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Abstract: This paper discusses some properties of the topological entropy systems generated by
polynomials of degree d in their Hubbard tree. An optimization of Thurston’s core entropy algorithm
is developed for a family of polynomials of degree d.
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1. Introduction

The topological entropy of a polynomial P, denoted by P allows us to measure the complexity of
the orbits of the dynamical system generated by P. This concept has been used to classify the dynamics
in different polynomial families, for example, in the case of real one-parameter families of polynomials
of degree 2, it has been shown that the entropy behaves monotonically [1,2]. For real cubic maps, it was
shown that each locus of constant topological entropy is a connected set [3]. Later, this result was
shown for a quartic polynomial family and for real multimodal maps [4,5]. In the complex polynomials
family, the entropy is concentrated in the Julia set; it is constant and only depends on the degree of
the polynomial family [1,6]. In order to study the dynamics of a polynomial with a finite postcritical
set, Douady and Hubbard introduced the Hubbard tree; the theory of admissible Hubbard trees and
critical portraits was later studied by Poirier [7]. Afterwards Thurston proposed to study the entropy,
restricted to its Hubbard tree, of a polynomial with finite postcritical set, which, in this setting, is called
the core entropy. He showed that the core entropy generalizes the concept defined for an invariant
interval in the real case [8]. Furthermore, Thurston proposed an algorithm in order to calculate the
core entropy. It is based on a linear transformation A (defined in terms of the external arguments of
the postcritical set) whose spectral radius coincides with the core entropy [9].

In the case of the quadratic family, Li proved that the core entropy grows through the veins of
the Mandelbrot set. Later Tiozzo proved, for the same family, that the core entropy can be extended
as a continuous function of the external argument on the boundary of the Mandelbrot set [10,11].
He generalizes this result for polynomials of higher degrees [12].

In this article, we show a simplification of Thurston’s algorithm for a family of polynomials
of degree d ≥ 3 with one free critical point and one fixed critical point of maximum multiplicity.
We always assume that the free critical point is either periodic or eventually periodic. According to
[13], this family is conjugated to

Pa(z) = zd−1
(

z +
da

d− 1

)
. (1)

The polynomial function Pa(z) has two critical points: zero which is the fixed critical point of
maximal multiplicity and −a which is the free critical point. The parameter space of this polynomial
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family has been studied by Milnor [14,15] in the cubic case, and by Roesch [13], who studied the
topological properties of the hyperbolic components in the case of degree d ≥ 3.

To simplify Thurston’s algorithm, we construct a linear transformation A′ with a definition
based on the external arguments of the orbit of the critical point (−a). As we will show, this linear
transformation is defined in a space with smaller dimension than the one proposed by Thurston.
Consequently, the spectral radius is easier to calculate. Here is the main result of this paper.

Main Theorem. Let Pa be a postcritically finite polynomial of the family (1). If A denotes the matrix obtained
via Thurston’s algorithm, then A and A′ have equal spectral radii ρ.

In order to prove the Main Theorem, we use of the concept of external rays, the Thurston algorithm,
and some properties of the entropy and non-negative matrices [16–20].

2. Thurston’s Algorithm

The algorithm proposed by Thurston allows us to compute the core entropy of a polynom of
degree d. With the purpose of defining this algorithm, we present some needed concepts which can be
found in the work of Gao, [9].

2.1. The Algorithm of Thurston for Polynomials of Degree d

Let P(z) be a postcritically finite polynomial of degree d. Thus, P(z) has exactly d− 1 critical
points, say, c1, ..., cn (counting multiplicities). Each ci is either in the Julia set, Jp, or is the center of a
Fatou component. Furthermore, Jp is locally connected [18,21]. The algorithm is based on the analysis
of the external rays that land either on the critical points or on the boundaries of Fatou components
that contain the critical points.

Definition 1. We say that an external ray R(θ) supports a bounded Fatou component U if:
(1) The ray lands on a point q at the boundary of U.
(2) There exists a sector based at q, delimited by R(θ) and the internal ray of U that lands at q, such that

the sector does not contain any other external ray that lands on q.

Given a postcritically finite polynomial of degree d and a critical Fatou component U, that is,
a Fatou component containing a critical point, let δ = deg(P|U). We define the set Θ(U) as follows:

(1) If U is periodic with orbit

U → P(U)→ · · · → Pn(U) = U,

we build Θ(U′, z′, θ) for all U′ in this orbit simultaneously.
Using the Böttcher coordinates in U, we can find z ∈ ∂U with internal argument 0. This z is a root of U,

which depends on the choice of the coordinates. This means that z is a periodic point of minimal period on
the boundary of U. This choice determines a root for each Fatou component (Pk(U), for k = 1, 2 . . . , n− 1).
We call this root a preferred root of Pk(U). If U′ is any component in the cycle and z′ is its preferred root,
consider a ray (R(θ)) which supports U′ at z′. Define Θ(U′, z′, θ) to be the set consisting of δU′ arguments
of the support rays for the component U′ that are the inverse image of P(R(θ)).

(2) If the Fatou component U is strictly preperiodic, take n as the smallest number for which Pn(U)

is a critical Fatou component. Let z ∈ ∂U be such that Pn(z) = γ(α), where γ(α) is the point where
R(α) lands on ∂Pn(U) and α ∈ Θ(Pn(U), γ(α), α). Consider a ray (R(θ)) that supports component U
which contains z. Define Θ(U, z, θ) as the set of the δU arguments of the supporting rays of U that,
under Pn, go to R(α).
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Remark 1. For each critical Fatou component U, there exists, at most, a finite number of sets (Θ(U′, z′, θ)),
each one dependent on the choice of the root (z) in U and the argument (θ). We can choose any of them and
denote it by Θ(U).

Definition 2. Let P be a polynomial with finite postcritical set. Let U1, ..., Un be the pairwise disjoint critical
Fatou components, and let c1, . . . , cm be the critical points in the Julia set (m + n is the number of different
critical points of P). The finite collection of subsets of the circle

ΘP = {Θ(c1), . . . , Θ(cm), Θ(U1), . . . , Θ(Un)}

is called the critical marking of P, if each of the Θ(Ui) is chosen as in Remark 1 and each Θ(cj) consists purely
of the angles of the external rays that lands on cj.

Let Θ = {Θ1, Θ2 . . . , Θl} be the critical marking of a polynomial P of degree d. We define the
critical and postcritical sets of Θ as

crit(Θ) =
l⋃

k=1

Θk and post(Θ) =
⋃

n≥1

τncrit(Θ),

respectively, where τ : T → T is the function given by τ(θ) = dθ mod 1. From the definition of
critical marking, it is easy to see that the following holds:

1. Each τΘi, i ∈ {1, 2, . . . , l}, consists of a unique angle.
2. The convex hulls of Θi and Θj in the unit disk intersect each other in, at most, one point of T,

for any i 6= j in the set {1, 2, . . . , l}.
3. For each i, #Θi ≥ 2 and ∑l

i=1(#Θi − 1) = d− 1.

Let D be the unit disk endowed with the hyperbolic metric. We identify any point in ∂D with
the argument in T. By doing this, each angle in the circle is considered to be mod 1. A leaf is either a
point in T or the closure in D of a hyperbolic chord (non-trivial). Indeed, from now on, each time we
mention chord or hull in the disk, it will be in the hyperbolic sense. For each set (S ⊂ T), we denote
the convex hull of S as a subset of D by hull(S).

A critical portrait of degree d is a finite collection of finite subsets of the circumference,
Θ = {Θ1, Θ2 . . . , Θk} satisfying properties 1, 2, 3.

Notice that any critical marking of a postcritically finite polynomial seen in the unit disk is a
critical portrait.

Definition 3. Let Θ = {Θ1, Θ2 . . . , Θl} be a critical portrait. Given any two angles x, y ∈ T that are not
necessarily different, and an element Θ of Θ, we say that the chord xy crosses the convex hull, hull(Θ) if
x, y /∈ Θ, and xy

⋂
hull(Θ) 6= ∅. In this setting, we also say that x, y are separated by Θ.

Definition 4. Given any pair of angles x, y ∈ T, the separation set relative to Θ is the set {k1, ..., kp} where
the chord xy successively crosses hull(Θk1), ..., hull(Θkp), Θkj

∈ Θ, and no other element of Θ separates the
angles x, y. We say that the angles x, y are not separated by Θ if its separation set relative to Θ is empty.

If Pd is a polynomial with finite postcritical set, then each element of its critical portrait Θ is
rational and post(Θ) is a finite set. Hence, it is possible to define the finite set S consisting of pairs (not
ordered) of {x, y} with x 6= y ∈ post(Θ) as long as card(post(Θ)) ≥ 2. In the case of post(Θ) = {x},
S has only one element and in this case, x is a fixed point of τ.

Once we have defined the set S, the entropy of Pd restricted to the Hubbard tree (H(Pd)) is given
by the Algorithm 1.
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Algorithm 1 Thurston’s Algorithm

• Let V be the vector space over R which has the elements of S as a basis.
• Let A : V → V be the linear transformation defined by the values on the basis S of V as follows.

For any vector ({x, y} ∈ S), the image is defined by
A({x, y}) = {τ(x), τ(y)} if x, y are not separated by Θ;
A({x, y}) = ∑

p
i=0A({θi, θi+1}), where θ0 = x, θp+1 = y, and θi ∈ Θki

∈ Θ, if {x, y} has the
separating set {k1, . . . kp} 6= ∅.

• Let A be the matrix associated with the linear transformation A with respect to the basis S. As
this matrix is non-negative, according to Perron–Frobenius Theorem, the spectral radius ρ of A is
non-negative [16].

Theorem 1 (Gao). Let Pd be a polynomial of degree d with a finite postcritical set, and let Θ be a critical
marking for Pd. If ρ is the spectral radius of the matrix in Thurston’s algorithm, then h(H(Pd), Pd) = log ρ.

A full proof of the above Theorem can be found in [9].
One of the advantages of studying the entropy in the critical portrait is the fact that each point

of the postcritical set corresponds to an angle in the set post(Θ) in such a way that any arc of H(Pd)

between two vertices can be represented by some pair of angles, although possibly not in a unique
way. Intuitively, one can think that the actions of Pd in those arcs induce a transformation in the space
generated by the pair of angles in the set post(Θ) given by the matrix A of Thurston’s algorithm.

2.2. Thurston’s Algorithm in the Polynomial Family (1)

Let Pa be a polynomial in the family (1). The critical points of Pa are 0 and −a. The point 0 is the
center of the fixed Fatou component Ba, and −a is a free critical point. If −a is the center of a Fatou
component, then this component will be denoted by U1.

We also define the following set of angles

Θ0 = Θ(Ba),

Θ−a =

{
Θ(U1) i f −a is the center of a Fatou component
Θ(c1) i f −a ∈ Ja,

where Θ(Ba), Θ(U1) and Θ(c1) are defined as in Section 2.1.
Assume that Pa has a finite postcritical set. The collection of angles ΘPa = Θ−a is called a restricted

critical marking.
Let ΘPa be the restricted critical marking of Pa. We define the restricted critical set and the

restricted postcritical set as

crit(ΘPa) = Θ−a and post(ΘPa) =
⋃

n≥1

τncrit(ΘPa).

In the same way as we did before, we identify any point in ∂D with its argument in T.
The restricted critical marking of Pa viewed in D is denoted by Θa.

Lemma 1. If Θa is the restricted critical portrait of the polynomial Pa, then D \ hull(Θa) has 2 connected
components with arcs in T of lengths 1

d and d−1
d , respectively.

Proof. Since deg(P|−a) = 2, Θa consists of two elements, the convex hull (hull(Θa)) divides D in two
regions. On the other hand, as the elements of Θa are obtained as inverse images of the same angle,
the arc length between the elements of Θa is equal to 1

d (c.f. Proposition 2.31 in [13]). This completes
the proof.
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Definition 5. Let Θa be a restricted critical portrait. Given any two angles x, y ∈ T (not necessarily different),
we say that the chord (xy) crosses the convex hull (hull(Θa) of Θa) if x, y /∈ Θa and xy

⋂
hull(Θa) 6= ∅.

Under these conditions, we say that x, y are separated by Θa.

If Pa has a finite postcritical set, then the elements of the restricted critical portrait are rationals,
and post(Θa) is a finite set. We define set S′ as all pairs (not ordered) of {x, y} with x 6= y ∈ post(Θa)

as long as card(post(Θa)) ≥ 2. If post(Θa) = {x}, then S′ is the element {x, x}, and x is a fixed point
of τ. Once we have defined set S′, the adapted Thurston’s algorithm that is used to approximate the
entropy of Pa over its Hubbard tree is given by Algorithm 2.

Algorithm 2 The Adapted Thurston’s Algorithm

• Define V ′ as the vector space over R which has the elements of S′ as a basis.
• Define the linear transformation A′ : V ′ → V ′ by setting the values of A′ on the basis S′ of V ’ in the

following way: For any vector {x, y} ∈ S′, the image is defined by
A′({x, y}) = {τ(x), τ(y)}, if x, y are not separated by Θ; and
A′({x, y}) = {τ(x), τ(θ)}+ {τ(θ), τ(y)}, θ ∈ Θa if x, y are separated by Θ.

• Let A′ be the matrix associated with the linear transformation A′ with respect to the basis S′. This
matrix is non-negative, and, according to the Perron–Frobenius Theorem [16], the spectral radius ρ′

of A′ is non-negative.

Theorem 2. Let Pa be a finite postcritical polynomial. If A denotes the matrix obtained by Algorithm 1, and A′

is the matrix generated by Algorithm 2, then A and A′ have the same spectral radius (ρ).

Proof. In order to prove the Theorem, we have to consider two cases:
(1) If −a ∈ Ba, in this case, the core entropy is zero, and we show that in the restricted algorithm.

The spectral radius of matrix A′ is 1.
(2) If −a /∈ Ba, we show that transformation A can be built without considering the line of

separation of the critical point (0).
Let Pa be a polynomial of degree d with a finite postcritical set. In accordance with Böttcher’s

Theorem, a biholomorphism φa exists that conjugates Pa with the function zd in a neighborhood of
infinity. Since Pa is postcritically finite, its Julia set is locally connected; hence, φa can be extended
continuously to Ja [21].

Moreover, the dynamics in Ba are conjugated to zd−1, and the conjugation can be extended
continuously to the boundary; hence, a fixed point p of Pa exists, with an internal angle of 0, that is, in
∂Ba. The Böttcher coordinate is chosen at infinity in such a way that the external angle of p is also 0.

According to the above and the construction of the critical portraits, the set of angles is
Θ0 =

{
0, k1

d , . . . kd−2
d

}
, with ki ∈ {1, 2, . . . , d− 1}. Hence, the critical portrait of Pa is given by

Θ =

{{
0,

k1

d
, . . .

kd−2
d

}
, Θ−a

}
and post(Θ) =

⋃
n≥1

τn(Θ−a)
⋃
{0},

where Θ−a consists of two elements according to Lemma 1.
This shows that for a fixed d, the postcritical set varies only in the function of the critical point

(−a). On the other hand, the edges of the Hubbard tree are related to the pairs of angles in the critical
portrait as follows: the interval of angles with extremes {θ1, θ2} in the circumference represents a
union of edges in the Hubbard tree, and the interval of angles in the circle given by the image of
A({θ1, θ2}) is equivalent to the interval of angles that contains the image under Pa of the union of
corresponding edges.

Remark 2. If S denotes the basis of the vector space in Algorithm 1 and the pair {θ1, θ2} ∈ S is separated with
respect to the critical line Θci , then the corresponding edge or edges contain the critical point ci.
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Case 1: Let Pa be a postcritically finite polynomial such that −a ∈ Ba. As Pa is conjugated to
zd−1 in Ba, then the tree of a is star shaped with n edges. We can label the edges in the Hubbard tree
such that the incidence matrix Ã = (ai,j) is defined by ai,i+1 = 1 for i = 1, . . . , n− 1, an,j = 1 for some
j ∈ {i, . . . , n} and zero otherwise.

The characteristical polynomial of the incidence matrix Ã is

(−1)nλk−1(λn−(k−1) − 1),

and its spectral radius is 1. Hence h(Pa) = 0. On the other hand, Theorem 1 says that the spectral
radius of A obtained by Thurston’s method is 1.

Due to the fact that the orbit of−a is in Ba, the restricted critical portrait Θa consists of the external
angles corresponding to the component Ba. Hence, pairs ({θi, θj}) separated with respect to the critical
point (−a) do not exist. Moreover, we can disregard the separation with respect to 0, as in the restricted
algorithm. Thus, there is no pair that is separated. Consequently, all pairs {θi, θj} ∈ S have only one
image. Furthermore, all rows of matrix A′ add up to 1; thus, the spectral radius is 1.

Case 2: If −a /∈ Ba, we have the next claim.

Claim 1. If [v1, 0] and [0, v2] are the two edges of H(a), and γ = [v1, 0]
⋃
[0, v2], then Pa(γ) =

[Pa(v1), Pa(v2)].

Proof. If −a is a periodic point, then there are no edges of the forms [v1, 0] and [0, v2] that have the
same image. Hence, as 0 is a fixed point, Pa(γ) = [Pa(v1), Pa(v2)].

On the other hand, if −a is preperiodic with −a /∈ Ba, then −a eventually goes to a bifurcation
point of ∂Ba; thus, in this case, there are no edges of the forms [v1, 0] and [0, v2] that go to the
same image.

In set S, in order to obtain the image of a separated pair ({θ1, θ2}) we can discard the characteristic
of being separated with respect to the critical line of Θ0. Thus, for this family of polynomials, if the
pair {θ1, θ2} is separated with respect to Θ, its separation set consists only of one element—the one
associated with Θ−a.

Since the postcritical set of Pa only depends on the critical point (−a), we can study them if we
separate them into the following cases:

(1) If −a is the center of a capture component, then the orbit of Θ−a eventually contains the zero
angle, which is a fixed angle. In this case, the postcritical set of Θ is

⋃
n≥1

τn(Θ−a). Hence, A = A′.

(2) If −a eventually goes to p ∈ ∂Ba, with a fixed p, then the orbit of Θ−a contains the zero angle;
thus, as above, A = A′.

(3) In any other case, the orbits of Θ−a and Θ0 are disjoint. Hence, the postcritical set is

Post(Θ) = {0, θ1, . . . θk},

where θi = Pi
a(θ) with θ ∈ Θ−a.

If we write set S in such a way that the first k elements are of the form {0, θi}, then S can be
written as

S = {{0, θ1}, . . . {0, θk}}
⋃ {
{θi, θj} ; i ≤ j

}
.

Hence, the matrix associated with the transformation A is

A =

(
B X
N C

)
,
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where B is the submatrix corresponding to the relations of the images of the pairs of the form {0, θi}
with themselves, and C is the submatrix corresponding to the relations of the images of the pairs
{θi, θj} with themselves. The lower submatrix N represents the relations between the images of pairs
{θi, θj} with {0, θi}.

Since we do not consider the separation with respect to the critical line Θ0, and the orbit of Θ−a

does not contain 0, the image of a pair {θi, θj} does not have a component of the form {0, θl}. Hence,
the matrix N is identically 0.

Since C is exactly the matrix A′, to finish the proof of the theorem, it is enough to prove the
following claim.

Claim 2. The spectral radius of matrix B is 1.

Proof. Notice that a pair ({0, θi}) is fixed under A only when the angle θi is fixed. Due to the fact that
the only fixed angle of τ is zero and θi 6= 0, all the elements of the diagonal of B are zeros. On the
other hand, if {0, θi} is not separated, then its image is {0, θi+1}, and if it is separated, then its image
is {0, θ1}+ {θ1, θi}. In the first case, this generates a 1 over the diagonal of B, and in the second case,
it generates a 1 on the first column. Thus, B has the form

B =



0 1 0 . . . , 0 0
0 0 1 . . . , 0 0
...

... · · · 1
...

...
1 0 0 . . . 0 0
... 0 0 . . . 0 0
1 0 0 . . . 0 0


and its spectral radius is then 1.

Example 1. Taking d = 3 and a = 1.07183814 + 0.1928507i in the polynomial family (1), we have a
polynomial with the critical point −a which is periodic with a period of 4. The Julia set is shown in Figure 1.

Figure 1. Julia set and critical portrait for d = 3 and a = 1.07183814 + 0.1928507i.

The critical portrait associated with Pa is Θ = {{0, 1
3}, {

7
20 , 41

60}} and post(Θ) = {0, 1
20 , 3

20 , 9
20 , 7

20}.
It can be seen in Figure 1.
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The basis S for the space V is

S =

{{
0,

1
20

}
,
{

0,
3
20

}
,
{

0,
9
20

}
,
{

0,
7
20

}
,
{

1
20

,
3
20

}
,
{

1
20

,
9
20

}
,
{

1
20

,
7
20

}
,
{

3
20

,
9

20

}
,
{

3
20

,
7

20

}
,
{

9
20

,
7

20

}}
.

By applying the linear transformation A to the elements of the basis, we obtain{
0, 1

20

}
7→
{

0, 3
20
}{

0, 3
20
}
7→
{

0, 9
20
}{

0, 9
20
}
7→
{

0, 1
20

}
+
{

1
20 , 7

20

}
{

0, 7
20
}
7→
{

0, 1
20

}
{

1
20 , 3

20

}
7→
{ 3

20 , 9
20
}

{
1

20 , 9
20

}
7→
{

0, 3
20
}
+
{

0, 1
20

}
+
{

1
20 , 7

20

}
{

1
20 , 7

20

}
7→
{

0, 3
20
}
+
{

0, 1
20

}
{ 3

20 , 9
20
}
7→
{

0, 9
20
}
+
{

0, 1
20

}
+
{

1
20 , 7

20

}
{ 3

20 , 7
20
}
7→
{

0, 9
20
}
+
{

0, 1
20

}
{ 9

20 , 7
20
}
7→
{

1
20 , 7

20

}
.

Hence, the matrix associated with the linear transformation A is

A =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0


,

and its spectral radius is 1.3953. In accordnce with Theorem 1, we conclude that the entropy of Pa, restricted to
its Hubbard tree, is log 1.3953.

On the other hand, the restricted critical portrait associated with Pa is Θ = {{ 7
20 , 41

60}}, and

post(Θ) =
{

1
20 , 3

20 , 9
20 , 7

20

}
. It can be seen in Figure 2.

Figure 2. Restricted critical portrait for d = 3 and a = 1.07183814 + 0.1928507i.

The basis S of the space V is given by

S =

{{
1
20

,
3

20

}
,
{

1
20

,
9

20

}
,
{

1
20

,
7

20

}
,
{

3
20

,
9

20

}
,
{

3
20

,
7

20

}
,
{

9
20

,
7

20

}}
.
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The transformation A′ on the basis S is{
1

20 , 3
20

}
7→
{ 3

20 , 9
20
}{

1
20 , 9

20

}
7→
{

1
20 , 3

20

}
+
{

1
20 , 7

20

}
{
{ 1

20 , 7
20

}
7→
{

1
20 , 3

20

}
{ 3

20 , 9
20
}
7→
{

1
20 , 9

20

}
+
{

1
20 , 7

20

}
{ 3

20 , 7
20
}
7→
{

1
20 , 9

20

}
{ 9

20 , 7
20
}
7→
{

1
20 , 7

20

}
The associated matrix is

A =



0 0 0 1 0 0
1 0 1 0 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


,

with a spectral radius of 1.3953.

As the above example shows, the Thurston restricted algorithm allows us to reduce the dimensions
of the matrix as well as the cardinality of the orbit of −a. Furthermore, the sum of the elements of any
row of A′ is, at most, 2, while the sum of the elements of a row in A can be greater than 2. Figure 3
shows the core entropy as a function of the external argument for d = 3.
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Figure 3. Core entropy for d = 3.
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