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Abstract: Time irreversibility, i.e., the lack of invariance of the statistical properties of a system under
time reversal, is a fundamental property of all systems operating out of equilibrium. Time reversal
symmetry is associated with important statistical and physical properties and is related to the
predictability of the system generating the time series. Over the past fifteen years, various methods
to quantify time irreversibility in time series have been proposed, but these can be computationally
expensive. Here, we propose a new method, based on permutation entropy, which is essentially
parameter-free, temporally local, yields straightforward statistical tests, and has fast convergence
properties. We apply this method to the study of financial time series, showing that stocks and indices
present a rich irreversibility dynamics. We illustrate the comparative methodological advantages of
our method with respect to a recently proposed method based on visibility graphs, and discuss the
implications of our results for financial data analysis and interpretation.
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1. Introduction

Time irreversibility is the lack of invariance of the statistical properties of a signal under the
operation of time reversal. In other words, consider a time series describing the evolution of a system,
x(t) with t ∈ [0, T] and its time reversal, i.e., the time series that would have been obtained had the
system evolved in the opposite direction, or xt.r.(t) = x(T− t). Irreversibility means that it is possible
to find a characteristic that differs in the forward and backward versions, i.e., a function f calculated
over the two time series such that f (xt.r.) 6= f (x); in other words, the observer can distinguish the
forward, from the backward version of a given process. Note that the above definition does not impose
any restriction on f .

Irreversibility can be due to the presence of memory, which acts as a hidden dissipative external
force in a process [1] while the presence of noise results in a loss of irreversibility [2]. Thus, estimating
the degree of irreversibility of a time series implicitly quantifies the degree of nonlinear dependences
(memory), and, therefore, the degree of time series predictability. Importantly, since linear Gaussian
random processes and static nonlinear transformations of such processes are reversible, significant time
irreversibility excludes Gaussian linear processes as models for the generating dynamics, implying
instead nonlinear dynamics, non-Gaussian (linear or nonlinear), or linear autoregressive moving
average (ARMA) models as possible generative processes [3–5].

The mere statistics of observed time series allows extracting information on the physics of
the system under study. In particular, time reversal asymmetry provides information about the
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entropy production of the physical mechanism generating the series, even when the details of the
underlying generating system are unknown [6]. Various methods to quantify time reversibility have
been proposed [7–11] and applied to the study of both biological [12,13] and financial systems [2,14–21].

Here, we introduce a new method, based on permutation entropy [22,23], to evaluate irreversibility
of time series at various temporal scales. With respect to existing methods, the proposed one
presents various advantages: (1) it has no free parameters other than the embedding dimension
of the permutation entropy; (2) similar to visibility graph methods [9], it is temporally local, and
therefore allows assessing fluctuations; (3) assessing significance is straightforward, and does not rely
on scaling arguments as in visibility graph methods; and (4) it has a convergence speed advantage
over visibility graph methods.

We first illustrate our method by evaluating the time irreversibility of a set of simple dynamical
models, including stochastic models and chaotic dynamical systems, for which such property has
theoretically been studied. We further show how the proposed approach can help elucidate the
complex irreversibility dynamics of financial time series, representing 30 major European stocks and
12 world indices.

The time-reversal properties of financial time series allow testing the so-called efficient market
hypothesis (EMH) [20]. The EMH asserts that financial markets are efficient with respect to an
information set, i.e., that stocks incorporate all publicly available information useful in evaluating
their prices and no single market agent can consistently outperform the market with information
based trading [24]. Importantly, efficiency is related to the amount of information available to predict
future market prices, with lower efficiency corresponding to higher residual predictive information
in the past sequence of stock prices [25]. The stringency of EMH’s requirements suggests that no
real market can ever be efficient stricto sensu [26] and that EMH should not be approached as an
all-or-nothing property [27]. Various empirical studies have then undertaken to quantify the extent to
which the EMH holds and, as a result to identify the sort of process governing market behaviour [27–30].
While financial series have been found to generally be time irreversible [2,14,20,31], it is possible to
discriminate different degrees of such property. For instance, some stocks have been found to be more
irreversible than others [11]. Likewise, emerging markets have been shown to be more time irreversible
than developed ones, lending support to the relationship between efficiency and irreversibility [32].

We show that stocks’ and indices’ time series present a rich dynamics in terms of irreversibility.
Specifically, while some time series may globally be reversible, they can become irreversible at
specific temporal resolutions, i.e., when windows of specific length are considered. Additionally,
such irreversibility may appear in a temporal localised way, suggesting that the dynamics of the
element was somehow perturbed at that time.

The remainder of the paper is organised as follows. Firstly, the proposed method is described in
Section 2; we also include a brief overview of the visibility graph (Section 2.3) and of the Markov chain
(Section 2.4) approaches, as they are used to benchmark our solution. We then validate the permutation
patterns’ method in synthetic (Section 3) and financial (Section 4) time series. Some conclusions are
finally drawn in Section 5.

2. Assessing Time Series Reversibility

2.1. Permutation Patterns

The idea of analysing the permutation patterns present in a time series was initially introduced
by Bandt and Pompe [22] to provide researchers with a simple and efficient tool to characterise the
complexity of the dynamics of real systems. With respect to other approaches, as entropies, fractal
dimensions, or Lyapunov exponents, it presents the advantage of being independent from any arbitrary
thresholds or binning procedures [23]. For the sake of completeness, we here briefly review the process
of calculating these permutation patterns.
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Given a time series X = {xt}, with t = 1 . . . N, this is usually divided in overlapping regions of
length D, such that:

s→ (xs, xs+τ , . . . , xs+τ(D−2), xs+τ(D−1)). (1)

D is called the embedding dimension, and controls the quantity of information included in each
region, while τ is the embedding delay. s further controls the beginning of each region, and thus the
degree of overlap between regions. Without loss of generality, in the following, we consider D = 3
and τ = 1.

The second step involves associating an ordinal pattern to each region. Values are sorted in
increasing order, and the ordinal pattern corresponding to the required permutation is saved for
further analysis. In other words, the permutation π = (r0, r1, . . . , rD−1) of (0, 1, . . . , D− 1) is defined
to fulfil:

xs+r0 ≤ xs+r1 ≤ . . . ≤ xs+rD−2 ≤ xs+rD−1 . (2)

To illustrate, suppose a time series X = (3, 2, 6, 4, 8). As D = 3, the first region would include
the values (3, 2, 6), and the order required for sorting them is (1, 0, 2)—that is, the second value is the
smallest, followed by the first and by the last. Similarly, the second region (2, 6, 4) is associated with
the pattern (0, 2, 1); and the third region (6, 4, 8) with (1, 0, 2).

2.2. Time Reversibility of Permutation Patterns

After estimating all the permutation patterns in a time series, we analyse their frequency of
appearance, taking into account a time reversal process.

The total number of permutation patterns that may appear is given by D!. These patterns can be
paired together, such that each pattern composing a pair is the time reversal of the other. For instance,
for D = 3, six patterns are generated, which can pairwise be related as:

(0, 1, 2) t.r.↔ (2, 1, 0) (3)

(1, 0, 2) t.r.↔ (2, 0, 1) (4)

(1, 2, 0) t.r.↔ (0, 2, 1), (5)

with t.r.↔ representing a time reversal transformation.
To clarify this idea, let us consider the simple example of a time series resembling a sawtooth,

X = (1, 2, 3, 1, 2, 3, 1). The series is stationary, as the average oscillates around 2.0, and five permutation
patterns of side D = 3 can be extracted: (0, 1, 2), (1, 2, 0), (2, 0, 1), (0, 1, 2) and (1, 2, 0). It can be
observed that the system has non-trivial dynamics, as it always increments in two consecutive steps
at a time—hence, the upward pattern (0, 1, 2). Let us now consider the time reversed series, i.e., the
same series observed from the end to the beginning: X = (1, 3, 2, 1, 3, 2, 1). The new (time reversed)
permutation patterns are (0, 2, 1), (2, 1, 0), (1, 0, 2), (0, 2, 1) and (2, 1, 0). As it should be expected, the
new time series can only diminish through the (2, 1, 0) permutation pattern—which is, of course,
the time reversal equivalent of (0, 1, 2). Note that this allows us to conclude that the time series X
is irreversible. Specifically, let us suppose that we observe a realisation of X with two consecutive
increasing values, i.e., (0, 1, 2); as this can only appear in the original time series, and not in the time
reversed one, we can then be certain about the time directionality. In a similar fashion, if we observe
the pattern (2, 1, 0), we can conclude that we are observing the time reversed series.

This can further be generalised: a time series will be reversible if and only if all permutation
patterns composing the previous pairs appear with approximatively the same frequency. In the
previous example, we can observe that the probability of (0, 1, 2) and (2, 1, 0) in the original time series
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are different—respectively, p(0,1,2) = 2/5 and p(2,1,0) = 0/5. Once again, X is then expected to be
irreversible. This idea constitutes the basis of the reversibility statistical test described below.

The value of D = 3 has here been chosen for the sake of clarity. While in principle larger values of
D may yield a richer description of the dynamics, this also results in the need of longer time series to
reach statistically significant results—both topics will be further discussed in the conclusions.

The previously defined pattern pairs and their frequency of appearance can be analysed in two
ways: in terms of the magnitude of the irreversibility, through the Kullback–Leibler divergence [33],
and in terms of its statistical significance, through a binomial test.

The irreversibility magnitude can be quantified by comparing two probability distributions,
one represented by the probability of all patterns appearing in the direct (or original)
time series, and a second one with the probabilities for the time-reversed time series.
Following the previous example for D = 3, the first distribution is composed of the
frequencies of patterns Pd = [p(0,1,2), p(2,1,0), p(1,0,2), p(2,0,1), p(1,2,0), p(0,2,1)]. As for the second
distribution, it can be calculated by actually reversing the time series, or more simply
by using the previous time reversal transformations—i.e., by considering the distribution
Pr = [p(2,1,0), p(0,1,2), p(2,0,1), p(1,0,2), p(0,2,1), p(1,2,0)]. The difference between both distributions can
then be estimated through the Kullback–Leibler divergence:

DKL =
D!

∑
i=1
Pd(i) log

Pd(i)
Pr(i)

. (6)

If the time series is perfectly reversible, the probabilities associated to patterns forming a pair
should be the same, thus yielding a DKL ≈ 0. On the other hand, the higher the value of DKL,
the more irreversible the time series is. Note that DKL is not the only possibility for comparing the two
distributions, being the Jensen–Shannon divergence a good alternative [34]. While the latter presents
the advantage of being symmetric, the former is commonly used in statistical physics [9,35]. Additionally,
it has to be noted that Equation (6) diverges when one or more permutation patterns are forbidden, i.e.,
their frequency is zero. This may happen when the time series under analysis is trivially irreversible,
and possibly non-stationary. This is for instance the case of the ramp function previously described;
when i = 0 in Equation (6), the argument of the logarithm becomes p(0,1,2)/p(2,1,0) = 2/0, and thus
DKL → ∞. While this clearly indicates that the time series is (infinitely) irreversible, the divergence of
DKL may make subsequent calculations more complicated. This can easily be solved by adding a very
small value to all probabilities, i.e.,

DKL =
D!

∑
i=1
Pd(i) log

Pd(i) + ε

Pr(i) + ε
, (7)

such that ε� minPd and ε� minPr. This situation is nevertheless seldom encountered in real time
series, provided their length is large enough.

If the Kullback–Leibler divergence tells us the magnitude of the irreversibility of a time series,
it yields little information about the statistical significance of the value. This problem can be solved by
levering on the binomial nature of the patterns composing a pair. Specifically, if the time series
is reversible, the number of times the two permutation patterns forming a pair appear should
not statistically be different. Following the previous example, let us denote by n(0,1,2) and n(2,1,0),
respectively, the number of times the patterns (0, 1, 2) and (2, 1, 0) have appeared; and let us define:

p =
n(0,1,2)

n(0,1,2) + n(2,1,0)
. (8)

The time series is not reversible if we can reject the null hypothesis that p = 0.5 in a two-sided
binomial test. Note that the test should be repeated for all pairs of permutation patterns—three times
in the case of D = 3.
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One final discussion should here be added on the relationship between irreversibility and
stationarity, and how such relationship affects the proposed methodology. On the one hand, it is
intuitive that a non-stationary process must also be irreversible—as a net change from state a to state b
necessarily implies a time direction. Time irreversibility has therefore normally been assessed only in
the presence of stationarity. On the other hand, it has recently been proposed that reversibility can be
assessed even in non-stationary systems, by moving from a qualitative to a quantitative metric [35].
In the case of the methodology here proposed, the degree of irreversibility of a time series can be
assessed by the magnitude of DKL (or of a Jensen–Shannon divergence), provided no permutation
pattern is forbidden, i.e., Pr(i) > 0 for all i. This quantitative aspect will be further explored in
Section 4.

2.3. Directed Horizontal Visibility Graphs

One of the most recent and efficient ways of assessing the irreversibility of a time series is through
the so-called directed Horizontal Visibility Graphs (dHVG). In what follows, this method is used for
benchmark purposes, and, for the sake of completeness, is here briefly introduced.

From a general point of view, dHVG belong to a family of methods that map a time series into
nodes of a network, based on geometric criteria [36,37]. In all of these methods, a complex network [38]
is created, whose nodes correspond to the individual data of the time series; pairs of nodes are then
connected when they fulfil some geometrical rule, usually based on whether one value can “see” the
other one. In the specific case of dHVG, two nodes are connected if the line connecting both values is
not obstructed by another intermediate point [37]. Mathematically, given two nodes i and j, a link is
created if:

xi, xj > xn, ∀n|i < n < j, (9)

being xi the element of the time series mapped into node i.
The resulting network can then be analysed using the wide set of tools provided by complex

networks theory [39]. Of relevance for this work, the irreversibility of a time series can be assessed
by comparing the distributions of in- and out-degrees (i.e., respectively the number of links arriving
to and departing from a given node), and by calculating a Kullback–Leibler divergence [9,11]. Note
that the in-degree of a node becomes its out-degree under a time reversal transformation. Therefore,
for reversibility to holds both distributions ought to be equal, and the corresponding Kullback–Leibler
divergence should converge to zero. For more details on the dHVG approach and the assessment of
irreversibility, we refer the reader to the following studies [9,11,37].

2.4. Markov Chain Approach

We finally consider a classical method for detecting time series irreversibility, based on the
representation of the underlying system as a Markov chain. In the case of a Markov chain with a
transition matrix Pi,j and steady-state distributions πi, time symmetry implies πiPi,j = πjPj,i; a time
series is then reversible if and only if Pi,j = Pj,i, for all is and j 6= i [40]. We use this property to
construct a simple test, which requires: (i) binning the elements of the original time series into a set of
bins (note that the number of bins is a parameter of the method); (ii) calculate the transition matrix
Pi,j; and (iii) perform a binomial statistical test on each pair (i, j), with j 6= i, to test the hypothesis that
Pi,j = Pj,i.

3. Validation with Synthetic Time Series

We validate the permutation patterns approach to irreversibility assessment, and compare it with
the visibility graph one, through the application to a set of synthetic time series whose reversible or
irreversible nature has already been studied theoretically. These are:
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• Two reversible stochastic processes, namely a time series of values drawn from a Gaussian
distribution N (0, 1), and an Ornstein–Uhlenbeck process, a mean-reverting linear Gaussian
process T [41].

• Two dissipative chaotic maps, respectively, a logistic map (defined as xn+1 = axn(1 − xn),
with a = 4.0) and a Henon map (xn+1 = 1 + yn − ax2

t , yn+1 = bxt, with a = 1.4 and b = 0.3).
Dissipative systems are by definition irreversible [42].

• The Arnold Cat map, and example of a conservative chaotic map (xn+1 = xn + yn

mod (1), yn+1 = xn + 2yn mod (1). The analysed time series corresponds to the evolution
of the x variable.

• The Lorenz chaotic system, defined as ẋ = σ(y− x), ẏ = x(ρ− z)− y, and ż = xy− βz (with
ρ = 28, σ = 10 and β = 8/3, integration step of dt = 0.01). Unless otherwise stated, the analysed
time series corresponds to the evolution of the x variable.

• Time series generated through an Autoregressive Conditional Heteroskedasticity (ARCH)
model [43] defined as xt = σtzt, with σ2

t = α∗(1 + ∑3
i=1 2−ix2

t−i) and zt being independent
random numbers drawn from an uniform distribution U (0, 1). Note that α∗ is a parameter
controlling the strength of the time dependence between present and past values of x, and hence
its irreversibility.

• Time series generated through a Generalised Autoregressive Conditional Heteroskedasticity
(GARCH) model [44] defined as xt = σtzt, with σ2

t = α∗(1 + ∑3
i=1 2−ix2

t−i + ∑3
i=1 2−iσ2

t−i) and zt

being independent random numbers drawn from an uniform distribution U (0, 1). Note that the
difference with respect to the ARCH model resides in the fact that here σ depends directly on its
past. As in the previous case, α∗ is controlling the time irreversibility of the model.

For each of them, Figure 1 reports: (i) the average divergence D yielded by the permutation
patterns (blue line and one standard deviation band) and the visibility graph (black line and band)
approaches; and (ii) the fraction of times the time series is detected as irreversible by the permutation
patterns approach in a statistical significant way (red dotted line, right Y axis, significance α = 0.01).
The irreversibility of the time series created by the ARCH and GARCH models is reported in Figure 2,
as a function of the parameter α∗. The two examples of stochastic processes and the Arnold map are
recognised as irreversible in less than 1% of the realisations—as expected from the choice of a statistical
significance level of α = 0.01. On the other hand, the irreversibility frequency rapidly converges to one
for the two dissipative chaotic maps, which are known to be irreversible [42]. Intermediate results can
be observed in the case of the ARCH and GARCH models, for which a robust irreversibility is detected
in the case of long time series and high values of α∗. Finally, a special situation can be observed for the
Lorenz system: while its time series are mostly irreversible at short temporal scales, they become highly
reversible when sufficiently long time windows are considered. To understand if such behaviour is a
general property of the system, Figure 3 (Left) reports the evolution of the irreversibility as a function
of time series length, for the three channels of the Lorenz system. While the X and Y channels have a
similar dynamics, the Z one is substantially different: first it is completely irreversible over long time
scales, and second, the evolution of the irreversibility is not monotonic, with a minimum around 70
and a peak every 60 time points. This abnormal behaviour for the Z time series is possibly due to its
dynamics, which is well known to differ from those of the X and Y channels in terms of Lyapunov
exponent [45] and autocorrelation (see Figure 3, Right).
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Figure 1. Irreversibility analysis of several synthetic dynamical models, as a function of the time series
length. From left to right, top to bottom, the six panels represent Gaussian noise, an Ornstein–Uhlenbeck
process, logistic, Henon and Arnold maps, and a Lorenz oscillator—see main text for details and
parameters. In the left Y axis, the blue solid and black dashed lines, respectively, represent the
average Kullback–Leibler divergence obtained by the permutation patterns and the visibility graph
approach—note the blue and grey bands, depicting one standard deviation. On the right Y axis,
the dotted red line indicates the fraction of simulations in which the time series is irreversible in a
statistical significant way, with α = 0.01.
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Figure 2. Irreversibility of time series generated by: ARCH model (Left); and GARCH model (Right).
Each line indicates the fraction of simulations in which the time series is irreversible in a statistical
significant way, with α = 0.01, as a function of the time series length and of the value of α∗ (see main
text for definitions).
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Figure 3. (Left) Fraction of irreversible time series yielded by a Lorenz chaotic system, as a function
of the time series length, where black (dashed), blue (solid) and red (dash-dot) lines correspond
respectively to the X, Y and Z channels of the system; and (Right) autocorrelation of the same three
time series.
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Figure 1 further suggests that the permutation patterns approach to irreversibility can be more
sensitive than the visibility graph one—note that the < D > blue lines usually have a steeper slope, and
converge faster than the black ones. Figure 4 depicts the fraction of times the three considered methods
detect that the underlying time series is irreversible in a statistical significant way (α = 0.01), for very
short time series lengths and for the two systems that were detected as irreversible (i.e., respectively,
the Logistic and Henon maps). Note that, to calculate the statistical significance of the divergence
yielded by the visibility graph approach, this has been compared with the ones obtained from randomly
shuffled versions of the time series, and the probability of finding a larger D in the random realisations
expressed as a p-value. Figure 4 indicates that the permutation pattern approach requires shorter
time series to reach a consistent output, something that is particularly conspicuous in the case of the
Henon map. Additionally, these results highlight the benefit associated to parameter-free methods.
Specifically, the Markov chain method has been tested with two different numbers of bins, respectively
4 (green dotted lines) and 8 (grey dotted lines), yielding different results depending on the underlying
dynamics. The fact that the proposed methodology required no parameter estimation or tuning thus
becomes an important practical advantage.
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Figure 4. Analysis of the time series length required to reach a consistent irreversibility assessment.
Both panels depict the fraction of times the permutation patterns (blue solid lines), the visibility graph
algorithms (black dashed lines) and the Markov chain method (dotted lines) detect a statistically
significant irreversibility, as a function of the time series length: (Left) logistic map; and (Right)
Henon map.

Finally, Figure 5 explores the resilience of the proposed method with respect to the presence of
noise. Specifically, we consider the previously described logistic map, and added a Gaussian noise:

xn+1 = axn(1− xn) + σξ, (10)

with a = 4.0 and ξ being independent random numbers drawn from a Gaussian distribution N (0, 1).
Note that noise is inherently reversible, and therefore its presence is expected to mask the irreversibility
of the logistic map. We then measure the minimum time series length that allows to detect the
irreversibility of the system the 90% of the times, and plot this as a function of the noise level σ.
The two solid lines in Figure 5 report the results, and indicate that the permutation patterns approach
is more resilient than the visibility graph one.

Taken together, the numerical experiments carried out on synthetic time series indicate that the
permutation patterns approach is comparable to the visibility graph one in assessing irreversibility.
The former is nevertheless more sensitive, as it relies more on local patterns (of dimension D), and
more resilient to noise, thus more suitable for the analysis of short time series. We take advantage of
this in Section 4 by analysing the temporal evolution of the irreversibility of real time series. Finally, the
local nature of the permutation patterns approach makes it extremely computationally efficient—with
a computational cost that scales linearly with the number of data points, as opposed to the quadratic
growth of the visibility graph approach.
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Figure 5. Resilience to noise. The two solid lines (left Y axis) depict the evolution of the time series
length required to reach a 90% detection of irreversibility for the logistic map, according to the
permutation patterns approach (black) and the visibility graph one (blue), as a function of the level
noise. The dashed line (right Y axis) indicates the fraction of times the visibility graph method is
detecting an irreversibility, when the permutation patterns method has reached a 90%.

4. Application to Financial Time Series

To further validate the proposed methodology, we assess the irreversibility of several financial
time series. These can be thought of as relatively short realisations of complex stochastic processes
whose dynamics is richer than most of the generated time series, and their characteristics (including
reversibility) can change over time. Dynamical repertoire richness and time series shortness are two
desirable aspects from a validation view-point. As previously introduced, if financial time series were
shown to be irreversible, i.e., if some permutation patterns were favoured over their corresponding
time-reversed counterparts, this would disprove the efficient market hypothesis (EMH) [20], as the
asymmetry would be associated with information with which to improve the prediction of future prices.

We consider two sets of time series representing the daily evolution of, on the one hand, the
Top-30 European stocks by capitalisation; and, on the other hand, of 12 representative world stock
market indices. Tables 1 and 2 report the two full lists, along with some basic characteristics. Both
sets of time series have been obtained through Yahoo Finance, and include data from 1 January 2008
to 1 January 2018—note that the actual number of data points may differ, e.g., due to local bank
holidays. To ensure the stationarity of all time series, the original values Xt have been transformed to
X̂t = log2 Xt+1/Xt. The resulting series X̂ have been tested through an Augmented Dickey–Fuller unit
root test [46], and for all of them the presence of a unit root was rejected in a statistically significant
way (the larger p-value being 2.48× 10−14 for the BNP.PA stock).

Each time series was analysed in three different ways. The first one entails estimating global
irreversibility, i.e., taking into account the whole time series. This corresponds to the irreversibility of
the system, under the assumption that such property is stationary, or to the assessment of the average
irreversibility. Three stocks and four indices resulted irreversible: BBVA.MC, ENEL.MI, and G.MI; and
DJI, GDAXI, GSPC and IXIC, respectively. This indicates that markets have preferred ways (or patterns)
when rallying up- or downwards, and are therefore strictly not efficient. It is also interesting to observe
that irreversibility is more frequent in indices (four out of twelve) than in individual stocks; this may
suggest that irreversibility is a collective (or emergent) phenomenon, which is difficult to see in the
dynamics of individual elements, but shows up when considering groups of them.
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Table 1. List of the 30 considered stocks.

Stock Code Name Country Capitalisation

ABI.BR Anheuser Busch Inbev NV Belgium 182.039 Be
AI.PA Air Liquide France 46.635 Be
AIR.PA Airbus SE France 72.22 Be
ALV.DE Allianz SE Germany 91.67 Be
ASML.AS ASML Holding N.V. Netherlands 71.596 Be
BAYN.DE Bayer AG Germany 87.425 Be
BBVA.MC Banco Bilbao Vizcaya Argentaria, S.A. Spain 49.919 Be
BMW.DE Bayerische Motoren Werke AG Germany 62.545 Be
BN.PA Danone SA France 44.386 Be
BNP.PA BNP Paribas SA France 84.307 Be
CA.PA Carrefour SA France 14.13 Be
DBK.DE Deutsche Bank AG Germany 32.651 Be
DPW.DE Deutsche Post AG Germany 48.763 Be
DTE.DE Deutsche Telekom AG Germany 69.937 Be
EI.PA Essilor International SA France 24.22 Be
ENEL.MI Enel SpA Italy 53.528 Be
ENGI.PA ENGIE SA France 34.648 Be
ENI.MI Eni S.p.A. Italy 53.801 Be
FRE.DE Fresenius SE & Co. KGaA Germany 37.235 Be
G.MI Assicurazioni Generali S.p.A. Italy 25.281 Be
IBE.MC Iberdrola, S.A. Spain 42.207 Be
INGA.AS ING Groep N.V. Netherlands 64.689 Be
ITX.MC Industria de Diseño Textil, S.A. Spain 89.425 Be
MC.PA LVMH Moët Hennessy Louis Vuitton S.E. France 121.994 Be
OR.PA L’Oréal S.A. France 102.244 Be
ORA.PA Orange S.A. France 39.275 Be
PHIA.AS Koninklijke Philips N.V. Netherlands 31.07 Be
SAF.PA Safran SA France 37.748 Be
SAN.PA Sanofi SA France 87.918 Be
SU.PA Schneider Electric S.E. France 42.25 Be

Table 2. List of the 12 considered market indices.

Index Code Name Country

BVSP IBOVESPA Brasil
DJI Dow Jones Industrial Average USA
FCHI CAC 40 France
GDAXI DAX Germany
GSPC S&P 500 USA
HSI Hang Seng Index Hong Kong
IXIC NASDAQ Composite USA
MERV MERVAL Buenos Aires Argentina
MXX IPC Mexico Mexico
N100 EURONEXT 100 Europe
N225 Nikkei 225 Japan
STOXX50E EURO STOXX 50 Europe

Even when the complete time series is reversible, it is possible to find shorter sub-windows
which are not reversible in a statistically significant way. Thus, it may happen that time series
are globally reversible, but locally irreversible. We explore this possibility in a second analysis, in
which we extract all possible sub-windows of a given length from each time series, and calculate
their average irreversibility. Note that this allows estimating irreversibility as a function of the time
window length, and thus the relationship between irreversibility and time scales. In other words, this
second approach enables to study the local vs. global nature of irreversibility. Results of this analysis,
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in terms of the fraction of windows yielding a statistically significant irreversibility (α = 0.01) as
a function of the window length, are presented in Figures 6 and 7. Three general ideas can be
drawn from these results. First, many time series that are globally reversible display noisy results,
with very low irreversibility probabilities, and usually around or below the significance threshold.
Secondly, those time series that are globally irreversible gain such properties at relatively long time
scales—the evolution of the fraction of irreversible windows constantly increases with the window
size. Specifically, when the average irreversibility of each time series is calculated for window lengths
comprised between (0, 500) and (500, 1000), the resulting correlation coefficient is of 0.92612 for the
30 stocks and of 0.879552 for the 12 indices. This seems to indicate that the time series are highly noisy,
and therefore that long time windows are required to reach a stable result—as previously shown in
Figure 5. Finally, some time series, which are globally reversible, can contain irreversible windows with
a significant probability; it thus seem that, for those time series, irreversibility is a property confined to
some specific time scales. This is the case, for instance, of BAYN.DE (maximum of 20.12% for lengths
of 225) or CA.PA (13.89% at 575).
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Figure 6. Reversibility of the 30 biggest European stocks by capitalization. The solid line of each
panel depicts the fraction of windows in which the absence of reversibility was statistically significant
(α = 0.01, Y axes), as a function of the window size in days (X axes). The horizontal dashed line
represents the significance level of 0.01. An asterisk in the top right corner of a panel indicates that the
stock is reversible when considering the whole time series.
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Figure 7. Reversibility of 12 market indices. The solid line of each panel depicts the fraction of windows
in which the absence of reversibility was statistically significant (α = 0.01, Y axes), as a function of the
window size in days (X axes). The meaning of the horizontal dashed lines and of the asterisks is the
same as in Figure 6.

Given that irreversibility is, in many cases, a localised effect, we finally checked whether different
stocks present a synchronised dynamics, i.e., if different stocks tend to become irreversible at the same
time. Figure 8 presents a time map of the irreversibility of the 30 analysed stocks, when considering
windows of 200 data points. While irreversibility seems to be slightly more probable at the end of the
considered period, deviations from the expected value are not enough to support the hypothesis of
synchronous dynamics.
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Figure 8. Analysis of the synchronicity between irreversible windows: (Top) the time intervals when
each stock time series is detected as irreversible, using windows of 200 data points; and (Bottom)
the evolution of the number of stocks that were irreversible at the same time. The dashed red line
represents the expected number of irreversible stocks under the assumption of independence.

5. Discussion and Conclusions

We proposed a new method to quantify irreversibility in time series based on permutation entropy.
We tested our method on synthetic time series from various processes with known irreversibility
properties and on financial time series of stock prices and indices. For synthetic time series, the results
from our method are consistent with known irreversibility properties of the respective time series.
Remarkably, particularly for the Lorenz system, the method could detect non-trivial irreversibility
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dynamics. Our results also show that, while most financial time series are globally reversible, the
proposed method highlighted an interesting dynamics, with time windows in which the dynamics
was significantly irreversible. While the results from the permutation entropy-base method were in
line with those obtained with the dHVG-based method (see Figure 9), the former method compared
favourably in terms of convergence speed, indicating that it can be more suitable for relatively short
time series. Additionally, the proposed method is able to better handle singular situations, provided
the modified version of Equation (7) is used. For instance, it is able to detect the extreme irreversibility
of a ramp function; on the contrary, for such time series, the dHVG-based method yields regular
networks with a constant degree of 1, as in both directions each value can only “see” the following
one, thus returning a D of zero and wrongly suggesting a perfect reversibility.
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Figure 9. Analysis of the similarity of the irreversibility, as yielded by the proposed method and by the
visibility graph approach: (Left) stocks time series; and (Right) indices time series.

Our results with synthetic time series are consistent with theoretical results, indicating that the
proposed method correctly identifies the underlying process. On the other hand, some results for
financial time series are somehow surprising. In particular, our method returned higher irreversibility
for some markets previously known to be among the most efficient ones (see Figure 7). These results
were in good agreement with those obtained using dHVGs. Insofar as the presence of irreversibility
may be associated with violation of the EMH, our results suggest that permutation entropy-based
irreversibility and dHVGs may capture a dynamical feature that differs from standard measures of
market efficiency. Further investigations will be needed to clarify the reasons for this discrepancy.
Additionally, it is important to exercise caution against too literal an interpretation of financial
systems’ random walk in the same thermodynamic terms (viz., friction and dissipation) as the original
Langevin equation [20]. Finally, it is worth pointing out that various studies [2,20,32] have suggested
that a complete picture of irreversibility in financial time series should be based on a multiscale
analysis, as the relationship among scales may contain important features ultimately determining time
irreversibility [20]. On the other hand, analyses at given scales, as in the present study, should be
interpreted in terms of irreversibility at that particular scale.

One final note should be made on the choice of the embedding dimension D, which we set to
D = 3 in this study. Using higher values of D increases the richness with which the dynamics of the
system is captured—see for an example [47]. In addition, it has been shown that the permutation
entropy (a closely related concept) is an approximation that converges to the true entropy rate of
the system in the limit of increasing embedding dimension. It is thus logical to expect a similar
behaviour for the proposed measure of reversibility, which may converge to a real value for large
values of D. It is nevertheless important to take into account that increasing D also comes with several
disadvantages. First, obtaining reliable statistics on the appearance of the permutation patterns and
reducing the influence of random fluctuations requires longer time series—as a rule of thumb, it is
usually recommended to have time series of length of at least (D + 1)! [48]. This limits the resolution
of the irreversibility analysis, and precludes detecting interesting phenomena at short time scales
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(as shown in Figure 3). Second, although, from a theoretical point of view, nothing precludes the use
of higher embedding dimensions in the methodology proposed in this study, the computational cost
scales exponentially with the embedding dimension—a limitation that may become serious when
analysing large datasets as in some real-time applications.
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