keys, which essentially makes the system work in OTP fashion and greatly
increases the complexity for applications.

Concerned about the above issue, we propose to encrypt images based on permutation–diffusion
framework using secure hash algorithm SHA-256. Two innovations are the main contributs of this work.
Firstly, the hash value of the plaintext image is converted into the number in the range of [0, 255], which
is added as the random number around the plaintext image, rather than as the external key of encryption
system. This can resist chosen plaintext attacks, and does not need the hash value of the plaintext image
in the decryption phase. Secondly, in the permutation and diffusion processes, the generation of random
sequences is related to intermediate cyphertext. In this way, the key used to encrypt different images is
the initial value of the chaotic system, but the generated key stream is different.

2. Preliminaries

2.1. Adding Surrounding Pixels

A hash function is any function that can be used to map data of arbitrary size to data of a fixed
size. Here, we use SHA-256 to generate the 256-bit hash value V, which can be divided into 32 blocks
with the same size of 8-bit, the i-th block vi ∈ [0, 255], i = 1, 2, . . . , 32, so V can be expressed as V = v1,
v2, . . . , v32. Suppose the size of the plain-image P is m × n, obtain an integer k as:

k = f ix(2(m + n + 1)/32) + 1 (1)

where, fix(x) rounds the elements of x to the nearest integers towards zero. Then we generate a
sequence H that has (32k) elements by:

H = repmat(V, [1, k]) (2)
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where, repmat(V, [1, k]) creates a large matrix H consisting of a 1× k tiling of copies of V, e.g., repmat([3, 6,
9], [1, 2]) = [3, 6, 9, 3, 6, 9]. Then, matrix RI of size 2× (n + 2) is formed by taking the first 2n + 4 numbers
of the sequence H, and the CI matrix of size 2 × m is formed by taking the remaining 2m numbers of H.
The elements of RI and CI have the same representation format as the pixels of P. For example, The
SHA-256 hash value of the plaintext image “cameraman” of size 256 × 256 is the character string S,
which is: S = “d6f35e24b1f70a68a37c9b8bfdcd91dc3977d7a98e67d453eb6f8003b6c6 9443”.

According to the string S, we can get a sequence V of length 32. V = (214, 243, 94, 36, 177, 247, 10,
104, 163, 124, 155, 139, 253, 205, 145, 220, 57, 119, 215, 169, 142, 103, 212, 83, 235, 111, 128, 3, 182, 198,
148, 67). So, the sequence H of length 1028 can be obtained as H = (214, 243, 94, 36, 177, 247, 10, . . . ,
214, 243). Similarly, matrices RI and CI are also obtained, as shown below:

RI =

(
214 243 94 . . . 148 67 214
243 94 36 . . . 67 214 243

)
2×(256+1)

CI =

(
94 36 177 . . . 67 214 243
94 36 177 . . . 67 214 243

)
2×(256+1)

RI and CI will surround the plaintext image. These values will affect all pixels after the confusion
and diffusion operation. Figure 1 shows a numerical example of using RI and CI to add pixels to the
image “cameraman”. Figure 1b shows the result of the operation. It can be seen that the underscore is
derived from RI and the value of bold is from CI.

Entropy 2018, 20, x 3 of 18 

 

where, repmat(V, [1, k]) creates a large matrix H consisting of a 1 × k tiling of copies of V, e.g., repmat([3, 
6, 9], [1,2]) = [3, 6, 9, 3, 6, 9]. Then, matrix RI of size 2 × (n + 2) is formed by taking the first 2n + 4 
numbers of the sequence H, and the CI matrix of size 2 × m is formed by taking the remaining 2m 
numbers of H. The elements of RI and CI have the same representation format as the pixels of P. For 
example, The SHA-256 hash value of the plaintext image “cameraman” of size 256 × 256 is the 
character string S, which is: S = “d6f35e24b1f70a68a37c9b8bfdcd91dc3977d7a98e67d453eb6f8003b6c6 
9443”. 

According to the string S, we can get a sequence V of length 32. V = (214, 243, 94, 36, 177, 247, 
10, 104, 163, 124, 155, 139, 253, 205, 145, 220, 57, 119, 215, 169, 142, 103, 212, 83, 235, 111, 128, 3, 182, 
198, 148, 67). So, the sequence H of length 1028 can be obtained as H = (214, 243, 94, 36, 177, 247, 
10, …, 214, 243). Similarly, matrices RI and CI are also obtained, as shown below: 

2 (256 1)

214 243 94 148 67 214
243 94 36 67 214 243 × +

 
=  
 

RI



2 (256 1)

94 36 177 67 214 243
94 36 177 67 214 243 × +

 
=  
 

CI



 

RI and CI will surround the plaintext image. These values will affect all pixels after the 
confusion and diffusion operation. Figure 1 shows a numerical example of using RI and CI to add 
pixels to the image “cameraman”. Figure 1b shows the result of the operation. It can be seen that 
the underscore is derived from RI and the value of bold is from CI. 

 
(a) 

 
(b) 

Figure 1. An example of adding surrounding pixels. (a) plain-image P; (b) operation result. 

  

Figure 1. An example of adding surrounding pixels. (a) plain-image P; (b) operation result.



Entropy 2018, 20, 716 4 of 18

2.2. Hyper-Chaotic System and Chebyshev Map

The scheme is based on a hyper-chaotic system and two Chebyshev maps. We will use a four
dimensional hyper-chaotic system with five system parameters and four initial conditions [29], which
can be modeled by Equation (3): 

dx/dt = a(y− x) + w
dy/dt = dx− xz + cy
dz/dt = xy− bz
dw/dt = yz + ew

(3)

where, a, b, c, d and e are parameters of the system. When a = 35, b = 3, c = 12, d = 7 and e ∈ (0.085,
0.798), the system is hyper-chaotic and has two positive Lyapunov exponents, LE1 = 0.596, LE2 = 0.154.
So the system is in a hyper-chaotic state. The system attractor curves are presented in Figure 2.
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The two Chebyshev maps are modeled by Equation (4):{
u1(i + 1) = cos(4× arccos(u1(i)))
u2(i + 1) = cos(4× arccos(u2(i)))

(4)

where, u1(1) and u2(1) are initial values.

2.3. The Generation of Random Sequences of the Encryption System

The initial values of the chaotic system are given, then we iterate the hyper-chaotic system (1) to
produce four sequences denoted as X = [x(i)], Y= [y(i)], Z = [z(i)] and W = [w(i)], respectively, where,
i = 1, 2, . . . At the same time, u1(1) and u2(1) are given, the two Chebyshev maps from Equation (4)
are iterated to generate two sequences denoted as U1 and U2, respectively. To further enhance the
complexity of sequences, These six chaotic sequences X, Y, Z, W, U1 and U2 are transformed into
three real value sequences D1, D2 and D3 in the interval [0, 1] by the following Formulas (5)–(7), then
transform three real value sequences D1, D2 and D3 into three integer value sequences S, V and T by
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the following Formulas (8)–(10), so we get three sequences S = {s(1), s(2), . . . , s(l)}, V = {v(1), v(2), . . . ,
v(l)}, T = {t(1), t(2), . . . , t(l)}, which will be used in the later encryption process, where, s(i), v(i) and t(i)
∈ {0, 1, . . . , 255}, i = 1,2, . . . , l:

D1 = cos2((X + Y + Z)/3) (5)

D2 = cos2((W + U1 + U2)/3) (6)

D3 = cos2((X + Z + U2)/3) (7)

S = mod
(

round(D1 × 1015), 256
)

(8)

V = mod
(

round(D2 × 1015), 256
)

(9)

T = mod
(

round(D3 × 1015), 256
)

(10)

where, round(x) rounds x to the nearest integer, and mod(x, y) returns the remainder after x is divided
by y. The sequence D1 is used to scramble images, while D2, S, V and T are used for image diffusion
operation. Figure 3 is the numerical distribution curve of chaotic key sequence S, V and T. the abscissa
represents 256 gray levels and the ordinate represents the frequency of each gray level. From Figure 3,
it can be seen that the key flow S, V and T distribute evenly, and the pseudo-randomness is good.
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Figure 3. Histogram of three CPRNG sequences. (a) The histogram of sequence S; (b)The histogram of
sequence V; (c)The histogram of sequence T.

2.4. Statistical Test Analysis of the Three CPRNG Sequences S, V and T

In order to measure randomness of the three CPRNG sequences S, V and T, we use the NIST
SP800–22 statistical test suite (Rev1a, Information Technology Laboratory, Computer Security Resource
Center, Gaithersburg, MD, USA), which consists of 15 statistical tests. Each test result is converted to a
p-value for judgement, and when applying the NIST test suite, a significance level α = 0.01 is chosen
for testing. If the p-value ≥ α, then the test sequence is considered to be pseudo-random.

Setting different initial conditions of chaotic system, and using systems (3) and (4) as well
as Equations (5)–(10), 1000 sequences S, 1000 sequences V and 1000 sequences T are generated,
respectively. The parameters used in the test are set as: a = 35, b = 3, c = 12, d = 7, e = 0.1583, x(0) = 0.398,
y(0) = 0.45, z(0) = 0.78, w(0) = 0.98, u1(1) = 0.58 and u2(1) varies from 0.0005 to 0.9995 with a variable
step size of 0.0001. Hence, 1000 sequences of {S, V, T} can be generated. The length of each integer
sequence is 125,000 and each integer has 8 bits. Then three decimal integer sequences are turned into
three binary sequences by converting each decimal number into an 8-bit binary number and connecting
them together. Therefore, each binary sequence has the length of 1,000,000 bits (125,000 × 8 = 100,000).
Unlike the bit sequence generation method introduced in the related literature [30], the method of
generating bit sequences in our scheme can be demonstrated by the following simple example. Suppose
the decimal integer sequence S has three 8-bit integers, S = [23, 106, 149], where, 23 = (0001 0111)2,
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106 = (0110 1010)2, 149 = (1001 0101)2. Then the binary sequence S’ corresponding to the decimal
integer sequences S has the following form: S’ = [0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1]. 15 statistical
items (some items include two sub indicators) were tested by using the NIST SP800-22 suite, and the
results from all statistical tests are given in Table 1. From Table 1, we can see that all the p-values
from all 1000 sequences are greater than the significance level α = 0.01, indicating that the tests meet
the requirements of SP800-22 randomness, and the pass rate is also in acceptable range. Compared
with the results of relevant literature [30], the overall result is not very different. However, the linear
complexity index of our scheme is obviously better than that of reference [30], but the Rank index is
slightly worse than that of reference [30].

Table 1. NIST SP800-22 standard test of pseudo-random sequence S′, V′ and T′.

Statistical Test Name
S′ V ′ T′

Pass Rate p-Value Pass Rate p-Value Pass Rate p-Value

Frequency(monobit) 99.5% 0.9346 99.3% 0.4058 99.4% 0.4708
Block Frequency 99.2% 0.8068 99.1% 0.6079 99.0% 0.5485

The Run Test 99.5% 0.4088 99.6% 0.4317 99.5% 0.5493
Longest Run of Ones 98.6% 0.1481 98.8% 0.4555 98.6% 0.4419

Rank 98.5% 0.0465 98.3% 0.0467 98.1% 0.0103
DFT Spectral 99.3% 0.9537 99.1% 0.5365 99.3% 0.6539

Non-Overlapping Templates 99.1% 0.6163 99.0% 0.5348 98.8% 0.4807
Overlapping Templates 98.8% 0.7597 98.6% 0.5331 98.4% 0.6420
Universal Statistical Test 98.5% 0.5825 98.3% 0.4624 98.2% 0.4171

Linear Complexity 98.9% 0.2215 98.7% 0.4642 98.5% 0.4936
Serial Test 1 99.1% 0.3358 98.9% 0.2421 98.7% 0.2602
Serial Test 2 99.2% 0.2046 99.4% 0.4207 99.3% 0.2315

Approximate Entropy 98.8% 0.7522 98.6% 0.6033 98.8% 0.4784
Cumulative Sums (forward) 99.6% 0.4752 99.8% 0.8023 99.7% 0.8163
Cumulative Sums (Reverse) 99.4% 0.8898 99.2% 0.6596 99.3% 0.8101

Random Excursions 98.7% 0.1599 98.8% 0.1713 98.6% 0.1314
Random Excursions Variant 98.9% 0.3226 98.4% 0.1564 98.6% 0.0942

3. Architecture of the Proposed Cryptosystem

In this paper, we use the classical permutation-diffusion image encryption structure. During the
permutation process, we use the permutation sequence generated by the chaotic system to shuffle the
pixels. However, the permutation does not change the pixel value, but makes the statistical relationship
between cyphertext and key complicated, so that the opponent cannot infer the key statistics from the
statistical relationship between cyphertext. Diffusion means that each bit of the plaintext affects many
bits of the cyphertext, or that each bit of the cyphertext is affected by many bits of the plaintext, thus
enhancing the sensitivity of the cyphertext.

3.1. Encryption Algorithm

The encryption process consists of three stages. Firstly, generating key streams by using the
hyper-chaotic system and adding surrounding pixels to the plaintext image. Secondly, performing the
permutation process. Thirdly, performing the diffusion process. The architecture of the encryption
process is shown in Figure 4, and the operation procedures are described as follows:

Step 1: Assume that the size of the plaintext image is m × n, adding surrounding pixels to the
plaintext image matrix Pm×n According to the method described in Section 2.1 to get image matrix
P′(m+2)×(n+2). The matrix P′(m+2)×(n+2) is converted to a one dimensional vector P0 = {p0(1), p0(2), . . . ,
p0(l)}, where l = (m + 2) × (n + 2).

Step 2: Produce the required chaotic sequences D1, D2, S, V and T of length l for encryption
according to the method described in Section 2.3.

Step 3: Permuting P0 obtained in step 1 according to Equations (11) and (12). In order to make the
scrambling sequence related to plaintext to prevent the chosen plaintext attack, a disturbance term g
associated with the plaintext is added according to Equation (10) when the scrambling sequence h is
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generated, where g = sum(P0)/(256 × l), Therefore, the scrambling sequence h = {h(1), h(2), . . . , h(l)} is
different when encrypting different plaintext images. In Equation (11), floor(x) rounds x to the nearest
integers towards minus infinity:

h(i) = i + mod[ f loor(D1(i)× g× 1014), l − i], i = 1, 2, 3, . . . , l. (11)
temp = p0(i)
p0(i) = p0(h(i))
p0(h(i)) = temp

, i = 1, 2, 3, . . . , l. (12)

Step 4: Perform confusion and diffusion. Encrypt the first element in p0 by Equation (13):

c(1) = mod((p0(1) + s(1), 256)⊕mod((t(1) + v(1)), 256). (13)

Step 5: Set i = 2, 3, . . . , l, calculate the dynamic indexes kt1 and kt2 by Equations (14) and (15),
which are used for encrypting the i-th element in p0. Obviously, kt1(i) ∈ [1, i − 1], kt2(i) ∈ [i + 1, l]:

kt1(i) = f loor(s(i)/256× (i− 1)) + 1, (14)

kt2(i) = f loor(v(i)/256× (l − i− 1)) + i + 1. (15)

Step 6: Encrypt the i-th element according to the following Equations (16)–(18):

tt(i) = mod( f loor(D2(i)× c(i− 1))× 104, 256), i = 1, 2, 3, . . . , l − 1. (16)

c(i) = mod((p0(i) + c(kt1(i))), 256)⊕mod((tt(i) + p0(kt2(i))), 256), i = 1, 2, . . . , l − 1. (17)

c(l) = mod((p0(l) + c(kt1(l))), 256)⊕ tt(l) (18)

From Equation (16), for different plain images, the sequence [tt(i)] will be different, that will lead
to the different i-th encrypted value.

Step 7: The final cyphertext sequence CC = [cc(1), cc(2), . . . , cc(l)] is obtained by using Equation (19).
Transform the diffused vector CC into the m × n matrix, then the cypher image is obtained:

cc(i) = c(i)⊕ t(i) (19)
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3.2. Decryption Algorithm

The decryption process is the process of transforming cyphertext into plaintext, and the reverse
process of encryption. The decryption process is described as follows:

Step 1: Produce the required chaotic sequences D1, D2, S, V and T of length l for decryption
according to the method described in Section 2.3 and calculate the dynamic indexes kt1 and kt2

according to Equations (14) and (15).
Step 2: The cyphertext image is translated into a one dimensional vector CC = [cc(1), cc(2), . . . ,

cc(l)]. The intermediate cyphertext C is obtained by:

c(i) = cc(i)⊕ t(i) (20)

Step 3: Calculate the sequence tt according to Equation (16) and decrypt the last element in p0 by:

p0(l) = mod(c(l)⊕ tt(l)− c(kt1(l)), 256) (21)

Step 4: In the opposite direction, we decrypt the plaintext pixel P0(l − 1), P0(l − 2), . . . , P0(2) by
Equation (22). Finally, the pixel P0 (1) is decrypted as:

p0(i) = mod(c(i)⊕mod(tt(i) + p0(kt2(i)), 256)− c(kt1(i)), 256), i = l − 1, l − 2, l − 3, . . . , 2. (22)

p0(1) = mod(c(1)⊕mod(t(1) + v(1)), 256)− s(1), 256) (23)

Step 5: Perform inverse permutation. Because the sum of pixel values before and after scrambling
remains unchanged, the g value can be calculated by the sequence P0 decrypted in Step 4, Thus, the
sequence H = {h(1), h(2), . . . , h(l)} can be obtained by Equation (11). It should be noted that this process
is reversed in the direction of encryption, from the last pixel to the first pixel, that is:

temp = p0(i)
p0(i) = p0(h(i))
p0(h(i)) = temp

, i = l − 1, l − 2, l − 3, . . . , 1. (24)

Finally, the decrypted sequence P0 is transformed into a matrix P′ of size (m + 2) × (n + 2).
Discarding the first row, the last row, and the first column and the last column of the matrix P′, and we
can obtain a matrix P of size m × n. P is the recovered plaintext image.

3.3. Application of the Algorithm for Color Images

A color image is composed of three main components, i.e., R, G and B. The hash values of R, G
and B matrices are computed respectively, and then the hash values are transformed into sequences
according to the method of Section 2.1. Then adding surrounding pixels to R, G and B by using the
sequences to obtain three new matrices R′, G′ and B′, respectively. Then R′, G′ and B′ are encrypted in
parallel and similar to the encryption of gray level image. Decryption process of matrixes R, G and B is
also similar to the proposed decryption process in Section 3.2.

3.4. The Advantages in the New Encryption Scheme

(1) The method of surrounding pixels generated by the SHA-256 hash value of the plaintext image is
adopted, which can enhance the ability of the encryption system to resist chosen plaintext attacks.
In general, selecting an image of all the same pixel values to chosen plaintext attack, which can
eliminate the global scrambling effect. But in the new encryption algorithms, even encrypt an
image of all the same pixel values, because the first step is to add surrounding pixels to the image,
then the image is not an image of all the same pixel values. On the other hand, the hash value of
the image is not needed in decryption, which reduces the difficulty of key management.
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(2) In the permutation process, by adding a perturbation g (g = sum(P0)/(256 × l)) to the chaotic
sequence D1, the permutation sequence h is generated by Equation (10). Therefore, h is related
to plaintext, which can resist the chosen plaintext attack. At the same time, g is not part of the
decryption key, which reduces the difficulty of key management.

(3) From Equation (16), it is known that the sequence tt is related to the transition cyphertext c, so the
sequence tt is different when encrypting different images, which further strengthens the ability of
the encryption system to resist chosen plaintext attack.

(4) From the cyphertext feedback mechanism of Equation (17), It can be seen that our encryption
algorithm is sensitive to plaintext.

4. Simulation Results

In this paper, the standard 256 × 256 image of “cameraman” is used as the input image.
Matlab 2014a (MathWorks, Natick, MA, USA) is utilized to simulate the encryption and decryption
operations and set parameters (x(0), y(0), z(0), w(0)) = (0.398, 0.456, 0.784, 0.982). The continuous
hyper-chaotic system (3) was solved by the ode45 solver of Matlab. The time step used in this
algorithm is the adaptive variable step size instead of fixed step size. Figure 5a is the scrambled image,
Figure 5b is the encrypted image and the decrypted image is shown in Figure 5c. It can be seen that
the cyphertext image is a chaotic image, and has nothing to do with the original image. Therefore, the
encryption effect of the algorithm is good.
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5. Security Analysis

In this section, we will discuss the security analysis of the proposed encryption scheme with the
traditional 8-bit gray image as an example.

5.1. Key Space

In cryptography, the larger the key space, the stronger the ability to resist brute force attacks.
In the proposed cryptosystem, the keys are the initial value x(0), y(0), z(0), w(0) of the chaotic system (3),
the chaotic system parameter e and the initial values u1(1), u2(1) of the two Chebyshev maps (4).
The precision of x(0), y(0), z(0), w(0), u1(1) and u2(1) is 10−15, while the precision of the parameter e is
10−12 for e∈(0.085, 0.798), so the key space size will be (1015)6 × 1012 = 10102 ≈ 2339. In Reference [1],
Li pointed out that the effective key space of the image encryption system should be greater than 2100

in order to prevent brute force attacks, so the key space of our algorithm is sufficiently large to resist
against brute-force attacks.

Table 2 lists the key space of several similar algorithms. By comparison, the key space of this
algorithm is better than most algorithms’ key space. The size of the key space depends not only on the
number of keys, but also on the number of possible values for each key. The problem of numerical
chaotic systems is that the finite precision of the machines (e.g., computers) leads to performance
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degradation [31–34], such as: the key space is reduced, some weak keys appear, and the randomness of
the sequence is reduced. In order to identify and avoid weak keys, we need to calculate the Lyapunov
exponents of chaotic systems, or plot the phase space trajectories of the system.

Table 2. Key space comparisons.

Encryption Algorithm Key Space

Proposed scheme 2339

Reference [24] 2149

Reference [25] 2256

Reference [31] 2299

Reference [32] 2375

Reference [33] >2128

Reference [34] 2357

5.2. Key Sensitivity

The key sensitivity can be evaluated in two aspects: First, the cyphertext image will be completely
different when encrypting the same plaintext image with slightly different keys, which is measured
by the change rate t of the cyphertext image. Second, no information about the plaintext image is
available in the image decrypted from the wrong key, even though there is a very small difference
between the wrong key and the correct key.

The specific method of calculating the change rate t of cyphertext image is as follows: first, the
change of the key is kh, and the other parameters remain unchanged. For example, when calculating
the sensitivity of the key a, the cyphertext C1 is obtained by encrypting the plaintext image with
the key a. In the same way, the cyphertext image C2 and the cyphertext image C3 are obtained by
encrypting the plaintext image with the key a + kh and the key a − kh, respectively. We can calculate
the pixel difference rate t1 between C1 and C2 and the pixel difference rate t2 between C1 and C3,
respectively. Then, the change rate of cyphertext image t = (t1 + t2)/2 is obtained. The sensitivity of
each key is calculated by this method, as shown in Table 3, where the change kh is 10−15 for each key
x(0), y(0), z(0), w(0). The calculated results show that the new algorithm is very sensitive to the initial
secret key values.

The sensitivity test results of Table 3 confirmed that the sensitivity of the proposed algorithm
to the keys x(0), y(0), z(0), w(0) is very high, and can reach more than 10−15. In order to evaluate the
sensitivity of the key in the second aspects, we select the following error keys Key1, Key2, Key3 and
Key4 to decrypt the original cyphertext image, and the decryption result is shown in Figure 6.

Key1 = {x(0), y(0), z(0), w(0)} = (0.398 + 10−15, 0.456, 0.784, 0.982),
Key2 = {x(0), y(0), z(0), w(0)} = (0.398, 0.456 + 10−15, 0.784, 0.982),
Key3 = {x(0), y(0), z(0), w(0)} = (0.398, 0.456, 0.784 + 10−15, 0.982),
Key4 = {x(0), y(0), z(0), w(0)} = (0.398, 0.456, 0.784, 0.982 + 10−15).

Table 3. Sensitivity tests for each initial secret key value.

Keys Change Rate of Cyphertext Image t

x(0) 0.9963
y(0) 0.9964
z(0) 0.9976
w(0) 0.9975
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5.3. Plaintext Sensitivity

The sensitivity of the algorithm to plaintext means that a small change in plaintext will cause a
huge change in the corresponding cyphertext. This is one of the criteria for cryptographic security
analysis. From the encryption process, we can see that the algorithm is sensitive to plaintext: first, if the
image has a little difference, the hash value will be completely different. Therefore, the two matrices RI
and CI generated in Section 2.1 and the disturbance term g will be different, so the scrambled image will
be different and will lead to the great change of pseudo-random sequence tt. Experimentally, NPCR
(number of pixels change rate) and UACI (unified average changing intensity) are used to measure
the degree of sensitivity of image encryption algorithms to plaintext. NPCR and UACI respectively
represent the percentage and change degree of the number of pixels in the encrypted image after
the pseudo-random change of the gray value of a pixel in the original image. The formulas for the
calculation of NPCR and UACI are as follows:

NPCR =
1

M× N

M

∑
i=1

N

∑
j=1

D(i, j)× 100%, (25)

UACI =

(
M

∑
i=1

N

∑
j=1

(
|x(i, j)− x′(i, j)|

255×M× N

))
× 100%, (26)

D(i, j) =

{
1, i f x(i, j) 6= x′(i, j)
0, i f x(i, j) = x′(i, j)

. (27)

where, M × N is the size of the image. x(i, j) represent the pixel in a coordinate (i, j) of the cyphertext
image corresponding to the original plaintext image, and x′(i, j) represent the pixel in a coordinate (i, j)
of the cyphertext image corresponding to the changed plaintext image. For 256 bit grayscale images,
the expected values of NPCR and UACI are 99.6094% and 33.4635%, respectively. In this paper, four
classical images (“cameraman”, “pepper”, “rice” and “autumn”) are selected to be tested. In each
image, the pixel values of randomly selected 200 pixels are changed, and their maximum, minimum,
and average values of NPCR are listed in the Table 4. In order to show the superiority of our encryption
algorithm, the maximum and minimum values of NPCR and UACI for each image calculated by the
encryption algorithm of Referemce [35] are shown in Table 5.
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Table 4. NPCR and UACI test results of slight change of plaintext in our algorithm.

Images Rice Autumn Pepper Cameraman

NPCR%
Max 99.8943 99.7932 99.9012 99.7821
Min 99.5426 99.4213 99.3809 99.4608

Average 99.6062 99.6115 99.5956 99.5697

UACI%
Max 33.5698 33.7754 33.8712 33.6590
Min 33.3216 33.5500 33.4919 33.1958

Average 33.4419 33.6319 33.5418 33.3618

Table 5. NPCR and UACI test results of slight change of plaintext in [35].

Images Rice Autumn Pepper Cameraman

NPCR%
Max 99.8812 99.6623 99.8719 99.8864
Min 99.4961 99.5512 99.5698 99.5091

Average 99.6006 99.6098 99.5796 99.5692

UACI%
Max 33.5612 33.6067 33.8523 33.7019
Min 33.3187 33.5602 33.4967 33.2195

Average 33.4297 33.5897 33.5154 33.3478

As shown in Tables 4 and 5, the average values of NPCR and UACI of the four images of the new
algorithm are higher than the average of NPCR and UACI in Reference [31], thus proving that our
algorithm has better performance in resisting differential attacks.

5.4. Statistical Analysis

Statistical analysis mainly includes: histogram analysis, chi-square test, adjacent pixel correlation
analysis and information entropy analysis. In this part we will evaluate the algorithm from
above aspects.

5.4.1. Statistical Histogram Analysis

Gray histogram is a function of gray level, which reflects the distribution of gray level in the
image and describes the number of pixels of each gray level in the image, but does not contain the
position information of these pixels in the image. Figure 7 are the histograms of the Pepper image
and the corresponding cipher images. In the histogram, the horizontal axis denotes the gray level,
and the vertical axis denotes the pixel number of each gray level. It can be seen that the probability
distribution of plaintext image histogram presents a single peak distribution, while the corresponding
cyphertext image histogram probability distribution is close to the equal probability distribution, so
the cyphertext image is a pseudo-random image.
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Figure 7. Histogram analysis. (a) The plaintext image of “pepper”; (b) the histogram of the plaintext
image; (c) the cyphertext image; (d) the histogram of the cyphertext image.

5.4.2. Chi-Square Test

Figure 7d shows that the histogram of the cyphertext image is uniformly distributed, which
can resist statistical attacks and can be proved by the chi-square test [36], which is described by the
following expression:

x2 =
256

∑
k=1

(vk − e)2

e
(28)

where, vk is the actual frequency of each gray level, and e is the expected frequency of each gray level.
For different sizes of images, e is different, for example, e is 256 for the image cameraman of size 256 × 256.
however, e is 768 for the image pepper of size 384 × 512. The smaller the chi square value, the better the
uniformity of cyphertext images. For the confidence level a = 0.05, if the chi square value does not exceed
295.25, it is considered to pass the test. In this paper, the cyphertext image is generated by changing one
bit of the ordinary image. The process is repeated 30 times. for confidence level = 0.05, and the average
results for the four images “cameraman”, “pepper”, “rice” and “autumn” are demonstrated in Table 6.

Table 6. Chi-test results of 30 encrypted images under confidence level is 0.05.

Test Images x2 of Plain Image x2 of Cypherimage in [33] x2 of Cypherimage in Our Algorithm

cameraman 16,711,680 288.9823 < 295.25 285.3125 < 295.25
pepper 50,135,040 269.3387 < 295.25 260.3421 < 295.25

rice 96,312 284.2387 < 295.25 278.6172 < 295.25
autumn 18,122,850 289.9832 < 295.25 288.5792 < 295.25

It can be seen that the chi-square value of the histogram of the cyphertext images are less than 295.5,
which means that the histogram of the cyphertext image has passed Chi-square test for confidence
level =0.05 and better than in Kulsoom [37].

5.4.3. Information Entropy

The entropy of an image is expressed as the average number of bits of the set of gray levels of
an image. It also describes the average amount of information of an image source. The greater the
entropy, the more confusing the information provided by the image. For discrete two-dimensional
images, the formula of information entropy E is shown in Equation (29):

E = −
n

∑
i=0

pi log2(pi) (29)

where, pi is the probability of the occurrence of gray value i. When the probability distribution of
cyphertext is equal probability distribution, that is, the probability of each value of [0, 255] is 1/256, the
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maximum entropy is 8 bits. The information entropy of four cyphertext images of “rice”, “cameraman”,
“autumn” and “pepper” is listed in the second column of Table 7, At the same time, the information
entropy of the cyphertext image obtained by the other algorithms in [38–42] are listed in columns 3–7
of Table 7. It can be seen that the information entropy of the encrypted image of the four images is
very close to 8 bits and our algorithm has greater superiority.

Table 7. Entropy of cyphertext images.

Images This Paper Ref. [34] Ref. [39] Ref. [40] Ref. [41] Ref. [42]

Rice (256 × 256) 7.9973 7.9864 7.9936 7.9643 7.9875 7.9968
cameraman (256 × 256) 7.9989 7.9763 7.9952 7.9867 7.9946 7.9865

autumn (206 × 345) 7.9968 7.9564 7.9962 7.9698 7.9864 7.9972
pepper (512 × 512) 7.9992 7.9819 7.9983 7.9949 7.9896 7.9993

5.4.4. Pixel Correlation Analysis

In a natural image, there is a high correlation between each pixel and its adjacent pixels, which
means that there is a small difference in the gray value in the larger area of the image. One of the
goals of encrypted image is to reduce the correlation between adjacent pixels, and the smaller the
correlation, the better the encryption effect, the higher the security. Correlation mainly includes the
correlation between horizontal pixels, vertical pixels and diagonal pixels. Firstly, 4000 pixels are selected
randomly from the “cameraman” image and the corresponding cyphertext image as the base points,
and 4000 pairs of adjacent pixels are collected along the horizontal, vertical and diagonal directions
respectively, and the correlation distribution maps in these three directions are drawn, as shown in
Figure 8. It can be seen that there is a strong correlation between adjacent pixels of plaintext image,
showing a linear relationship, and for cyphertext image, this correlation is greatly weakened, showing a
strong randomness. This indicates that the image encryption effect is good and the security is high.
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Figure 8. The correlation plots of the cameraman image and the corresponding ciphered image
of cameraman. (a) Horizontal correlation of the cameraman image; (b) Vertical correlation of the
cameraman image; (c) Diagonal correlation of the cameraman image; (d) Horizontal correlation of
the cyphered image of cameraman; (e) Vertical correlation of the cyphered image of cameraman;
(f) diagonal correlation of the cyphered image of cameraman.

In order to further quantify the linear correlation between the adjacent pixels, the correlation
coefficients can be calculated as:
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where, xi and yi represent the gray values of two adjacent pixels, respectively, and n represents the
number of pixel pairs selected. The correlation coefficients of adjacent pixels of the original image and
the cyphertext image are shown in Table 8. It can be seen that the absolute values of the correlation
coefficients between adjacent pixels in three directions of the plaintext image are very close to 1, while
the absolute values of the correlation coefficients between adjacent pixels in each direction of the
corresponding cyphertext image are close to 0, and the correlation is weakened.

Table 8. Correlation coefficients between adjacent elements of original image and encrypted image.

Images Horizontal Vertical Diagonal

Plaintext “Rice” 0.9427 0.9263 0.8994
Cyphertext “Rice” −0.0046 0.0287 −0.0361

Plaintext “Cameraman” 0.9588 0.9360 0.9095
Cypher “Cameraman” −0.0017 −0.0279 0.0047

Plaintext “autumn” 0.9675 0.9845 0.9821
Cyphertext “autumn” −0.0087 0.0142 0.0098

Plaintext “pepper” 0.9894 0.9931 0.9847
Cyphertext “pepper” −0.0055 −0.0194 −0.0295

5.5. Computational Speed Analysis

Finally, the time complexity of the algorithm for encryption/decryption is evaluated.
Several images for different sizes have been considered and the time complexity is given. The time
complexity analysis is achieved on zn Intel(R) Pentium(R) Dual Core processor CPU (2.3 GHz with
2 GB RAM) personal computer. The algorithm is developed in Matlab R2014a and compiled by 7.14 on
Windows 7 Home Premium edition. The results are shown in Table 9. This shows that our algorithm
is faster than most of the algorithms in [39,40,43,44], but it is just slightly slower than that in [40].
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In general, the encryption algorithm based on the spatial domain is faster than the algorithm based on
the image frequency domain [45].

Table 9. Comparison of encryption or dcryption time (EDT) of 8-bit gray level images for different
image sizes.

Image Size (M × N) Ref. [39] Ref. [40] Ref. [43] Ref. [44] Proposed System

64 × 64 0.07 0.03 0.19 0.61 0.02
128 × 128 0.19 0.08 0.29 2.17 0.06
256 × 256 0.46 0.18 6.01 7.73 0.22
512× 512 1.88 0.97 35.59 31.59 0.85

1024 × 1024 3.62 2.94 253.88 169.21 3.11

6. Conclusions

A new image encryption scheme is proposed, which includes three main components: adding
pixels around the image, pixel scrambling and pixel diffusion. Firstly, the hash value of the plaintext
image is converted into a pseudo-random sequence, then adding pseudo-random sequences to the
surrounding area of plaintext images. The pseudo-random sequences used in the permutation and
diffusion process are related to the plaintext image, which can resist chosen plaintext attack. Different
from previous algorithms, our algorithm transforms the hash value of the plaintext image into a
pseudo-random sequence, which takes the pseudo-random sequence as part of the encrypted image,
while the previous algorithm takes the hash value of the plaintext image as a part of the key. In our
encryption algorithm, the key of the encryption system is only the initial value of the chaotic system,
which reduces the difficulty of key management. In addition, the algorithm also has the following
advantages, which can be demonstrated by theoretical analysis and experimental results: the key space
is large, the cyphertext is very sensitive to plaintext and keys, the distribution of pixels in encrypted
image is uniform, the correlation between adjacent pixels of cyphertext is very low, and the information
entropy of cyphertext images is close to the ideal value of 8, Therefore, the proposed algorithm has
good application prospects in secure image communication and storage applications.
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