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Abstract: The capacity region of a two-transmitter Gaussian multiple access channel (MAC) under
average input power constraints is studied, when the receiver employs a zero-threshold one-bit
analogue-to-digital converter (ADC). It is proven that the input distributions of the two transmitters
that achieve the boundary points of the capacity region are discrete. Based on the position of a
boundary point, upper bounds on the number of the mass points of the corresponding distributions
are derived. Furthermore, a lower bound on the sum capacity is proposed that can be achieved by
time division with power control. Finally, inspired by the numerical results, the proposed lower
bound is conjectured to be tight.
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1. Introduction

The energy consumption of an analogue-to-digital converter (ADC) (measured in Joules/sample)
grows exponentially with its resolution (in bits/sample) [1,2].When the available power is limited,
for example, for mobile devices with limited battery capacity, or for wireless receivers that operate
on limited energy harvested from ambient sources [3], the receiver circuitry may be constrained to
operate with low resolution ADCs. The presence of a low-resolution ADC, in particular a one-bit ADC
at the receiver, alters the channel characteristics significantly. Such a constraint not only limits the
fundamental bounds on the achievable rate, but it also changes the nature of the communication and
modulation schemes approaching these bounds. For example, in a real additive white Gaussian noise
(AWGN) channel under an average power constraint on the input, if the receiver is equipped with a
K-bin (i.e., log2 K-bit) ADC front end, it is shown in [4] that the capacity-achieving input distribution
is discrete with at most K + 1 mass points. This is in contrast with the optimality of the Gaussian input
distribution when the receiver has infinite resolution.

Especially with the adoption of massive multiple-input multiple-output (MIMO) receivers
and the millimetre wave (mmWave) technology enabling communication over large bandwidths,
communication systems with limited-resolution receiver front ends are becoming of practical
importance. Accordingly, there has been a growing research interest in understanding both the
fundamental information theoretic limits and the design of practical communication protocols for
systems with finite-resolution ADC front ends. In [5], the authors showed that for a Rayleigh fading
channel with a one-bit ADC and perfect channel state information at the receiver (CSIR), quadrature
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phase shift keying (QPSK) modulation is capacity-achieving. In case of no CSIR, [6] showed that
QPSK modulation is optimal when the signal-to-noise ratio (SNR) is above a certain threshold, which
depends on the coherence time of the channel, while for SNRs below this threshold, on-off QPSK
achieves the capacity. For the point-to-point multiple-input multiple-output (MIMO) channel with
a one-bit ADC front end at each receive antenna and perfect CSIR, [7] showed that QPSK is optimal
at very low SNRs, while with perfect channel state information at the transmitter (CSIT), upper and
lower bounds on the capacity are provided in [8].

To the best of our knowledge, the existing literature on communications with low-resolution
ADCs focuses exclusively on point-to-point systems. Our goal in this paper is to understand the impact
of low-resolution ADCs on the capacity region of a multiple access channel (MAC). In particular,
we consider a two-transmitter Gaussian MAC with a one-bit quantizer at the receiver. The inputs to
the channel are subject to average power constraints. We show that any point on the boundary of the
capacity region is achieved by discrete input distributions. Based on the slope of the tangent line to the
capacity region at a boundary point, we propose upper bounds on the cardinality of the support of
these distributions. Finally, based on numerical analysis for the sum capacity, it is observed that we
cannot obtain a sum rate higher than is achieved by time division with power control.

The paper is organized as follows. Section 2 introduces the system model. In Section 3, the capacity
region of a general two-transmitter memoryless MAC under input average power constraints is
investigated. The main result of the paper is presented in Section 3, and a detailed proof is given
in Section 4. The proof has two parts: (1) it is shown that the support of the optimal distributions
is bounded by contradiction; and (2) we make use of this boundedness to prove the finiteness of
the optimal support by using Dubins’ theorem [9]. Section 5 analyses the sum capacity, and finally,
Section 6 concludes the paper.

Notations: Random variables are denoted by capital letters, while their realizations with lower
case letters. FX(x) denotes the cumulative distribution function (CDF) of random variable X.
The conditional probability mass function (pmf) pY|X1,X2

(y|x1, x2) will be written as p(y|x1, x2).
For integers m ≤ n, we have [m : n] = {m, m + 1, . . . , n}. For 0 ≤ t ≤ 1, Hb(t) , −t log2 t −
(1− t) log2(1− t) denotes the binary entropy function. The unit-step function is denoted by s(·).

2. System Model and Preliminaries

We consider a two-transmitter memoryless Gaussian MAC (as shown in Figure 1) with a one-bit
quantizer Γ at the receiver front end. Transmitter j = 1, 2 encodes its message Wj into a codeword Xn

j
and transmits it over the shared channel. The signal received by the decoder is given by:

Y = Γ(X1,i + X2,i + Zi), i ∈ [1 : n],

where {Zi}n
i=1 is an independent and identically distributed (i.i.d.) Gaussian noise process, also

independent of the channel inputs Xn
1 and Xn

2 with Zi ∼ N (0, 1), i ∈ [1 : n]. Γ represents the one-bit
ADC operation given by:

Γ(x) =

{
1 x ≥ 0
0 x < 0

.

This channel can be modelled by the triplet (X1 ×X2, p(y|x1, x2),Y), where X1,X2 (= R) and Y
(= {0, 1}), respectively, are the alphabets of the inputs and the output. The conditional pmf of the
channel output Y conditioned on the channel inputs X1 and X2 (i.e., p(y|x1, x2)) is characterized by:

p(0|x1, x2) = 1− p(1|x1, x2) = Q(x1 + x2), (1)

where Q(x) , 1√
2π

∫ +∞
x e−

t2
2 dt.

We consider a two-transmitter stationary and memoryless MAC model (X1 ×X2, p(y|x1, x2),Y),
where X1 = X2 = R, Y = {0, 1}, p(y|x1, x2) is given in (1).
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Figure 1. A two-transmitter Gaussian multiple access channel (MAC) with a one-bit analogue-to-digital
converter (ADC) front end at the receiver.

A (2nR1 , 2nR2 , n) code for this channel consists of (as in [10]):

• two message sets [1 : 2nR1 ] and [1 : 2nR2 ],
• two encoders, where encoder j = 1, 2 assigns a codeword xn

j (wj) to each message wj ∈ [1 : 2nRj ], and
• a decoder that assigns estimates (ŵ1, ŵ2) ∈ [1 : 2nR1 ]× [1 : 2nR2 ] or an error message to each

received sequence yn.

The stationary property means that the channel does not change over time, while the memoryless
property indicates that p(yi|xi

1, xi
2, yi−1, w1, w2) = p(yi|x1,i, x2,i) for any message pair (w1, w2).

We assume that the message pair (W1, W2) is uniformly distributed over [1 : 2nR1 ]× [1 : 2nR2 ].
The average probability of error is defined as:

P(n)
e , Pr

{
(Ŵ1, Ŵ2) 6= (W1, W2)

}
. (2)

Average power constraints are imposed on the channel inputs as:

1
n

n

∑
i=1

x2
j,i(wj) ≤ Pj , ∀wj ∈ [1 : 2nRj ], j ∈ {1, 2}, (3)

where xj,i(wj) denotes the i-th element of the codeword xn
j (wj).

A rate pair (R1, R2) is said to be achievable for this channel if there exists a sequence of
(2nR1 , 2nR2 , n) codes satisfying the average power constraints (3), such that limn→∞ P(n)

e = 0.
The capacity region C (P1, P2) of this channel is the closure of the set of achievable rate pairs (R1, R2).

3. Main Results

Proposition 1. The capacity region C (P1, P2) of a two-transmitter stationary and memoryless MAC with
average power constraints P1 and P2 is the set of non-negative rate pairs (R1, R2) that satisfy:

R1 ≤ I(X1; Y|X2, U),

R2 ≤ I(X2; Y|X1, U),

R1 + R2 ≤ I(X1, X2; Y|U), (4)

for some FU(u)FX1|U(x1|u)FX2|U(x2|u), such that E[X2
j ] ≤ Pj, j = 1, 2. Furthermore, it is sufficient to

consider |U | ≤ 5.

Proof of Proposition 1. The proof is provided in Appendix A.

The main result of this paper is provided in the following theorem. It bounds the cardinality of
the support set of the capacity-achieving distributions.

Theorem 1. Let J be an arbitrary point on the boundary of the capacity region C (P1, P2) of the memoryless
MAC with a one-bit ADC front end (as shown in Figure 1). J is achieved by a distribution in the form of
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F J
U(u)F J

X1|U
(x1|u)F J

X2|U
(x2|u). Furthermore, let lJ be the slope of the line tangent to the capacity region at this

point. For any u ∈ U , the conditional input distributions F J
X1|U

(x1|u) and F J
X2|U

(x2|u) have at most n1 and n2

points of increase (a point Z is said to be a point of increase of a distribution if for any open set Ω containing Z,
we have Pr{Ω} > 0), respectively, where:

(n1, n2) =


(3, 5) lJ < −1
(3, 3) lJ = −1
(5, 3) lJ > −1

. (5)

Furthermore, this result remains unchanged if the one-bit ADC has a non-zero threshold.

Proof of Theorem 1. The proof is provided in Section 4.

Proposition 1 and Theorem 1 establish upper bounds on the number of mass points of the
distributions that achieve a boundary point. The significance of this result is that once it is known that
the optimal inputs are discrete with at most a certain number of mass points, the capacity region along
with the optimal distributions can be obtained via computer programs.

4. Proof of Theorem 1

In order to show that the boundary points of the capacity region are achieved, it is sufficient to
show that the capacity region is a closed set, i.e., it includes all of its limit points.

Let U be a set with |U | ≤ 5 and Ω be defined as:

Ω ,
{

FU,X1,X2

∣∣ U ∈ U , X1 −U − X2, E[X2
j ] ≤ Pj, j = 1, 2

}
, (6)

which is the set of all CDFs on the triplet (U, X1, X2), where U is drawn from U , and the Markov
chain X1 −U − X2 and the corresponding average power constraints hold.

In Appendix B, it is proven that Ω is a compact set. Since a continuous mapping preserves
compactness, the capacity region is compact. Since the capacity region is a subset of R2, it is closed
and bounded (note that a subset of Rk is compact if and only if it is closed and bounded [11]).
Therefore, any point P on the boundary of the capacity region is achieved by a distribution denoted by
F J

U(u)F J
X1|U

(x1|u)F J
X2|U

(x2|u).
Since the capacity region is a convex space, it can be characterized by its supporting hyperplanes.

In other words, any point on the boundary of the capacity region, denoted by (Rb
1, Rb

2), can be written as:

(Rb
1, Rb

2) = arg max
(R1,R2)∈C (P1,P2)

R1 + λR2,

for some λ ∈ (0, ∞). Here, we have excluded the cases λ = 0 and λ = ∞, where the channel is not
a two-transmitter MAC any longer, and boils down to a point-to-point channel, whose capacity is
already known.

Any rate pair (R1, R2) ∈ C (P1, P2) must lie within a pentagon defined by (4) for some
FU FX1|U FX2|U that satisfies the power constraints. Therefore, due to the structure of the pentagon, the
problem of finding the boundary points is equivalent to the following maximization problem.

max
(R1,R2)∈C (P1,P2)

R1 + λR2 =

{
max I(X1; Y|X2, U) + λI(X2; Y|U) 0 < λ ≤ 1
max I(X2; Y|X1, U) + λI(X1; Y|U) λ > 1

, (7)

where on the right-hand side (RHS) of (7), the maximizations are over all FU FX1|U FX2|U that satisfy the
power constraints. It is obvious that when λ = 1, the two lines in (7) are the same, which results in the
sum capacity.

For any product of distributions FX1 FX2 and the channel in (1), let Iλ be defined as:
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Iλ(FX1 FX2) ,

{
I(X1; Y|X2) + λI(X2; Y) 0 < λ ≤ 1
I(X2; Y|X1) + λI(X1; Y) λ > 1

. (8)

With this definition, (7) can be rewritten as:

max
(R1,R2)∈C (P1,P2)

R1 + λR2 = max
5

∑
i=1

pU(ui)Iλ(FX1|U(x1|ui)FX2|U(x2|ui)),

where the second maximization is over distributions of the form pU(u)FX1|U(x1|u)FX2|U(x2|u),
such that:

5

∑
i=1

pU(ui)E[X2
j |U = ui] ≤ Pj, j = 1, 2.

Proposition 2. For a given FX1 and any λ > 0, Iλ(FX1 FX2) is a concave, continuous and weakly differentiable
function of FX2 . In the statement of this proposition, FX1 and FX2 could be interchanged.

Proof of Proposition 2. The proof is provided in Appendix C.

Proposition 3. Let P′1, P′2 be two arbitrary non-negative real numbers. For the following problem:

max
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

Iλ(FX1 FX2), (9)

the optimal inputs F∗X1
and F∗X2

, which are not unique in general, have the following properties,

(i) The support sets of F∗X1
and F∗X2

are bounded subsets of R.
(ii) F∗X1

and F∗X2
are discrete distributions that have at most n1 and n2 points of increase, respectively, where:

(n1, n2) =


(5, 3) 0 < λ < 1
(3, 3) λ = 1
(3, 5) λ > 1

.

Proof of Proposition 3. We start with the proof of the first claim. Assume that 0 < λ ≤ 1, and FX2 is
given. Consider the following optimization problem:

I∗FX2
, sup

FX1 :
E[X2

1 ]≤P′1

Iλ(FX1 FX2). (10)

Note that I∗FX2
< +∞, since for any λ > 0, from (8),

Iλ ≤ (λ + 1)H(Y) ≤ (1 + λ) < +∞.

From Proposition 2, Iλ is a continuous, concave function of FX1 . Furthermore, the set of all
CDFs with bounded second moment (here, P′1) is convex and compact. The compactness follows
from Appendix I in [12], where the only difference is in using Chebyshev’s inequality instead of
Markov’s inequality. Therefore, the supremum in (10) is achieved by a distribution F∗X1

. Since for
any FX1(x) = s(x − x0) with |x0|2 < P′1, we have E[X2

1 ] < P′1, the Lagrangian theorem and the
Karush–Kuhn–Tucker conditions state that there exists a θ1 ≥ 0 such that:

I∗FX2
= sup

FX1

{
Iλ(FX1 FX2)− θ1

(∫
x2dFX1(x)− P′1

)}
. (11)
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Furthermore, the supremum in (11) is achieved by F∗X1
, and:

θ1

(∫
x2dF∗X1

(x)− P′1

)
= 0. (12)

Lemma 1. The Lagrangian multiplier θ1 is non-zero. From (12), this is equivalent to having E[X2
1 ] = P′1, i.e.,

the first user transmits with its maximum allowable power (note that this is for λ ≤ 1, as used in Appendix D).

Proof of Lemma 1. In what follows, we prove that a zero Lagrangian multiplier is not possible. Having a
zero Lagrangian multiplier means the power constraint is inactive. In other words, if θ1 = 0, (10) and (11)
imply that:

sup
FX1

E[X2
1 ]≤P′1

Iλ(FX1 FX2) = sup
FX1

Iλ(FX1 FX2). (13)

We prove that (13) does not hold by showing that its left-hand side (LHS) is strictly less than one,
while its RHS equals one. The details are provided in Appendix D.

Iλ(FX1 FX2) (0 < λ ≤ 1) can be written as:

Iλ(FX1 FX2) =
∫ +∞

−∞

∫ +∞

−∞

1

∑
y=0

p(y|x1, x2) log
p(y|x1, x2)

[p(y; FX1 FX2)]
λ[p(y; FX1 |x2)]1−λ

dFX1(x1)dFX2(x2)

=
∫ +∞

−∞
ĩλ(x1; FX1 |FX2)dFX1(x1) (14)

=
∫ +∞

−∞
iλ(x2; FX2 |FX1)dFX2(x2), (15)

where we have defined:

ĩλ(x1; FX1 |FX2),
∫ +∞
−∞

(
D
(

p(y|x1, x2)||p(y; FX1 FX2)
)
+ (1− λ)∑1

y=0 p(y|x1, x2) log
p(y;FX1 FX2 )

p(y;FX1 |x2)

)
dFX2(x2), (16)

and:
iλ(x2; FX2 |FX1) ,

∫ +∞
−∞ D

(
p(y|x1, x2)||p(y; FX1 FX2)

)
dFX1(x1)− (1− λ)D

(
p(y; FX1 |x2)||p(y; FX1 FX2)

)
. (17)

p(y; FX1 FX2) is nothing but the pmf of Y with the emphasis that it has been induced by FX1 and FX2 .
Likewise, p(y; FX1 |x2) is the conditional pmf p(y|x2) when X1 is drawn according to FX1 . From (14),
ĩλ(x1; FX1 |FX2) can be considered as the density of Iλ over FX1 when FX2 is given. iλ(x2; FX2 |FX1) can
be interpreted in a similar way.

Note that (11) is an unconstrained optimization problem over the set of all CDFs. Since
∫

x2dFX1(x)
is linear and weakly differentiable in FX1 , the objective function in (11) is concave and weakly
differentiable. Hence, a necessary condition for the optimality of F∗X1

is:

∫
{ĩλ(x1; F∗X1

|FX2) + θ1(P′1 − x2
1)}dFX1(x1) ≤ I∗FX2

, ∀FX1 . (18)

Furthermore, (18) can be verified to be equivalent to:

ĩλ(x1; F∗X1
|FX2) + θ1(P′1 − x2

1) ≤ I∗FX2
, ∀x1 ∈ R, (19)

ĩλ(x1; F∗X1
|FX2) + θ1(P′1 − x2

1) = I∗FX2
, if x1 is a point of increase of F∗X1

. (20)

The justifications of (18)–(20) are provided in Appendix E.
In what follows, we prove that in order to satisfy (20), F∗X1

must have a bounded support by
showing that the LHS of (20) goes to −∞ with x1. The following lemma is useful in the sequel for
taking the limit processes inside the integrals.
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Lemma 2. Let X1 and X2 be two independent random variables satisfying E[X2
1 ] ≤ P′1 and E[X2

2 ] ≤ P′2,
respectively (P′1, P′2 ∈ [0,+∞)). Considering the conditional pmf in (1), the following inequalities hold.∣∣∣∣D (p(y|x1, x2)||p(y; FX1 FX2)

) ∣∣∣∣ ≤ 1− 2 log Q(
√

P′1 +
√

P′2) (21)

p(y; FX1 |x2) ≥ Q
(√

P′1 + |x2|
)

(22)∣∣∣∣∣ 1

∑
y=0

p(y|x1, x2) log
p(y; FX1 FX2)

p(y; FX1 |x2)

∣∣∣∣∣ ≤ −2 log Q
(√

P′1 +
√

P′2

)
− 2 log Q

(√
P′1 + |x2|

)
(23)

Proof of Lemma 2. The proof is provided in Appendix F.

Note that

limx1→+∞
∫ +∞
−∞ D

(
p(y|x1, x2)||p(y; F∗X1

FX2)
)

dFX2(x2) =
∫ +∞
−∞ limx1→+∞ D

(
p(y|x1, x2)||p(y; F∗X1

FX2)
)

dFX2(x2) (24)

= − log pY(1; F∗X1
FX2) (25)

≤ − log Q(
√

P′1 +
√

P′2), (26)

where (24) is due to the Lebesgue dominated convergence theorem [11] and (21), which permit the
interchange of the limit and the integral; (25) is due to the following:

lim
x1→+∞

D
(

p(y|x1, x2)||p(y; F∗X1
FX2)

)
= lim

x1→+∞

1

∑
y=0

p(y|x1, x2) log
p(y|x1, x2)

p(y; F∗X1
FX2)

= − log pY(1; F∗X1
FX2),

since p(0|x1, x2) = Q(x1 + x2) goes to zero when x1 → +∞ and pY(y; F∗X1
FX2) (y = 0, 1) is bounded

away from zero by (A34) ; (26) is obtained from (A34) in Appendix F. Furthermore,

limx1→+∞
∫ +∞
−∞ ∑1

y=0 p(y|x1, x2) log
p(y;F∗X1

FX2 )

p(y;F∗X1
|x2)

dFX2(x2) =
∫ +∞
−∞ limx1→+∞ ∑1

y=0 p(y|x1, x2) log
p(y;F∗X1

FX2 )

p(y;F∗X1
|x2)

dFX2(x2) (27)

= log pY(1; F∗X1
FX2)−

∫ +∞
−∞ log p(1; F∗X1

|x2)dFX2(x2)

< − log Q
(√

P′1 +
√

P′2
)

, (28)

where (27) is due to the Lebesgue dominated convergence theorem along with (23) and (A39) in
Appendix F; (28) is from (22) and the convexity of log Q(α +

√
t) in t when α ≥ 0 (see Appendix G).

Therefore, from (26) and (28),

lim
x1→+∞

ĩλ(x1; F∗X1
|FX2) ≤ −(2− λ) log Q(

√
P′1 +

√
P′2) < +∞. (29)

Using a similar approach, we can also obtain:

lim
x1→−∞

ĩλ(x1; F∗X1
|FX2) ≤ −(2− λ) log Q(

√
P′1 +

√
P′2) < +∞. (30)

From (29) and (30) and the fact that θ1 > 0 (see Lemma 1), the LHS of (19) goes to−∞ when |x1| → +∞.
Since any point of increase of F∗X1

must satisfy (19) with equality and I∗FX2
≥ 0, it is proven that F∗X1

has

a bounded support. Hence, from now on, we assume X1 ∈ [−A1, A2] for some A1, A2 ∈ R (note that
A1 and A2 are determined by the choice of FX2 ).
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Similarly, for a given FX1 , the optimization problem:

I∗FX1
= sup

FX2 :
E[X2

2 ]≤P′2

Iλ(FX1 FX2),

boils down to the following necessary condition:

iλ(x2; F∗X2
|FX1) + θ2(P′2 − x2

2) ≤ I∗FX1
, ∀x2 ∈ R, (31)

iλ(x2; F∗X2
|FX1) + θ2(P′2 − x2

2) = I∗FX1
, if x2 is a point of increase of F∗X2

, (32)

for the optimality of F∗X2
. However, there are two main differences between (32) and (20). First is

the difference between iλ and ĩλ. Second is the fact that we do not claim θ2 to be nonzero, since the
approach used in Lemma 1 cannot be readily applied to θ2. Nonetheless, the boundedness of the
support of F∗X2

can be proven by inspecting the behaviour of the LHS of (32) when |x2| → +∞.
In what follows, i.e., from (33)–(38), we prove that the support of F∗X2

is bounded by showing
that (32) does not hold when |x2| is above a certain threshold. The first term on the LHS of (32) is
iλ(x2; F∗X2

|FX1). From (17) and (21), it can be easily verified that:

lim
x2→+∞

iλ(x2; F∗X2
|FX1) = −λ log pY(1; FX1 F∗X2

) ≤ −λ log Q(
√

P′1 +
√

P′2),

lim
x2→−∞

iλ(x2; F∗X2
|FX1) = −λ log pY(0; FX1 F∗X2

) ≤ −λ log Q(
√

P′1 +
√

P′2) (33)

From (33), if θ2 > 0, the LHS of (32) goes to −∞ with |x2|, which proves that X∗2 is bounded.
For the possible case of θ2 = 0, in order to show that (32) does not hold when |x2| is above a

certain threshold, we rely on the boundedness of X1, i.e., X1 ∈ [−A1, A2]. Then, we prove that
iλ approaches its limit in (33) from below. In other words, there is a real number K such that
iλ(x2; F∗X2

|FX1) < −λ log pY(1; FX1 F∗X2
) when x2 > K, and iλ(x2; F∗X2

|FX1) < −λ log pY(0; FX1 F∗X2
)

when x2 < −K. This establishes the boundedness of X∗2 . In what follows, we only show the former, i.e.,
when x2 → +∞. The latter, i.e., x2 → −∞, follows similarly, and it is omitted for the sake of brevity.

By rewriting iλ, we have:

iλ(x2; F∗X2
|FX1) = −λp(1; FX1 |x2) log pY(1; FX1 F∗X2

)

−
∫ A2

−A1

Hb(Q(x1 + x2))dFX1(x1) + (1− λ) H(Y|X2 = x2)︸ ︷︷ ︸
Hb(

∫
Q(x1+x2)dFX1 (x1))

− λ p(0; FX1 |x2)︸ ︷︷ ︸∫
Q(x1+x2)dFX1 (x1)

log pY(0; FX1 F∗X2
). (34)

It is obvious that the first term on the RHS of (34) approaches −λ log pY(1; FX1 F∗X2
) from below

when x2 → +∞, since p(1; FX1 |x2) ≤ 1. It is also obvious that the remaining terms go to zero when
x2 → +∞. Hence, it is sufficient to show that they approach zero from below, which is proven by
using the following lemma.

Lemma 3. Let X1 be distributed on [−A1, A2] according to FX1(x1). We have:

lim
x2→+∞

∫ A2
−A1

Hb(Q(x1 + x2))dFX1(x1)

Hb

( ∫ A2
−A1

Q(x1 + x2)dFX1(x1)

) = 1. (35)
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Proof of Lemma 3. The proof is provided in Appendix H.

From (35), we can write:

∫ A2

−A1

Hb(Q(x1 + x2))dFX1(x1) = γ(x2)Hb

(∫ A2

−A1

Q(x1 + x2)dFX1(x1)

)
, (36)

where γ(x2) ≤ 1 (due to the concavity of Hb(·)), and γ(x2) → 1 when x2 → +∞ (due to (35)).
Furthermore, from the fact that limx→0

Hb(x)
cx = +∞ (c > 0), we have:

Hb

(∫ A2

−A1

Q(x1 + x2)dFX1(x1)

)
= −η(x2) log pY(0; FX1 F∗X2

)
∫ A2

−A1

Q(x1 + x2)dFX1(x1), (37)

where η(x2) > 0 and η(x2) → +∞ when x2 → +∞. From (36)–(37), the second and the third line
of (34) become:(

1− γ(x2) +
λ

η(x2)
− λ

)(
−η(x2) log pY(0; FX1 F∗X2

)
∫ A2

−A1

Q(x1 + x2)dFX1(x1)

)
︸ ︷︷ ︸

≥0

. (38)

Since γ(x2) → 1 and η(x2) → +∞ as x2 → +∞, there exists a real number K such that
1− γ(x2) +

λ
η(x2)

− λ < 0 when x2 > K. Therefore, the second and the third line of (34) approach zero
from below, which proves that the support of X∗2 is bounded away from +∞. As mentioned before,
a similar argument holds when x2 → −∞. This proves that X∗2 has a bounded support.

Remark 1. We remark here that the order of showing the boundedness of the supports is important. First, for a
given FX2 (not necessarily bounded), it is proven that F∗X1

is bounded. Then, for a given bounded FX1 , it is shown
that F∗X2

is also bounded. Hence, the boundedness of the supports of the optimal input distributions is proven by
contradiction. The order is reversed when λ > 1, and it follows the same steps as in the case of λ ≤ 1. Therefore,
it is omitted.

We next prove the second claim in Proposition 3. We assume that 0 < λ < 1, and a bounded
FX1 is given. We already know that for a given bounded FX1 , F∗X2

has a bounded support denoted by
[−B1, B2]. Therefore,

I∗FX1
= sup

FX2 :
E[X2

2 ]≤P′2

Iλ(FX1 FX2)

I∗FX1
= sup

FX2∈S2 :
E[X2

2 ]≤P′2

Iλ(FX1 FX2), (39)

where S2 denotes the set of all probability distributions on the Borel sets of [−B1, B2]. Let p∗0 =

pY(0; FX1 F∗X2
) denote the probability of the event Y = 0, induced by F∗X2

and the given FX1 . Furthermore,
let P∗2 denote the second moment of X2 under F∗X2

. The set:

F2 =

{
FX2 ∈ S2|

∫ B2

−B1

p(0|x2)dFX2(x2) = p∗0 ,
∫ B2

−B1

x2
2dFX2(x2) = P∗2

}
(40)

is the intersection of S2 with two hyperplanes (note that S2 is convex and compact). We can write:

I∗FX1
= sup

FX2∈F2

Iλ(FX1 FX2). (41)
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Note that having FX2 ∈ F2, the objective function in (41) becomes:

λH(Y)︸ ︷︷ ︸
constant

+ (1− λ)H(Y|X2)− H(Y|X1, X2)︸ ︷︷ ︸
linear in FX2

. (42)

Since the linear part is continuous and F2 is compact (The continuity of the linear part follows
similarly the continuity arguments in Appendix C. Note that this compactness is due to the closedness
of the intersecting hyperplanes in F2, since a closed subset of a compact set is compact [11].
The hyperplanes are closed due to the continuity of x2

2 and p(0|x2) (see (A16)).), the objective function
in (41) attains its maximum at an extreme point of F2, which, by Dubins’ theorem, is a convex
combination of at most three extreme points of S2. Since the extreme points of S2 are the CDFs having
only one point of increase in [−B1, B2], we conclude that given any bounded FX1 , F∗X2

has at most three
mass points.

Now, assume that an arbitrary FX2 is given with at most three mass points denoted by {x2,i}3
i=1.

It is already known that the support of F∗X1
is bounded, which is denoted by [−A1, A2]. Let S1 denote

the set of all probability distributions on the Borel sets of [−A1, A2]. The set:

F1 =

{
FX1 ∈ S1

∣∣∣∣ ∫ A2
−A1

p(0|x1, x2,j)dFX1(x1) = p(0; F∗X1
|x2,j), j ∈ [1 : 3],

∫ A2
−A1

x2
1dFX1(x1) = P′1

}
, (43)

is the intersection of S1 with four hyperplanes. Note that here, since we know θ1 6= 0, the optimal
input attains its maximum power of P′1. In a similar way,

I∗FX2
= sup

FX1∈F1

{
Iλ(FX1 FX2)

}
, (44)

and having FX1 ∈ F1, the objective function in (44) becomes:

Iλ = λH(Y) + (1− λ)
3

∑
i=1

pX2(x2,i)H(Y|X2 = x2,i)︸ ︷︷ ︸
constant

−H(Y|X1, X2)︸ ︷︷ ︸
linear in FX1

(45)

Therefore, given any FX2 with at most three points of increase, F∗X1
has at most five mass points.

When λ = 1, the second term on the RHS of (45) disappears, which means that F1 could be
replaced by: {

FX1 ∈ S1|
∫ A2

−A1

p(0|x1)dFX1(x1) = p̃∗0 ,
∫ A2

−A1

x2
1dFX1(x1) = P′1

}
,

where p̃∗0 = pY(0; F∗X1
FX2) is the probability of the event Y = 0, which is induced by F∗X1

and the given
FX2 . Since the number of intersecting hyperplanes has been reduced to two, it is concluded that F∗X1
has at most three points of increase.

Remark 2. Note that, the order of showing the discreteness of the support sets is also important. First, for a
given bounded FX1 (not necessarily discrete), it is proven that F∗X2

is discrete with at most three mass points.
Then, for a given discrete FX2 with at most three mass points, it is shown that F∗X1

is also discrete with at most
five mass points when λ < 1 and at most three mass points when λ = 1. When λ > 1, the order is reversed,
and it follows the same steps as in the case of λ < 1. Therefore, it is omitted.

Remark 3. If X1,X2 are assumed finite initially, similar results can be obtained by using the iterative
optimization in the previous proof and the approach in Chapter 4, Corollary 3 of [13].
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5. Sum Rate Analysis

In this section, we propose a lower bound on the sum capacity of a MAC in the presence of a
one-bit ADC front end at the receiver, which we conjecture to be tight. The sum capacity is given by:

Csum = sup I(X1, X2; Y|U), (46)

where the supremum is over FU FX1|U FX2|U (|U | ≤ 5), such that E[X2
j ] ≤ Pj, j = 1, 2. We obtain a

lower bound for the above by considering only those input distributions that are zero-mean per any
realization of the auxiliary random variable U, i.e., E[Xj|U = u] = 0, ∀u ∈ U , j = 1, 2. Let P′1 and P′2 be
two arbitrary non-negative real numbers. We have:

sup
FX1 FX2 :
E[X2

j ]≤P′j
E[Xj ]=0, j=1,2

I(X1, X2; Y) ≤ sup
FX̃ :

E[X̃2]≤P′1+P′2

I(X̃; Y) (47)

= 1− Hb

(
Q
(√

P′1 + P′2
))

(48)

where in (47), X̃ , X1 + X2, pY|X̃(0|x̃) = Q(x̃); (48) follows from [4] for the point-to-point channel.
Therefore, when E[Xj|U = u] = 0, ∀u ∈ U , j = 1, 2, we can write:

I(X1, X2; Y|U) =
5

∑
i=1

pU(ui)I(X1, X2; Y|U = ui)

≤ 1−
5

∑
i=1

pU(ui)Hb

(
Q
(√

E[X2
1 |U = ui] +E[X2

2 |U = ui]

))
≤ 1− Hb

(
Q
(√

E[X2
1 ] +E[X

2
2 ]

))
(49)

≤ 1− Hb

(
Q
(√

P1 + P2

))
, (50)

where (49) is due to the fact that Hb (Q(
√

x + y)) is a convex function of (x, y), and (50) follows from
E[X2

j ] ≤ Pj, j = 1, 2.
The upper bound in (50) can be achieved by time division with power control as follows.

Let U = {0, 1} and pU(0) = 1− pU(1) = P1
P1+P2

. Furthermore, let FX1|U(x|1) = FX2|U(x|0) = s(x),
where s(·) is the unit step function, and:

FX1|U(x|0) = FX2|U(x|1) = 1
2

s(x +
√

P1 + P2) +
1
2

s(x−
√

P1 + P2).

With this choice of FU FX1|U FX2|U , the upper bound in (50) is achieved. Therefore,

Csum ≥ 1− Hb

(
Q
(√

P1 + P2

))
. (51)

A numerical evaluation of (46) is carried out as follows (the codes that are used for
the numerical simulations are available at https://www.dropbox.com/sh/ndxkjt6h5a0yktu/
AAAmfHkuPxe8rMNV1KzFVRgNa?dl=0). Although E[X2

j ] is upper bounded by Pj (j = 1, 2),

the value of E[X2
j |U = u] (∀u ∈ U ) has no upper bound and could be any non-negative

real number. However, in our numerical analysis, we further restrict our attention to the
case E[X2

j |U = u] ≤ 20Pj, ∀u ∈ U , j = 1, 2. Obviously, as this upper bound tends to infinity,
the approximation becomes more accurate (This further bounding of the conditional second moments
is justified by the fact that the sum capacity is not greater than one, which is due to the one-bit

https://www.dropbox.com/sh/ndxkjt6h5a0yktu/AAAmfHkuPxe8rMNV1KzFVRgNa?dl=0
https://www.dropbox.com/sh/ndxkjt6h5a0yktu/AAAmfHkuPxe8rMNV1KzFVRgNa?dl=0
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quantization at the receiver. As a result, I(X1, X2; Y|U = u) increases at most sublinearly with
E[X2

j |U = u], j = 1, 2, while pU(u) needs to decrease at least linearly to satisfy the average power

constraints. Hence, the product pU(u)I(X1, X2; Y|U = u) decreases with E[X2
j |U = u] when

E[X2
j |U = u] is above a threshold.). Each of the intervals [0, 20P1] and [0, 20P2] are divided into

201 points uniformly, which results in the discrete intervals P1
10 [0 : 200] and P2

10 [0 : 200], respectively.
Afterwards, for any pair (α, β) ∈ P1

10 [0 : 200] × P2
10 [0 : 200], the following is carried out for input

distributions with at most three mass points.

max
FX1 FX2 :

E[X2
1 ]≤α,E[X2

2 ]≤β

I(X1, X2; Y) (52)

The results are stored in a 201× 201 matrix accordingly. In the above optimization, the MATLAB
function fmincon is used with three different initial values, and the maximum of these three
experiments is chosen. Then, the problem boils down to finding proper gains, i.e., the mass probabilities
of U, that maximize I(X1, X2; Y|U) and satisfy the average power constraints E[X2

j ] ≤ Pj. This is done
via a linear program, which can be efficiently solved by the linprog function in MATLAB. Several cases
were considered, such as (P1, P2) = (1, 1), (P1, P2) = (1, 2), (P1, P2) = (3, 1), etc. In all these cases,
the numerical evaluation of (46) leads to the same value as the lower bound in (51). Since the problem
is not convex, it is not known whether the numerical results are the global optimum solutions; hence,
we leave it as a conjecture that the sum capacity can be achieved by time division with power control.

6. Conclusions

We have studied the capacity region of a two-transmitter Gaussian MAC under average input
power constraints and one-bit ADC front end at the receiver. We have derived an upper bound on
the cardinality of this auxiliary variable, and proved that the distributions that achieve the boundary
points of the capacity region are finite and discrete. Finally, a lower bound is proposed on the sum
capacity of this MAC that is achieved by time division with power control. Through numerical analysis,
this lower bound is shown to be tight.
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Appendix A

The capacity region of the discrete memoryless (DM) MAC with input cost constraints has been
addressed in Exercise 4.8 of [10]. If the input alphabets are not discrete, the capacity region is still the
same because: (1) the converse remains the same if the inputs are from a continuous alphabet; (2) the
region is achievable by coded time sharing and the discretization procedure (see Remark 3.8 in [10]).
Therefore, it is sufficient to show the cardinality bound |U | ≤ 5.

Let P be the set of all product distributions (i.e., of the form FX1(x1)FX2(x2)) on R2. Let g : P →
R5 be a vector-valued mapping defined element-wise as:

g1(FX1|U(·|u)FX2|U(·|u)) = I(X1; Y|X2, U = u),

g2(FX1|U(·|u)FX2|U(·|u)) = I(X2; Y|X1, U = u),

g3(FX1|U(·|u)FX2|U(·|u)) = I(X1, X2; Y|U = u),

g4(FX1|U(·|u)FX2|U(·|u)) = E[X2
1 |U = u],

g5(FX1|U(·|u)FX2|U(·|u)) = E[X2
2 |U = u]. (A1)

Let G ⊂ R5 be the image of P under the mapping g (i.e., G = g(P)). Given an arbitrary
(U, X1, X2) ∼ FU FX1|U FX2|U , we obtain the vector r as:

r1 = I(X1; Y|X2, U) =
∫
U

I(X1; Y|X2, U = u)dFU(u),

r2 = I(X2; Y|X1, U) =
∫
U

I(X2; Y|X1, U = u)dFU(u),

r3 = I(X1, X2; Y|U) =
∫
U

I(X1, X2; Y|U = u)dFU(u),

r4 = E[X2
1 ] =

∫
U
E[X2

1 |U = u]dFU(u),

r5 = E[X2
2 ] =

∫
U
E[X2

2 |U = u]dFU(u).

Therefore, r is in the convex hull of G ⊂ R5. By Carathéodory’s theorem [9], r can be written as a
convex combination of six (= 5 + 1) or fewer points in G , which states that it is sufficient to consider
|U | ≤ 6. Since P is a connected set (P is the product of two connected sets; therefore, it is connected.
Each of the sets in this product is connected because of being a convex vector space.) and the mapping
g is continuous (this is a direct result of the continuity of the channel transition probability), G is a
connected subset of R5. Therefore, the connectedness of G refines the cardinality of U to |U | ≤ 5.

It is also important to note that for the boundary points of C (P1, P2) that are not sum-rate
optimal, it is sufficient to have |U | ≤ 4. The proof is as follows. Any point on the boundary of the
capacity region that does not maximize R1 + R2 is either of the form (I(X1; Y|X2, U), I(X2; Y|U)) or
(I(X1; Y|U), I(X2; Y|X1, U)) for some FU FX1|U FX2|U that satisfies E[X2

j ] ≤ Pj, j = 1, 2. In other words,
it is one of the corner points of the corresponding pentagon in (4). As in the proof of Proposition 1,
define the mapping g : P → R4, where g1 and g2 are the coordinates of this boundary point
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conditioned on U = u, and g3, g4 are the same as g4 and g5 in (A1), respectively. The sufficiency of
|U | ≤ 4 in this case follows similarly.

Appendix B

Since |U | ≤ 5, we assume U = {0, 1, 2, 3, 4} without loss of generality, since what matters in the
evaluation of the capacity region is the mass probability of the auxiliary random variable U, not its
actual values.

In order to show the compactness of Ω, we adopt a general form of the approach in [12].
First, we show that Ω is tight (a set of probability distributions Θ defined on Rk, i.e., the set of

CDFs FX1,X2,...,Xk , is said to be tight, if for every ε > 0, there is a compact set Kε ⊂ Rk such that [14]:

Pr
{
(X1, X2, . . . , Xk) ∈ Rk\Kε

}
< ε, ∀FX1,X2,...,Xk ∈ Θ.

Choose Tj, j = 1, 2, such that Tj >

√
2Pj
ε . Then, from Chebyshev’s inequality,

Pr
{
|Xj| > Tj

}
≤

Pj

T2
j
<

ε

2
, j = 1, 2. (A2)

Let Kε = [0, 4]× [−T1, T1]× [−T2, T2] ⊂ R3. It is obvious that Kε is a closed and bounded subset of R3

and, therefore, compact. With this choice of Kε, we have:

Pr
{
(U, X1, X2) ∈ R3\Kε

}
≤ Pr{U /∈ [0, 4]}+ Pr{X1 /∈ [−T1, T1]}+ Pr{X2 /∈ [−T2, T2]}

< 0 +
ε

2
+

ε

2
= ε, (A3)

where (A3) is due to (A2). Hence, Ω is tight.
From Prokhorov’s theorem [14] (p. 318), a set of probability distributions is tight if and only if

it is relatively sequentially compact (a subset of topological space is relatively compact if its closure
is compact). This means that for every sequence of CDFs {Fn} in Ω, there exists a subsequence
{Fnk} that is weakly convergent (the weak convergence of {Fn} to F (also shown as Fn(x) w→ F(x)) is
equivalent to:

lim
n→∞

∫
R

ψ(x)dFn(x) =
∫
R

ψ(x)dF(x), (A4)

for all continuous and bounded functions ψ(·) on R. Note that Fn(x) w→ F(x) if and only if
dL(Fn, F) → 0.) to a CDF F0, which is not necessarily in Ω. If we can show that this F0 is also
an element of Ω, then the proof is complete, since we have shown that Ω is sequentially compact and,
therefore, compact (Compactness and sequential compactness are equivalent in metric spaces. Note
that Ω is a metric space with Lévy distance.).

Assume a sequence of distributions {Fn(·, ·, ·)} in Ω that converges weakly to F0(·, ·, ·). In order
to show that this limiting distribution is also in Ω, we need to show that both the average power
constraints and the Markov chain (X1 −U − X2) are preserved under F0. The preservation of the
second moment follows similarly to the argument in (Appendix I, [12]). In other words, since x2 is
continuous and bounded from below, from Theorem 4.4.4 in [15]:∫

x2
j d3F0(u, x1, x2) ≤ lim inf

n→∞

∫
x2

j d3Fn(u, x1, x2)

≤ Pj, j = 1, 2, (A5)

Therefore, the second moments are preserved under the limiting distribution F0.
For the preservation of the Markov chain X1 −U − X2, we need the following proposition.
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Proposition A1. Assume a sequence of distributions {Fn(·, ·)} over the pair of random variables (X, Y) that
converges weakly to F0(·, ·). Furthermore, assume that Y has a finite support, i.e., Y = {1, 2, . . . , |Y|}.
Then, the sequence of conditional distributions (conditioned on Y) converges weakly to the limiting conditional
distribution (conditioned on Y), i.e.,

Fn(·|y)
w→ F0(·|y), ∀y ∈ Y , p0(y) > 0. (A6)

Proof of Proposition A1. The proof is by contradiction. If (A6) is not true, then there exists y′ ∈ Y ,

such that p0(y′) > 0 and Fn(·|y′)��
w→F0(·|y′). This means, from the definition of weak convergence, that

there exists a bounded continuous function of x, denoted by gy′(x), such that:∫
gy′(x)dFn(x|y′)��→

∫
gy′(x)dF0(x|y′). (A7)

Let f (x, y) be any bounded continuous function that satisfies:

f (x, y) =

{
0 y ∈ Y , y 6= y′

gy′(x) y = y′
. (A8)

With this choice of f (x, y), we have:∫
f (x, y)d2Fn(x, y)��→

∫
f (x, y)d2F0(x, y), (A9)

which violates the assumption of the weak convergence of Fn(·, ·) to F0(·, ·). Therefore, (A6) holds.

Since {Fn(·, ·, ·)} in Ω converges weakly to F0(·, ·, ·) and U is finite, from Proposition A1, we have:

Fn(·, ·|u)
w→ F0(·, ·|u), ∀u ∈ U , (A10)

where it is obvious that the arguments are x1 and x2. Since Fn ∈ Ω, we have Fn(x1, x2|u) =

Fn(x1|u)Fn(x2|u) ∀u ∈ U . Furthermore, since the convergence of the joint distribution implies the
convergence of the marginals, we have (Theorem 2.7, [16,17]),

F0(x1, x2|u) = F0(x1|u)F0(x2|u) ∀u ∈ U , (A11)

which states that under the limiting distribution F0, the Markov chain X1 − U − X2 is preserved
(Alternatively, this could be proven by the lower-semicontinuity of the mutual information as follow:

IF0(X1; X2|U = u) ≤ lim inf
n→∞

IFn(X1; X2|U = u) (A12)

= 0, ∀u ∈ U , (A13)

where IF denotes the mutual information under distribution F. The last equality is from the conditional
independence of X1 and X2 given U = u under Fn. Therefore, IF0(X1; X2|U = u) = 0, ∀u ∈ U , which
is equivalent to (A11).). This completes the proof of the compactness of Ω.

Appendix C

Appendix C.1. Concavity

When 0 < λ ≤ 1, we have:

Iλ(FX1 FX2) = λH(Y) + (1− λ)H(Y|X2)− H(Y|X1, X2). (A14)
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For a given FX1 , H(Y) is a concave function of FX2 , while H(Y|X2) and H(Y|X1, X2) are linear
in FX2 . Therefore, Iλ is a concave function of FX2 . For a given FX2 , H(Y) and H(Y|X2) are concave
functions of FX1 , while H(Y|X1, X2) is linear in FX1 . Since (1− λ) ≥ 0, Iλ is a concave function of FX1 .
The same reasoning applies to the case λ > 1.

Appendix C.2. Continuity

When λ ≤ 1, the continuity of the three terms on the RHS of (A14) is investigated. Let {FX2,n} be
a sequence of distributions, which is weakly convergent to FX2 . For a given FX1 , we have:

lim
x2→x0

2

p(y; FX1 |x2) = lim
x2→x0

2

∫
Q(x1 + x2)dFX1(x1)

=
∫

lim
x2→x0

2

Q(x1 + x2)dFX1(x1) (A15)

= p(y; FX1 |x
0
2), (A16)

where (A15) is due to the fact that the Q function can be dominated by one, which is an absolutely
integrable function over FX1 . Therefore, p(y; FX1 |x2) is continuous in x2, and combined with the weak
convergence of {FX2,n}, we can write:

lim
n→∞

p(y; FX1 FX2,n) = lim
n→∞

∫
p(y; FX1 |x2)dFX2,n(x2)

=
∫

p(y; FX1 |x2)dFX2(x2)

= p(y; FX1 FX2).

This allows us to write:

lim
n→∞

−
1

∑
y=0

p(y; FX1 FX2,n) log p(y; FX1 FX2,n) = −
1

∑
y=0

p(y; FX1 FX2) log p(y; FX1 FX2),

which proves the continuity of H(Y) in FX2 . H(Y|X2 = x2) is a bounded (∈ [0, 1]) continuous
function of x2, since it is a continuous function of p(y; FX1 |x2), and the latter is continuous in x2

(see (A16)). Therefore,

lim
n→∞

∫
H(Y|X2 = x2)dFX2,n(x2) =

∫
H(Y|X2 = x2)dFX2(x2),

which proves the continuity of H(Y|X2) in FX2 . In a similar way, it can be verified that∫
H(Y|X1 = x1, X2 = x2)dFX1(x1) is a bounded and continuous function of x2, which guarantees the

continuity of H(Y|X1, X2) in FX2 , since:

H(Y|X1, X2) =
∫ (∫

H(Y|X1 = x1, X2 = x2)dFX1(x1)

)
dFX2(x2) (A17)

Therefore, for a given FX1 , Iλ is a continuous function of FX2 . Exchanging the roles of FX1 and FX2 ,
also the case λ > 1 can be addressed similarly, so they are omitted for the sake of brevity.

Appendix C.3. Weak Differentiability

For a given FX1 , the weak derivative of Iλ at F0
X2

is given by:

I′λ(FX1 FX2)|F0
X2

= lim
β→0+

Iλ(FX1((1− β)F0
X2

+ βFX2))− Iλ(FX1 F0
X2
)

β
, (A18)
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if the limit exists. It can be verified that:

I′λ(FX1 FX2)|F0
X2

= lim
β→0+

∫
iλ(x2; (1− β)F0

X2
+ βFX2 |FX1)d((1− β)F0

X2
(x2) + βFX2(x2))−

∫
iλ(x2; F0

X2
|FX1)dF0

X2
(x2)

β

=
∫

iλ(x2; F0
X2
|FX1)dFX2(x2)−

∫
iλ(x2; F0

X2
|FX1)dF0

X2
(x2)

=
∫

iλ(x2; F0
X2
|FX1)dFX2(x2)− Iλ(FX1 F0

X2
),

where iλ has been defined in (17). In a similar way, for a given FX2 , the weak derivative of Iλ at F0
X1

is:

I′λ(FX1 FX2)|F0
X1

=
∫

ĩλ(x1; F0
X1
|FX2)dFX1(x1)− Iλ(F0

X1
FX2), (A19)

where ĩλ has been defined in (16). The case λ > 1 can be addressed similarly.

Appendix D

We have:

sup
FX1 :

E[X2
1 ]≤P′1

Iλ(FX1 FX2) ≤ sup
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

Iλ(FX1 FX2)

≤ sup
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

I(X1, X2; Y) (A20)

≤ sup
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

H(Y)− inf
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

H(Y|X1, X2)

= 1− inf
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

∫ ∫
Hb (Q(x1 + x2)) dFX1(x1)dFX2(x2)

= 1− inf
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

∫ ∫
Hb

(
Q
(√

x2
1 +

√
x2

2

))
dFX1(x1)dFX2(x2) (A21)

≤ 1− inf
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

∫ ∫
Q
(√

x2
1 +

√
x2

2

)
dFX1(x1)dFX2(x2) (A22)

= 1−Q
(√

P′1 +
√

P′2

)
(A23)

< 1, (A24)

where (A20) is from the non-negativity of mutual information and the assumption that 0 < λ ≤ 1;
(A21) is justified since the Q function is monotonically decreasing and the sign of the inputs does
not affect the average power constraints; X1 and X2 can be assumed non-negative (or alternatively

non-positive) without loss of optimality; in (A22), we use the fact that Q
(√

x2
1 +

√
x2

2

)
≤ 1

2 , and for

t ∈ [0, 1
2 ], Hb(t) ≥ t; (A23) is based on the convexity and monotonicity of the function Q(

√
u +
√

v) in
(u, v), which is shown in Appendix G. Therefore, the LHS of (13) is strictly less than one.
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Since X2 has a finite second moment (E[X2
2 ] ≤ P′2), from Chebyshev’s inequality, we have:

P(|X2| ≥ M) ≤ P′2
M2 , ∀M > 0. (A25)

Fix M > 0, and consider X1 ∼ FX1(x1) =
1
2 [s(x1 + 2M) + s(x1 − 2M)]. By this choice of FX1 , we get:

Iλ(FX1 FX2) = I(X1; Y|X2) + λI(X2; Y)

≥ I(X1; Y|X2) (A26)

=
∫ +∞

−∞
I(X1; Y|X2 = x2)dFX2(x2)

≥
∫ +M

−M
I(X1; Y|X2 = x2)dFX2(x2)

≥ inf
FX2

∫ +M

−M
H(Y|X2 = x2)dFX2(x2)− sup

FX2

∫ +M

−M
H(Y|X1, X2 = x2)dFX2(x2)

≥
(

1− P′2
M2

)
Hb

(
1
2
− 1

2
(Q(3M) + Q(M))

)
− Hb (Q(2M)) , (A27)

where (A27) is due to (A25) and the fact that H(Y|X2 = x2) = Hb(
1
2 Q(2M + x2) +

1
2 Q(−2M + x2))

is minimized over [−M, M] at x2 = M (or, alternatively at x2 = −M) and H(Y|X1, X2 = x2) =
1
2 Hb(Q(2M + x2)) +

1
2 Hb(Q(−2M + x2)) is maximized at x2 = 0. (A27) shows that Iλ (≤ 1) can

become arbitrarily close to one given that M is large enough. Hence, its supremum over all distributions
FX1 is one. This means that (13) cannot hold, and θ1 6= 0.

Appendix E. Justification of (18), (19) and (20)

Let X be a vector space and Z be a real-valued function defined on a convex domain D ⊂ X.
Suppose that x∗ maximizes Z on D and that Z is Gateaux differentiable (weakly differentiable) at x∗.
Then, from (Theorem 2, p. 178, [18]),

Z′(x)|x∗ ≤ 0, (A28)

where Z′(x)|x∗ is the weak derivative of Z at x∗.
From (A19), we have the weak derivative of Iλ at F∗X1

as:

I′λ(FX1 FX2)|F∗X1
=
∫

ĩλ(x1; F∗X1
|FX2)dFX1(x1)− Iλ(F∗X1

FX2). (A29)

Now, the derivation of (18) is immediate by inspecting that the weak derivative of the objective of (11)
at F∗X1

is given by:

I′λ(FX1 FX2)|F∗X1
− θ1

(∫
x2

1dFX1(x1)−
∫

x2
1dF∗X1

(x1)

)
=
∫

ĩλ(x1; F∗X1
|FX2)dFX1(x1)− Iλ(F∗X1

FX2)

− θ1

(∫
x2

1dFX1(x1)−
∫

x2
1dF∗X1

(x1)

)
. (A30)

Letting (A30) be lower than or equal to zero (as in (A28)) results in (18).
The equivalence of (18) to (19) and (20) follows similarly to the proof of Corollary 1 in (p. 210, [19]).
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Appendix F

Equation (21) is obtained as follows.∣∣∣∣D(p(y|x1, x2)||p(y; FX1 FX2)
)∣∣∣∣ =

∣∣∣∣∣ 1

∑
y=0

p(y|x1, x2) log
p(y|x1, x2)

p(y; FX1 FX2)

∣∣∣∣∣
≤
∣∣∣∣H(Y|X1 = x1, X2 = x2)

∣∣∣∣+
∣∣∣∣∣ 1

∑
y=0

p(y|x1, x2) log p(y; FX1 FX2)

∣∣∣∣∣
≤ 1 +

∣∣∣∣∣ 1

∑
y=0

log p(y; FX1 FX2)

∣∣∣∣∣ (A31)

= 1−
1

∑
y=0

log p(y; FX1 FX2)

≤ 1− 2 min
{

log pY(0; FX1 FX2), log pY(1; FX1 FX2)

}
≤ 1− 2 log Q(

√
P′1 +

√
P′2) (A32)

< ∞,

where (A31) is due to the fact that the binary entropy function is upper bounded by one. (A32) is
justified as follows.

min
{

pY(0; FX1 FX2), pY(1; FX1 FX2)

}
≥ inf

FX1 FX2 :
E[X2

j ]≤P′j

min
{

pY(0; FX1 FX2), pY(1; FX1 FX2)

}

= inf
FX1 FX2 :
E[X2

j ]≤P′j

pY(0; FX1 FX2)

= inf
FX1 FX2 :
E[X2

j ]≤P′j

∫ ∫
Q(x1 + x2)dFX1(x1)dFX2(x2)

= inf
FX1 FX2 :
E[X2

j ]≤P′j

∫ ∫
Q
(√

x2
1 +

√
x2

2

)
dFX1(x1)dFX2(x2) (A33)

≥ Q
(√

P′1 +
√

P′2

)
, (A34)

where (A34) is based on the convexity and monotonicity of the function Q(
√

u +
√

v), which is shown
in Appendix G.

Equation (22) is obtained as follows.

p(y; FX1 |x2) ≥ min
{

p(0; FX1 |x2), p(1; FX1 |x2)

}
≥
∫

Q (|x1|+ |x2|) dFX1(x1)

=
∫

Q
(√

x2
1 + |x2|

)
dFX1(x1)

≥ Q
(√

P′1 + |x2|
)

, (A35)

where (A35) is due to the convexity of Q(α +
√

x) in x for α ≥ 0.
Equation (23) is obtained as follows.
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∣∣∣∣∑1
y=0 p(y|x1, x2) log

p(y;FX1 FX2 )

p(y;FX1 |x2)

∣∣∣∣ ≤ −∑1
y=0 p(y|x1, x2) log p(y; FX1 |x2)−∑1

y=0 p(y|x1, x2) log p(y; FX1 FX2)

≤ −
1

∑
y=0

log p(y; FX1 |x2)−
1

∑
y=0

log p(y; FX1 FX2) (A36)

≤ −2 log Q
(√

P′1 +
√

P′2

)
− 2 log Q

(√
P′1 + |x2|

)
, (A37)

where (A36) is from p(y|x1, x2) ≤ 1; and (A37) is from (A35) and (A34).
Note that (A37) is integrable with respect to FX2 due to the concavity of − log Q(α +

√
x) in x for

α ≥ 0 as shown in Appendix G. In other words,

∫ +∞
−∞

(
−2 log Q

(√
P′1 +

√
P′2
)
− 2 log Q

(√
P′1 + |x2|

))
dFX2(x2) < −4 log Q

(√
P′1 +

√
P′2
)

(A38)

< +∞. (A39)

Appendix G. Two Convex Functions

Let f (x) = log Q(a +
√

x) for x, a ≥ 0. We have,

f ′(x) = − e−
(a+
√

x)2
2

2
√

2πxQ(a +
√

x)
,

and:

f ′′(x) =
e−

(a+
√

x)2
2

4x
√

2πQ2(a +
√

x)

(
(a +

√
x +

1√
x
)Q(a +

√
x)− φ(a +

√
x)
)

, (A40)

where φ(x) = 1√
2π

e−
x2
2 . Note that:

(1 + at + t2)Q(a + t) + aφ(a + t) >
(

1 + (a + t)2
)

Q(a + t) (A41)

> (a + t)φ(a + t), ∀a, t > 0, (A42)

where (A41) and (A42) are, respectively, due to φ(x) > xQ(x) and (1 + x2)Q(x) > xφ(x) (x > 0).
Therefore,

(a +
√

x +
1√
x
)Q(a +

√
x) > φ(a +

√
x),

which makes the second derivative in (A40) positive and proves the (strict) convexity of f (x).
Let f (u, v) = Q(

√
u +
√

v) for u, v ≥ 0. By simple differentiation, the Hessian matrix of f is:

H =
e−

(
√

u+
√

v)2
2

√
2π

 1
2u
√

u +
√

u+
√

v
4u

√
u+
√

v
4
√

u
√

v√
u+
√

v
4
√

u
√

v
1

2v
√

v +
√

u+
√

v
4v

 . (A43)

It can be verified that det(H) > 0 and trace(H) > 0. Therefore, both eigenvalues of H are positive,
which makes the matrix positive definite. Hence, Q(

√
u +
√

v) is (strictly) convex in (u, v).

Appendix H

Let A , max{A1, A2}.
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0

0

1

1
2

Hb(·)

Hb (Q(x2 +A))

Hb (Q(x2 −A))

A

C

B

Q(x2 −A)

C = βHb (Q(x2 +A)) + (1− β)Hb (Q(x2 −A))

Q(x2 +A) βQ(x2 +A) + (1− β)Q(x2 −A)

A = Hb

(

A
∫

−A

Q(x2 + x1)dFX1
(x1)

)

B =
A
∫

−A

Hb (Q(x2 + x1)) dFX1
(x1)

Figure A1. The figure depicting (A46) and (A48). Note that in the statement of Lemma 3, x2 → +∞.
Hence, we have assumed x2 > A in the figure.

It is obvious that:

Q(x2 + A) ≤
∫ A

−A
Q(x1 + x2)dFX1(x1) ≤ Q(x2 − A). (A44)

Therefore, we can write:∫ A

−A
Q(x1 + x2)dFX1(x1) = βQ(x2 + A) + (1− β)Q(x2 − A), (A45)

for some β ∈ [0, 1]. Note that β is a function of x2. Furthermore, due to the concavity of Hb(·), we
have:

Hb

( ∫ A

−A
Q(x1 + x2)dFX1(x1)

)
≥
∫ A

−A
Hb(Q(x1 + x2))dFX1(x1). (A46)

From the fact that:

Hb(x) ≥ Hb(p)− Hb(a)
p− a

(x− a) + Hb(a), ∀x ∈ [a, p], ∀a, p ∈ [0, 1](a < p), (A47)

we can also write:

∫ A
−A Hb(Q(x1 + x2))dFX1(x1) ≥ Hb(Q(x2−A))−Hb(Q(x2+A))

Q(x2−A)−Q(x2+A)

(∫ A
−A Q(x1 + x2)dFX1(x1)−Q(x2 + A)

)
+Hb(Q(x2 + A))

= βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A)), (A48)

where (A45) and (A47) have been used in (A48). (A46) and (A48) are depicted in Figure A1.
From (A45) and (A48), we have:

βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

) ≤
∫ A
−A Hb(Q(x1 + x2))dFX1(x1)

Hb

( ∫ A
−A Q(x1 + x2)dFX1(x1)

) ≤ 1. (A49)
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Let:

β∗ , arg min
β

βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

) . (A50)

This minimizer satisfies the following equality:

d
dβ

 βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

)
 ∣∣∣∣

β=β∗
= 0. (A51)

Therefore, we can write:

βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

) ≥ β∗Hb(Q(x2 + A)) + (1− β∗)Hb(Q(x2 − A))

Hb

(
β∗Q(x2 + A) + (1− β∗)Q(x2 − A)

) (A52)

=

Hb(Q(x2−A))−Hb(Q(x2+A))
Q(x2−A)−Q(x2+A)

H′b

(
β∗Q(x2 + A) + (1− β∗)Q(x2 − A)

) (A53)

≥
Hb(Q(x2−A))−Hb(Q(x2+A))

Q(x2−A)−Q(x2+A)

H′b(Q(x2 + A))
, (A54)

where (A52) is from the definition in (A50); (A53) is from the expansion of (A51), and H′b(t) = log( 1−t
t ) is

the derivative of the binary entropy function; (A54) is due to the fact that H′b(t) is a decreasing function.
Applying L’Hôspital’s rule multiple times, we obtain:

limx2→+∞

Hb(Q(x2−A))−Hb(Q(x2+A))

Q(x2−A)−Q(x2+A)

H′b(Q(x2+A))
= limx2→+∞

Hb(Q(x2−A))

(
1− Hb(Q(x2+A))

Hb(Q(x2−A))

)
Q(x2−A)

(
1− Q(x2+A)

Q(x2−A)

)
log( 1−Q(x2+A)

Q(x2+A)
)

= limx2→+∞− Hb(Q(x2−A))
Q(x2−A) log(Q(x2+A))

= limx2→+∞
e−

(x2−A)2
2 log(Q(x2−A))

e−
(x2−A)2

2 log(Q(x2+A))+
Q(x2−A)
Q(x2+A)

e−
(x2+A)2

2

= limx2→+∞
log(Q(x2−A))

log(Q(x2+A))+1

= limx2→+∞
Q(x2+A)eAx2

Q(x2−A)e−Ax2

= 1

(A55)

From (A49), (A54) and (A55), (35) is proven. Note that the boundedness of X1 is crucial in the
proof. In other words, the fact that Q(x2 − A)→ 0 as x2 → +∞ is the very result of A < +∞.
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