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Abstract: A damage degree identification method based on high-order difference mathematical
morphology gradient spectrum entropy (HMGSEDI) is proposed in this paper to solve the problem
that fault signal of rolling bearings are weak and difficult to be quantitatively measured. In the
HMGSEDI method, on the basis of mathematical morphology gradient spectrum and spectrum
entropy, the changing scale influence of structure elements to damage degree identification is
thoroughly analyzed to determine its optimal scale range. The high-order difference mathematical
morphology gradient spectrum entropy is then defined in order to quantitatively describe the
fault damage degree of bearing. The discrimination concept of fault damage degree is defined
to quantitatively describe the difference between the high-order differential mathematical entropy
and the general mathematical morphology entropy in order to propose a fault damage degree
identification method. The vibration signal of motors under no-load and load states are used to
testify the effectiveness of the proposed HMGSEDI method. The experiment shows that high-order
differential mathematical morphology entropy can more effectively identify the fault damage degree
of bearings and the identification accuracy of fault damage degree can be greatly improved. Therefore,
the HMGSEDI method is an effective quantitative fault damage degree identification method, and
provides a new way to identify fault damage degree and fault prediction of rotating machinery.

Keywords: high-order differential mathematical morphology entropy; fault damage degree;
quantitative identification; discrimination; rolling bearing

1. Introduction

Rolling bearing is one of the most important components of rotating machinery [1]. It shows
efficacy, even in in prolonged unsuitable conditions. Fatigue spalling, pitting corrosion, and severe
plastic deformation often occur in rolling bearing due to the combined effects of load, transmission,
and impact [2]. At the same time, this wear causes machine breakage, outage, and other accidents.
The operation of the rolling bearing directly determines whether the machine is safe, efficient, and
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reliable. Therefore, it is necessary to monitor the operation state, and analyze and diagnose the faults
of rolling bearings.

In recent years, a variety of fault diagnosis methods have been effectively proposed to detect
the types and degrees of damage to motor bearings in order to keep the machinery performing at
its best and avoid abnormal event progression [3–6]. These diagnosis methods mainly include fault
mechanism analysis, fault feature extraction, and fault damage degree identification using appropriate
signal analysis methods. Most of these methods are qualitative analysis methods that determine
whether a fault exists, and its type. There is little research on quantitative fault diagnosis, which
determines the degree of fault damage and remaining life. Faults development evolves from a tiny
undoing to a severe one. Therefore, quantitative fault diagnosis is an effective method to describe the
fault evolution process. The existing quantitative fault diagnosis methods are finite element model
method, least square method, modal expansion method, harmonic theory, information entropy and
support vector machines, among others [7–10].

In recent years, the quantitative analysis of fault damage degree and fault diagnosis have
attracted a wide range of researchers. Jalan et al. [11] proposed a fault diagnosis method based
on a model for rotor system misalignment and mass unbalance, which used the residual generation
technique and vibration signal to obtain fault state feature and fault location. Sudhakar et al. [12]
used the equal force and vibration minimization method to diagnose the position and severity of
unbalanced fault of the rotor system in order to solve the less vibration measurement value problem
under multi-fault parameters. Lal et al. [13] developed an identification algorithm in order to
estimate parameters of multiple faults in a turbine-generator system model based on forced response
information. The algorithm was tested against measurement noise and found to be robust. Cui et al. [14]
established a nonlinear vibration model for fault severity assessment of rolling element bearings, and
proposed a quantitative fault diagnosis method. For difficult diagnostic problems focused on bearing
damage size, Zhao et al. [15] proposed a quantitative diagnosis method based on empirical mode
decomposition (EMD) and approximate entropy for the fault severity of rolling bearing. Ju et al. [16]
proposed a quantitative diagnosis method of bearing faults based on the support vector regression
method. Mathematical morphology is a nonlinear signal processing tool that can decompose a complex
signal into a physical one, detaching it from its background while retaining its main features. Its main
advantages are simple calculation and fast parallel computing. It includes a Boolean operation, and
addition and subtraction without multiplication, and offers easy implementation using hardware.
Therefore, this method has been widely used in recent years in the field of signal processing and fault
diagnosis. Zhang et al. [17] proposed a multi-resolution morphological gradient method to efficiently
extract fault-generated transients and accurately identify fault locations in a power transmission line
system. Zhang et al. [18] proposed a multiscale morphology analysis method to extract impulsive
features from signals with strong background noise. Luo et al. [19] proposed a new method based on
chirplet path pursuit and multiscale morphology analysis for gear fault detection under time-varying
rotating speed. Li et al. [20] proposed a continuous-scale mathematical morphology scheme by
interpolation and re-sampling to improve scale resolution for more reliable fault signature extraction.
Chen et al. [21] proposed a pattern spectrum, obtained from multiscale mathematical morphology,
as a feature extraction index. Wang et al. [22] proposed a multiscale morphology analysis method
of acoustic emission signal and quantitative diagnosis for bearing fault. Gong et al. [23] proposed
an optimized multiscale morphology method based on conventional multiscale morphology and
iterative morphology to effectively suppress noise and extract the impulsive features found in the
vibration signals of faulty rolling element bearings. Li et al. [24] proposed a novel signal processing
scheme, bandwidth empirical mode decomposition, and adaptive multiscale morphological analysis
for early fault diagnosis of rolling bearings. Deng et al. [25] proposed a novel method called adaptive
multiscale AVG-Hat morphology filter to detect and extract the fault features hidden in the heavy
noise of the vibration signal. Xu et al. [26] proposed a fault diagnosis method for rotating machinery
based on local mean decomposition morphological filtering and using a least square support vector
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machine. Liu et al. [27] proposed a performance degradation feature extraction method based on
mathematical morphological gradient spectrum entropy. Qu et al. [28] investigated the influence
of deformation-band damage zone on reservoir performance in the presence of different fault core
transmissibility multipliers. Chen et al. [29] proposed a novel model—deep inception nets with
atrous convolution—to extract common features shared by both kinds of data, because the differences
between the artificial one and the natural one baffle the learning machine. Li et al. [30] proposed a
three-dimensional lumped-parameter nonlinear dynamic model for compound planetary gear set,
which takes into consideration time-varying mesh stiffness (TVMS), mesh phase relations, and gear
chipping defects. Other fault damage degree identification methods have also been proposed to realize
quantitative fault diagnosis [31–41], which offer better results; however, drawbacks, such as lower
identification accuracy, longer identification time, and multiple faults with different fault severity
degrees, remain.

Entropy is a concept in the thermodynamics field. Shannon introduced the concept to the
information field and proposed information entropy in 1948, used to measure uncertainty [42].
This gradually generalized the concept. In recent years, researchers proposed a performance
degradation feature extraction method using the gradient spectrum entropy of mathematical
morphology based on mathematical morphology, information entropy and fractal theory. The proposed
method was applied to the quantitative diagnosis of rolling bearing.

In this paper, on the basis of analyses of mathematical morphology and information entropy,
a high-order differential mathematical morphology gradient spectrum entropy is proposed to
quantitatively identify the fault damage degree of rolling bearing. Firstly, the vibration data of
motor bearings with different fault degrees are collected. Then, according to the change of the
mathematical morphology gradient spectrum and the mathematical morphology gradient spectrum
entropy, the optimal scale range of the structural element is determined. In order to quantitatively
identify the fault damage degree, a high-order differential mathematical morphological gradient
spectrum entropy is defined. Discrimination of the fault damage degree is proposed to compare
the effectiveness of fault damage degree identification with general mathematical morphological
spectrum entropy.

The remainder of the paper is organized as follows. Basic methods are introduced in Section 2.
The high-order differential mathematical morphological gradient spectrum entropy is defined in
Section 3. In Section 4, a novel fault damage degree identification method, based on high-order
differential mathematical morphological gradient spectrum entropy, is proposed. In Section 5,
data sources and the experimental environment is introduced. The influence of damage degree
identification of the bearing fault under a changing scale is studied and analyzed in Section 6.
In Section 7, an application for the motor bearing fault is introduced in detail. Finally, conclusions are
offered in Section 8.

2. Basic Methods

2.1. Mathematical Morphology

Mathematical morphology (MM) is a nonlinear signal processing and analysis tool based
on integral geometry and random set theory, proposed by Matheron and Serra [43]. The MM
transformation obtains the geometric information of each signal and the relationship between them by
using the structure element to extract signal features. The analyzed signals are usually unary functions
in the time domain.

The structural element of MM is a real number sequence. According to their shape, structure
elements can be categorized as elliptical, triangular, and flat. The basic operations of MM include
erosion, dilation, opening and closing. The definitions of these operations are described below.
Presume that the original signal f (n) is defined as a discrete function for F = (0, 1, . . . , N − 1), structure
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elements g(m) is defined as a discrete function for G = (0, 1, . . . , M − 1), and N ≥ M. Then, the erosion
of f (n) by g(m) is defined as follows:

( f 	 g)(n) = min[ f (n + m) + g(m)] (1)

The dilation of f (n) by g(m) is defined as:

( f ⊕ g)(n) = max[ f (n − m) + g(m)] (2)

The opening operation of f (n) by g(m) is defined as:

( f ◦ g)(n) = ( f 	 g)⊕ g (3)

The closing operation of f (n) by g(m) is defined as:

( f •g)(n) = ( f ⊕ g)	 g (4)

The opening operation is a compound operation of corrosion and then expansion; its effect is to
filter the foreground noise in the signal. The closing operation is a compound operation of expansion
and then corrosion; its effect is to filter the background noise in the signal.

2.2. MultiScale Mathematical Morphology

A multiscale operation uses structure elements of different scales to process and analyze
signals [43]. Presume that the original signal f (n) is defined as a discrete function for F = (0, 1,
. . . , N − 1), structural elements g(m) is defined as a discrete function for G = (0, 1, . . . , M − 1), and λ is
the analytical scale. Then, the structure elements under λ scales are defined as follows:

λg = g ⊕ g . . . ⊕ g (5)

On this basis, the erosion, dilation, opening and closing operations of the multiscale MM for
discrete signal sequence f (n) are defined as follows:

( f Θg)λ(n) = ( f Θλg)(n) (6)

( f ⊕ g)λ(n) = ( f ⊕ λg)(n) (7)

( f ◦ g)λ(n) = ( f ◦ λg)(n) (8)

( f •g)λ(n) = ( f ⊕ λg)Θg (9)

2.3. Mathematical Morphology Gradient Spectrum

Just as frequency spectrum can directly reflect the frequency components in a signal,
the morphological spectrum based on multiscale morphological theory can also reflect the shape
information of structural elements of different scales in a morphological operation [44].

Presume that f (n) is a time domain function, and g(m) is a convex structure function.
The mathematical morphology spectrum of f (n) is defined as follows:

PS( f , λ, g) =

 − dA( f ◦λg)
dλ λ ≥ 0

− dA( f ◦(−λ)g)
dλ λ < 0

(10)

where λg = g ⊕ · · · ⊕ g:
A = ∑ f (n) (11)
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Here, the size of a one-dimension discrete signal only takes a continuous integer value.

PS( f , λ, g) =

{
dA( f ◦ λg) − dA( f ◦ (λ + 1)g) λ ≥ 0
dA( f •λg) − dA( f •(λ + 1)g) λ < 0

(12)

When λ ≥ 0, the mathematical morphological spectrum refers to its opening operation.
The morphological gradient operator is defined as the difference of using the expansion operation

and the corrosion operation between the signal f and the structural element g.

Grad( f , g) = f ⊕ g − f Θ g (13)

The morphological gradient operator is combined with the mathematical morphology spectrum
to obtain a mathematical morphology gradient spectrum, which is defined as follows:

PGS( f , λ, g) = A[Grad( f , (λ + 1)g)− Grad( f , λg)] λ ≥ 0 (14)

2.4. Mathematicall Morphology Gradient Spectrum Entropy (MMGSE)

The morphological spectrum entropy describes the sparsity degree of morphological spectrum
values, that is, the order of degree of shape probability distribution of the signal under different
morphologies. On the basis of analysis of the probability feature of energy distribution, entropy is
applied to the mathematical morphology spectrum to propose a mathematical morphology spectrum
entropy (MMSE).

PSE( f , λ, g) = −
λmax

∑
λ=λmin

q(λ) ln q(λ) (15)

where q(λ) = PS( f , λ, g)/ ∑ PS( f , λ, g), PS represents a mathematical morphological spectrum.
PSE divided ln(λmax − λmin + 1) to normalize the mathematical morphology spectrum entropy on the
value range [0, 1]. In this paper, the mathematical morphology spectrum entropy is normalized.

The morphological gradient spectrum entropy reflects the morphological features and component
changes of signals. It is also a complexity index that describes signals in essence. The mathematical
morphology gradient spectrum entropy (MMGSE) is defined as follows:

PGSE( f /g) = −
λmax

∑
λ=λmin

q(λ) ln q(λ) (16)

where q(λ) = PGS( f , λ, g)/ ∑ PGS( f , λ, g). PGS represents a mathematical morphological gradient
spectrum entropy. PGSE divided ln(λmax − λmin + 1) to normalize the MMGSE on the value
range [0, 1].

3. High-Order Differential Mathematical Morphological Gradient Spectrum Entropy

In this paper, a definition of high-order differential mathematical morphological gradient
spectrum based on mathematical morphology gradient spectrum and high-order difference
is proposed.

G_PGS( f , λ, g, n) = A[Grad( f , (λ + n)g)− Grad( f , λg)] (17)

Grad is the gradient operation of mathematical morphology.
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The proof of process is described as follows:

PGS( f , λ, g, n) = A[Grad( f , (λ + n)g)− Grad( f , (λ + n − 1)g)] + · · ·
+A[Grad( f , (λ + 2)g)− Grad( f , (λ + 1)g)]
+A[Grad( f , (λ + 1)g)− Grad( f , (λg)]
= ∑[Grad( f , (λ + n)g)− Grad( f , (λ + n − 1)g)] + · · ·
+∑[Grad( f , (λ + 2)g)− Grad( f , (λ + 1)g)]
+∑[Grad( f , (λ + 1)g)− Grad( f , λg)]
= ∑ Grad( f , (λ + n)g)− ∑ Grad( f , (λ + n − 1)g) + · · ·
+∑ Grad( f , (λ + 2)g)− ∑ Grad( f , (λ + 1)g)
+∑ Grad( f , (λ + 1)g)− ∑ Grad( f , λg)
= ∑ Grad( f , (λ + n)g)− ∑ Grad( f , λg)
= A[Grad( f , (λ + n)g)− Grad( f , (λ + g)]

(18)

The high-order difference mathematical morphological gradient spectrum is equal to the equal
interval sampling of the gradient spectrum. The Grad operation is expanded to the mathematical
morphology operations of expansion and corrosion to obtain the high-order difference mathematical
morphology spectrum. The high-order difference mathematical morphology gradient spectrum
entropy based on high-order difference mathematical morphology spectrum and entropy (HDMMGSE)
is defined as follows:

G_PGSE( f , λ, g, n) = −
k∗n

∑
i=1

q(λ) ln q(λ) (19)

where q(λ) = PGS( f , λ, g)/ ∑ PGS( f , λ, g). G_PGE represents a mathematical morphological gradient
spectrum entropy. G_PGSE divided ln(λmax − λmin + 1) to normalize the HDMMGSE on the value
range [0, 1].

4. A Novel Fault Damage Degree Identification Method

A variety of fault diagnosis methods have currently been effectively proposed to detect fault
types and damage degrees of motor bearing in order to keep machinery performing at its best
and avoid abnormal event progression. These qualitative methods mainly use appropriate signal
analysis methods to obtain fault damage degree identification methods, such as finite element model
method, least square method, modal expansion method, harmonic theory, information entropy and
support vector machines. However, these qualitative methods have drawbacks, which include lower
identification accuracy, longer identification time, and multiple faults with different fault severity
degree. Thus, this paper uses mathematical morphology, multiscale operations and morphological
spectrum entropy to propose a damage degree identification method based on high-order difference
mathematical morphology gradient spectrum entropy (HMGSEDI). First, the vibration data of motor
bearing with different fault severity are collected. Analysis of the features of gradient spectrum
enables discussion of the mathematical morphology gradient spectrum and mathematical morphology
gradient spectrum entropy under different scales, in order to determine the optimal scale range of
structural elements. Next, differentiation degree is defined. The high-order difference mathematical
morphological spectrum entropy is calculated under different fault severity. The comparison
and analysis of the mathematics morphological spectrum entropy and the high-order difference
mathematical morphological spectrum entropy are discussed in detail. This effective quantitative
identification method for fault damage degree can offer a novel way to identify fault damage degree
and fault prediction of rotating machinery.

The flow of the fault damage degree identification method, based on HDMMGSE, is shown in
Figure 1.
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5. Data Sources and Experimental Environment

In order to validate the effectiveness of the proposed method, the authors used vibration data from
the Bearing Data Center of Case Western Reserve University [45]. The 6205-2RS 6 JEM SKF deep groove
ball bearing was employed for the experiment. A 1.5 kW motor was connected to a dynamometer and
torque sensor by self-aligning. Vibration data was collected using accelerometers, which were attached
to the housing with magnetic bases. Accelerometers were placed at the 12 o’clock position at both the
drive end and fan end of the motor housing. Faults were introduced into the bearing’s inner race using
the electro-discharge machining method. The fault diameters were 0.007 inch, 0.014 inch, 0.021 inch
and 0.028 inch (1in = 2.54 cm). The vibration data was measured under no-load(0HP) and load(3HP) at
rotation speeds (1797 r/min and 1730 r/min). The bearing’s vibration data was sampled at a frequency
of 12,000 Hz, and the duration of each vibration signal was 10 s. The points from 12,001 to 72,000 were
analyzed under four fault states and a normal state. Each state had 60,000 points, divided into five sets
of 12,000 points each. There were 25 sets for four fault states and a normal state. Due to limited space,
only the raw vibration data of five states for motor with no-load is presented in Figure 2.

The first dataset of each state is used to obtain the clear gradient spectrum: points from 12,001 to
24,000 are used in this paper. Twenty-five datasets are used to obtain the gradient spectrum entropy.
The unit structural element [0 0 0] was used here. The experiment environment is described as Intel
Core I5 7300HQ, DDR4 2.4 GHz and 8 GB RAM, Win 7 and Matlab 2014a.
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Figure 2. The raw vibration data of five states for motors with no-load.

6. Analysis of the Influence of Damage Degree Identification of Bearing Fault under a
Changing Scale

In this section, the influence of structural elements on fault damage degree identification is
discussed in detail. According to changes in the mathematical morphology gradient spectrum and
the mathematical morphology gradient spectrum entropy, the optimal scale range of the structural
elements is determined. The vibration signals of motors with no-load state and load state are
analyzed, respectively.

6.1. Analysis of Vibration Signals of Motors with No-Load

The vibration signals of five different states under no-load are analyzed in detail. The unit
structural element is [0 0 0]. The scale range of the structural element is 1 to 50.

The mathematical morphological gradient spectrum is obtained according to Formula (14);
the results are shown in Figure 3.
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As can be seen in Figure 3, the morphological gradient spectrum curves under different fault
states are clearly distinguished on the 1 to 20 scale. If the fault damage degree is large, the gradient
spectrum amplitude is also large. The amplitude difference of the morphological gradient spectrum
under different fault states is less, and aliasing occurs to a certain extent on the 20 to 50 scale.

The values of the mathematical morphological gradient spectrum entropy are calculated according
to Formula (16). In order to determine the optimal scale range for fault damage degree identification,
the minimum structural element scale 2 is kept unchanged, while the maximum element scale is
altered. The determination of the maximum scale is mainly based on the gradient spectrum feature,
which is reflected as follows:

(1) There is a non-negative lower bound in a whole monotone decreasing sequence.
(2) The front value of the gradient spectrum varies greatly, and the back value of the gradient

spectrum varies a little (up to zero).
(3) The gradient spectrum is discrete.

The larger variation points in gradient spectrum are called feature points. All spectrum lines
should contain feature points. y(k + 1) − y(k) is used to characterize the variation of the discrete
function. Because the gradient spectrum is a decreasing function, y(k) − y(k + 1) is used; it offers
convenient observation and description. The results are shown in Figure 4.
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Figure 4 shows the variation trend of the gradient spectrum under a no-load state. The first
point is the gradient spectrum difference between the first point and the second point in Figure 3.
Because the curve change of the fault damage degree 0.028 is most obvious, it determines the scale
range. As can be seen from Figure 4, the gradient spectrum tends to be stable after the scale value
reaches 17. The structural element scale range between 2 and 17, which is a moderate scale range,
contains all gradient spectrum feature points. The change of gradient spectrum is less after the scale
reaches 17. The structural element scale 50 is selected as an excessive scale range.

Figure 5 shows two results of the gradient spectrum entropy of structural elements between
2 and 17 and between 2 and 50 under a no-load state. As can be seen from Figure 5a, when the
maximum structural element scale is 17 (except for the fault damage degree 0.028), with increase of
the fault damage degree, the values of the gradient spectrum entropy increases, and all values of the
gradient spectrum entropy are more than 0.95. When the fault damage degree is 0.028, all values of
the gradient spectrum entropy are less than 0.95. As can be seen from Figure 5b, when the maximum
structural element scale is 50, the values of gradient spectrum entropy under normal state, fault damage
degree 0.007 and fault damage degree 0.014 increase, while the values of gradient spectrum entropy
under fault damage degree 0.014, fault damage degree 0.021 and fault damage degree 0.028 reduce.
The entropy values of different fault damage degrees are different and can be clearly distinguished.
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Figure 5. The gradient spectrum under no-load condition. (a) Scale of structure element: 2~17; (b) Scale
of structure element: 2~50.

As can be seen from Figure 4, the values of gradient spectrum entropy under normal state show
that the values of gradient spectrum entropy under different fault states are stable. When the maximum
structural element scale is 50, the stability of gradient spectrum entropy values under different fault
states become bad.

6.2. Analysis of Vibration Signals of Motors with Load(3HP)

The vibration signals of five different states under load(3HP) are analyzed in detail. The unit
structural element is [0 0 0]. The scale range of the structural element is 1 to 150.

The mathematical morphological gradient spectrum is obtained according to Formula (14);
the results are shown in Figure 6.
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Figure 6. The mathematical morphological gradient spectrum for motors with load(3HP).

Similar to the no-load state, Figure 6 shows the mathematical morphological gradient spectrum
under the load(3HP) state. When the structure element scale is smaller, the mathematical morphological
gradient spectrum of fault damage degree 0.021 and 0.007 appears to overlap. The values of the
mathematical morphological gradient spectrum entropy are calculated according to Formula (16).
In order to determine the optimal scale range for fault damage degree identification, the minimum
structure element scale 2 is unchanged, and the maximum element scale is changed.

Figure 7 shows the variation trend of gradient spectrum under the load(3HP) state, and the first
point is the gradient spectrum difference between the first point and second point in Figure 6. Because
the curve change of fault damage degree 0.028 is the most obvious, it determines the scale range.
As can be seen from Figure 6, the structure element scale 49 shows relatively large changes; therefore,
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the structure element scale range between 2 and 50, which is a moderate scale range, contains all
gradient spectrum feature points. The change of gradient spectrum is less after the structure element
scale reaches 50. The structure element scale 150 is selected as an excessive scale range.
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Figure 7. Trend of gradient spectrum under the load(3HP).

Figure 8 shows the results of the gradient spectrum entropy of structure elements between 2
and 25, 2 and 50, and 2 and 150 under the load(3HP) state. As can be seen from Figure 8a, when the
structure element scale is 20, the values of gradient spectrum entropy under different fault damage
degrees are different, and distribution regularity is worse. As can be seen from Figure 8b, when
the structure element scale is 50, the values of gradient spectrum entropy under normal state fault
damage degree 0.007, 0.014 and 0.021 increase, and the values of gradient spectrum entropy concentrate
between 0.94 and 0.98 in the fault states. When the fault damage degree is 0.028, it is similar to the
maximum structure element scale 20; the value of gradient spectrum entropy is smaller than that of
normal state, and takes on random distribution. As a whole, it shows similar regularity as Figure 5a.
As can be seen from Figure 8c, when the maximum structure element scale is 150, the values of gradient
spectrum entropy under the normal state fault damage degree 0.007 and 0.014 increase, and the values
of gradient spectrum entropy under fault damage degree 0.021 and 0.028 decrease. When the fault
damage degree is 0.028, the value of gradient spectrum entropy is smaller than that of the normal state.

As can be seen from Figure 8, when the maximum structure element scale is 50, the values of
gradient spectrum entropy under the normal state fault damage degree 0.007, 0.014, 0.021 and 0.028
have better stability and regularity.
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Figure 8. The gradient spectrum under load(3HP). (a) Scale of structure element 2~20; (b) Scale of
structure element 2~50; (c) Scale of structure element 2~150.

6.3. Comprehensive Analysis of Experimental Results

The optimal structure element range for motors with no-load and load(3HP) states is different
when comparing and analyzing the mathematical morphology gradient spectrum. As can be seen from
the experimental results, the motor with load(3HP) state reduces the change rate of the mathematical
morphology gradient spectrum. In Figure 3, the curves of different fault damage degrees gently
descend after the coordinate point arrives at 25. When the motor operates under load(3HP), it is clearly
observed that the curve of fault damage degree 0.028 takes a sudden decline at points of 27, 37 and
47. The curves of other fault damage degrees are much smaller than the curve of fault damage degree
0.028. Therefore, it is not easy to observe other fault damage degrees.

The suitable scale range of structure element is from 2 to 17 for motors with no-load state.
The suitable scale range of structure element for motor with load(3HP) state is from 2 to 50. If the scale
range of structure elements is too small, the fluctuation of gradient spectrum entropy value under
the same fault damage degree is also smaller and relatively stable. However, the distribution of the
gradient spectrum is rather disordered in the process of increasing fault damage degree. If the scale
range of structure elements is too large, the fluctuation of gradient spectrum entropy value under the
same fault damage degree is also larger. However, the distribution of gradient spectrum is relatively
neat in the process of increasing fault damage degree. It is helpful to determine the fault damage
degree. If the scale range of structure element is suitable, the fluctuation of gradient spectrum entropy
value under the same fault damage degree is suitable too. The distribution of gradient spectrum is
relatively neat in the process of increasing fault damage degree. For practicality, the best scale range of
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structure elements should be selected according to actual applications. In the experiment, when the
scale range of structure element is larger, the values of gradient spectrum entropy of mathematical
morphology show lower computational efficiency, especially for motors with load state.

7. Application Case Analysis

Because the mathematical morphology spectrum entropy can quantitatively describe the fault
damage degree, the high-order differential mathematical morphology entropy is applied to identify the
fault damage degree of motor bearing in this section. In order to quantitatively describe the influence
of high-order differential mathematical morphology spectrum entropy on motor bearing fault damage
degree, the definition of discrimination is given and described in detail.

First, the mean value of high-order differential mathematical morphology spectrum entropy
under one state is calculated using the following expression:

G_PGSEmean =
1
m

m

∑
i=1

G_PGSEi (20)

where, m is the number of data sets under one state.
Next, the difference between two adjacent states is defined as the discrimination:

∆G = G_PGSEmean(i+1) − G_PGSEmean(i) (21)

where, i is the status number of equipment.
Similarly, when the mathematical morphological spectrum entropy is used, the definition of

discrimination is given and described. The mean value of mathematical morphological spectrum
entropy under one state is calculated as:

PGSEmean =
1
m

m

∑
i=1

PGSEi (22)

where, m is the number of data sets under one state:

∆ = PGSEmean(i+1) − PGSEmean(i) (23)

where, i is the equipment status number.
Because the mathematical morphology spectrum entropy has lower calculation efficiency,

the high-order differential mathematical morphology spectrum entropy can solve the problem to
a certain extent. According to Formula (19), when the high-order difference is used, only the
mathematical morphological operations under the structure element scale λ + n and λ are executed,
while mathematical morphological operations under other structure element scales are not. This will
greatly reduce the amount of calculation.

7.1. Analysis of Motors with No-Load State

The comparison between the general gradient spectrum entropy and the high-order differential
spectrum entropy in the structure element scale range between 2 and 17 under no-load state is shown
in Figure 9.

Figure 8 shows a comparison between the general gradient spectrum entropy (n = 1) and the
high-order differential spectrum entropy (n = 5) in the structure element scale range between 2 and
17 under no-load state. For convenient comparison, Figure 9a,b use the same coordinate system, and
the same fault type uses the same legend. As can be seen from Figure 9a, the distribution of the general
gradient spectrum entropy value and the high-order differential spectrum entropy value are similar,
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and the values are slightly different. The quantitative analysis results of the discriminations of two
gradient spectrum entropy is shown in Table 1.Entropy 2018, 20, x FOR PEER REVIEW  14 of 18 
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Figure 9. The gradient spectrum in the structure element scale range between 2 and 17 under no-load
state. (a) Serial number of experiment times n = 1. (b) Serial number of experiment times n = 5.

Table 1. Comparison of the discriminations of two gradient spectrum entropy under no-load state.

Fault Damage Degree
Mean Value Discrimination

G_PGSEmean (n = 5) PGSEmean (n = 1) ∆G (n = 5) ∆ (n = 1)

Normal state 0.8352 0.8889 / /
Fault damage degree 0.007 0.9442 0.9660 0.1090 0.0771
Fault damage degree 0.014 0.9552 0.9759 0.0110 0.0099
Fault damage degree 0.021 0.9677 0.9840 0.0125 0.0081
Fault damage degree 0.028 0.8626 0.9302 −0.1051 −0.0538

As can be seen from Table 1, the discrimination of high-order differential gradient spectrum
entropy is larger than the discrimination of general gradient spectrum entropy under no-load state.
The calculation time of the general gradient spectrum entropy is 21.205 s (Figure 8a). The calculation
time of high-order differential gradient spectrum entropy is 5.341 s in (Figure 8b). The results show
that calculation efficiency is significantly improved by using the high-order differential gradient
spectrum entropy.

7.2. Analysis of Motors with the Load(3HP) State

A comparison between the general gradient spectrum entropy and the high-order differential
spectrum entropy in the structure element scale range between 2 and 50 under load(3HP) state is
shown in Figure 10.
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Figure 10. The gradient spectrum using the structure element scale range between 2 and 50 under
load(3HP). (a) Serial number of experiment times n = 1. (b) Serial number of experiment times n = 5.
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Figure 10 shows the comparative results of the general gradient spectrum entropy (n = 1) and the
high-order differential spectrum entropy (n = 5) in the structure element scale range between 2 and
50 under load(3HP) state. For convenient comparison, Figure 10a,b use the same coordinate system,
and the same fault type uses the same legend. As can be seen from Figure 10, the discriminations of
two gradient spectrum entropy are different. The quantitative analysis results of the discriminations of
two gradient spectrum entropy under load state is shown in Table 2.

Table 2. Comparison of the discriminations of two gradient spectrum entropy under load(3HP).

Fault Damage Degree
Mean Value Discrimination

G_PGSEmean (n = 5) PGSEmean (n = 1) ∆G (n = 5) ∆ (n = 1)

Normal state 0.8221 0.9011 / /
Fault damage degree 0.007 0.9100 0.9503 0.0879 0.0492
Fault damage degree 0.014 0.9387 0.9626 0.0287 0.0123
Fault damage degree 0.021 0.9543 0.9763 0.0156 0.0137
Fault damage degree 0.028 0.7831 0.8813 −0.1712 −0.0950

As can be seen from Table 2, the discrimination of high-order differential gradient spectrum
entropy is larger than the discrimination of general gradient spectrum entropy under the load(3HP)
state. The calculation time of general gradient spectrum entropy is 66.597 s (Figure 10a). The calculation
time of high-order differential gradient spectrum entropy is 9.468 s (Figure 10b). The experimental
results show that calculation efficiency is significantly improved by using the high-order differential
gradient spectrum entropy.

7.3. Comprehensive Analysis of Experimental Results

The influence of the high-order differential mathematical morphology spectrum entropy on
bearing fault damage degree identification is studied. Discrimination is used to quantitatively describe
the difference between the fault damage degrees. As can be seen from Tables 1 and 2, the high-order
differential morphological spectrum entropy can increase the discrimination of entropy values under
different fault damage degrees. For example, when the morphological gradient spectrum entropy
is used to calculate the gradient spectrum entropy values in the scale range of structure element
between 2 and 17 under no-load state, the gradient spectrum entropy values of fault damage degrees
0.007, 0.014 and 0.021 are concentrated between 0.94 and 0.97. These entropy values are very close to
maximum value 1. It is not detrimental to effectively recognize fault damage degree. After difference
order n is improved, the gradient spectrum entropy values between different fault damage degrees
increase to profitably recognize the fault damage degree. The high-order differential mathematical
morphology spectrum entropy significantly increases calculation efficiency. It is roughly proportional
to the improved operation efficiency and the difference order n.

8. Conclusions

(1) On the basis of analysis of the mathematical morphology spectrum and high-order
difference, the definition of high-order differential mathematical morphological spectrum is
proposed in this paper. The entropy technique is introduced into the high-order differential
mathematical morphological spectrum to propose the definition of high-order differential mathematical
morphological spectrum entropy.

(2) The defined high-order differential mathematical morphological spectrum entropy is used
to discuss and analyze the scale change influence of structure element in fault damage degree
identification for motors with no-load and load states. According to the varied characteristics of
the mathematical morphology gradient entropy, the appropriate scale range of the structure elements
in fault damage degree identification is determined. The results show that the optimal scale range
of structure elements is different for effective identification of fault damage degree under different
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load conditions. For practicality, the optimal scale range of structure elements should be analyzed in
actual applications.

(3) The fault damage degree identification, based on high-order differential mathematical
morphological spectrum entropy, has been studied in depth. The discrimination of fault damage
degree has been defined to quantitatively describe the difference in fault damage degree identification
between the high-order differential mathematical morphological spectrum entropy and general
mathematical morphological spectrum entropy. The analysis shows that high-order differential
mathematical morphology entropy can effectively identify fault damage degree and greatly improve
operational efficiency.

Therefore, the proposed method is novel and effective quantitative identification method that
helps identify fault damage degree and predict fault in rotating machinery.
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