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Abstract: Entropy in factories is situated. For example, there can be numerous different ways of 
picking, orientating, and placing physical components during assembly work. Physical components 
can be redesigned to increase the Information Gain they provide and so reduce situated entropy in 
assembly work. Also, situated entropy is affected by the extent of knowledge of those doing the 
work. For example, work can be done by knowledgeable experts or by beginners who lack 
knowledge about physical components, etc. The number of different ways that work can be done 
and the knowledge of the worker combine to affect cognitive load. Thus, situated entropy in 
factories relates to situated cognition within which knowledge is bound to physical contexts and 
knowing is inseparable from doing. In this paper, six contributions are provided for modelling 
situated entropy in factories. First, theoretical frameworks are brought together to provide a 
conceptual framework for modelling. Second, the conceptual framework is related to physical 
production using practical examples. Third, Information Theory mathematics is applied to the 
examples and a preliminary methodology in presented for modelling in practice. Fourth, physical 
artefacts in factory production are reframed as carriers of Information Gain and situated entropy, 
which may or may not combine as Net Information Gain. Fifth, situated entropy is related to 
different types of cognitive factories that involve different levels of uncertainty in production 
operations. Sixth, the need to measure Net Information Gain in the introduction of new technologies 
for embodied and extended cognition is discussed in relation to a taxonomy for distributed 
cognition situated in factory production. Overall, modelling of situated entropy is introduced as an 
opportunity for improving the planning and control of factories that deploy human cognition and 
cognitive technologies including assembly robotics. 

Keywords: artificial intelligence; cognitive load; embodied cognition; entropy; factory; pragmatics; 
Information Theory; robotics; situated cognition 

 

1. Introduction 

Factories that deploy artificial intelligence (AI) can be described as cognitive factories. The 
deployment of AI in factories is argued to be necessary to bring the speed and consistency of fully 
automated mass production to the manufacturing of individual products [1,2]. By 2018, cognitive 
factories will have existed as a manufacturing systems goal for more than 10 years, yet manufacturers 
seeking to increase the individuality of products, such as Mercedes and Toyota, are reducing the 
number of assembly robots and increasing the number of human operatives. This is because robots 
are not able to match human embodied cognition in acting competently under uncertainty. 
Importantly for the production of individual goods, the embodied cognition of human operatives 
continues to provide unsurpassed flexibility for diverse sensorimotor/psychomotor tasks in assembly 
work [3,4]. Reliance on human workers for sensorimotor/psychomotor tasks in the production of 
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individual goods continues in spite of many efforts to improve the embodied cognition of robots [5,6]. 
Nonetheless, human operatives make many errors during production work [7,8]. 

One step towards improving the performance of both assembly robots and human operatives is 
modelling situated entropy. For example, situated entropy can provide a measurement of task 
uncertainty that is applicable to both assembly robots and human operatives within computational 
conceptualizations of embodied cognition [9,10]. At the same time, measurement of task uncertainty 
in terms of situated entropy can provide targets for Information Gain [11,12], which can be worked 
towards through application of, for example, industrial engineering methods and situation 
awareness modelling [13]. The remainder of the paper comprises six sections. In Section 2, 
background is provided about the modelling of situated entropy for physical work. Then, in Section 
3, conceptual framework for modelling is introduced. Subsequently, in Section 4, results from 
modelling are presented. In Section 5, following from the example results, a preliminary modelling 
methodology is presented. In the penultimate Section, 6, implications for the production of individual 
goods are discussed from the perspectives of theory building, applied research, and practice. In the 
concluding Section, 7, principal contributions to manufacturing systems knowledge are described. 

2. Background 

Entropy is larger when there is a larger number of ways in which something can happen. For 
example, there is little uncertainty about flipping a fair coin: the outcome will be heads or tails with 
equal probability. This uncertainty can be quantified as an entropy of 1.00. By contrast, there is more 
uncertainty about rolling a fair six-sided die. This is because there are more ways in which something 
can happen as the fair coin can land on two faces but the fair die can land on six faces. This increased 
uncertainty can be described as an entropy of 2.58 [14]. In physical work, if a component can be fitted 
in six different ways with equal probability (i.e., entropy 2.58) and it is redesigned so it can be fitted 
in only two ways (i.e., entropy 1.00) there is an Information Gain of 1.58. Moreover, if a component 
is redesigned so that it can be fitted in only one way (i.e., entropy 0.00), there is an Information Gain 
of 2.58. Similarly, uncertainty arising from manufacturing instructions can be reduced through 
information and communication design that reduces sources of ambiguity [15]. 

Higher Information Gain per knowledge unit has been described as increased knowledge 
helpfulness to knowledge users [16]. Important knowledge users in assembly of individual products 
on factory floors include assembly robots and human operatives. It is essential that increased 
Information Gain reduces their robot computational loads and human cognitive loads. This is 
because there are high computational/cognitive loads involved in sensorimotor/psychomotor 
assembly work, which can be increased to overload by uncertainties in the assembly of individual 
goods [3,17]. In particular, even low-level sensorimotor robot work can involve more computational 
load than the high-level reasoning at which AI excels, for example when beating human world 
champions at board games [18,19]. Moreover, transfer of sensorimotor skills by robots to new settings 
can involve very high computation loads [20–22]. For human operatives, there can be high cognitive 
loads during the practice and feedback required to develop embodied neurological templates for 
psychomotor skills [23]. Subsequently, embodied neurological templates are flexible enough to 
enable human experts to transfer their psychomotor skills to new settings [24]. However, the 
performance of human experts can deteriorate if knowledge units involve high cognitive loads: i.e., 
overload leads to underperformance [25–27]. 

Accordingly, Information Gain and computational/cognitive overload need to be addressed 
together in modelling. However, in doing so, it is important to take into account factors that affect 
robot workers and human operatives differently. For example, more colorful presentation of 
information may only increase computational load for assembly robots. By contrast, more colorful 
presentation of information may increase human cognitive absorption and facilitate Information Gain 
for human workers [28]. 
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3. Conceptual Framework 

In this section, findings are described from review of extant theoretical frameworks. Then, the 
conceptual framework for modelling introduced. 

3.1. Extant Theoretical Frameworks 

As explained in the following paragraphs, the modelling reported in this paper is informed by 
two apposite theoretical frameworks. The first theoretical framework is provided by Situated 
Cognition, Embodied Cognition, and Embodied Cognitive Load Theory [29–32]. The second 
theoretical framework is provided by Pragmatics of Material Interaction, Performative Pragmatics 
and Relevance Theory [33–36]. 

Embodied Cognition describes the body beyond the brain taking physically constitutive roles in 
cognitive processing [37–39]. Embodied Cognition relates to broader Situated Cognition, within 
which knowledge is bound to physical contexts and knowing is inseparable from doing. Situated 
Cognition and Embodied Cognition are relevant to artificial intelligence (AI) as well as human 
intelligence. For example, Behaviour-based Robots develop embodied knowledge through trial-and-
error sensing and reacting to situations. This situated development of embodied AI offers 
opportunities to overcome the barrier to scaling up robotics that would otherwise be caused by 
programmers having to anticipate every situation and pre-program every response in advance. 
However, the computational demands of embodied AI can easily escalate, for example because of 
complexity in robot vision data processing [40–42]. Embodied Cognitive Load Theory (ECLT) can be 
applied to structure Information Gain, and at the same time structure prevention of cognitive 
overload/computational overload that leads to underperformance. Within ECLT, there are three 
types of cognitive load: intrinsic, extraneous and germane. Intrinsic cognitive load can be related to 
fundamental characteristics of a task. For example, assembling a vehicle engine with 50 plus parts 
involves more intrinsic cognitive load than assembling a three-part toy engine. Extraneous cognitive 
load can be related to cognitive load involved in identifying the correct assembly tools for an 
assembly operation. Germane cognitive load can be related to the work put into creating a permanent 
store/schema of assembly work knowledge [30,43]. 

Increasing Information Gain while reducing robot computational load and human cognitive 
load, can be structured further through reference to three theoretical formulations of work 
pragmatics: Pragmatics of Material Interaction, Performative Pragmatics, and Relevance Theory. 
Within the Pragmatics of Material Interaction, assembly workers interact with materials, such as 
physical components, which are designed to be interacted with in particular ways by the assembly 
worker in order to fulfil a productive intention, such as the efficient assembly of a physical product 
[34]. Within Performative Pragmatics, information contributes to performance of action, in other 
words information is performative only if it is issued in the course of the doing of an action [33]. 
Performative information [44] can be commissive (e.g., promise to take action); directive (e.g., 
commands/requests), declarations (e.g., rejections/approvals), and/or expressives (e.g., 
congratulations/thanks). Within Relevance Theory, the probability of information being acted upon 
increases with the probability that it connects with other available sources to yield a positive cognitive 
effect, such as settling a doubt, correcting a mistaken impression, answering a question, and/or 
improving knowledge on a certain topic. Thus, information that is intended to performative either 
indirectly through component design or directly through commands etc. needs to connect with other 
available sources, such as extant cognitive/computational schema, in order to be easily processed: i.e., 
understood with minimal cognitive/computational effort [36]. A summary of the extant theoretical 
frameworks is provided in Table 1. In the following paragraphs these are integrated to provide a 
conceptual framework for modelling. 
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Table 1. Theoretical frameworks. 

Theoretical Frameworks References 

Cognitive Load 
Situated Cognition [29] 

Embodied Cognition [37] 
Embodied Cognitive Load [30] 

Work Pragmatics 
Material Interaction Pragmatics [34] 

Performative Pragmatics [33] 
Relevance Theory [36] 

3.2. Conceptual Framework for Modelling 

Design engineers can design Information Gain into assembly operations and, at the same time, 
design cognitive/computational load out of assembly operations, through at least three engineering 
design strategies that can be derived from combining extant theoretical frameworks described above. 

First, Information Gain can be increased by improving Pragmatics of Material Interaction during 
assembly operations. For example, physical components can be designed to be symmetrical or 
obviously asymmetrical. Such component design makes it immediately apparent how a component 
should be picked/placed, and so reduces intrinsic cognitive load while increasing Information Gain 
[45,46]. Furthermore, the Information Gain provided by the physical component is much higher than 
the opposite scenario where a physical component that has no immediately obvious orientation for 
picking and placing. This example illustrates one opportunity for reduced intrinsic embodied 
cognitive load to facilitate Information Gain. Also, this example illustrates that designing for reduced 
embodied cognitive load can reduce entropy: i.e., reduce the amount of information needed to 
represent an event, in this case, the event of component picking/placing. 

Second, Information Gain can be increased by improving Performative Pragmatics during 
assembly operations. For example, directive information provided by visual control boards for 
assembly tools can be designed to increase Information Gain by maximizing comprehension and 
engagement. At the same time, design of visual control boards can minimize vagueness and 
ambiguity, and so reduce extraneous cognitive load. Such design of visual control symbols/templates 
makes it immediately apparent what assembly tools should be used for what assembly tasks [47,48]. 
Furthermore, the Information Gain provided by the symbols/templates is much higher than the 
opposite scenario where a method of assembly tool control that is not intuitively understandable. 
This example illustrates one opportunity for increasing Information Gain, and reducing extraneous 
embodied cognitive load. Again, this example illustrates that designing for increased Information 
Gain and reduced embodied cognitive load can reduce entropy: i.e., reduce the amount of 
information needed to represent an event, in this case, the event of identification of correct tools for 
assembly operations. 

Third, in accordance with Relevance Theory, Information Gain can be increased by designing to 
maximize the connection of knowledge units, such as physical component, visual control boards, etc., 
to extant computational/cognitive schema: i.e., through design to maximize relevance. Such design 
increases the probability of information being acted upon as it increases the probability that it yields 
a positive cognitive effect, such as improving knowledge. This emphasis on schema extends design 
work to systems engineering, for example, designing factory operations to have assembly 
workstations that provide consistent layouts but with sufficient flexibility to enable efficient assembly 
of individual goods. This can increase Information Gain and, at the same time, reduce germane 
cognitive load involved in developing computational/cognitive schema of assembly work knowledge 
[49,50]. Furthermore, the Information Gain provided by designing for relevance is much higher than 
the opposite scenario where an overall production process accumulates ad hoc in response to 
production crises etc. This example illustrates one opportunity for reduced embodied germane 
cognitive load to facilitate increased Information Gain. Again, this example illustrates that designing 
for reduced embodied cognitive load can reduce entropy: i.e., reduce the amount of information 
needed to represent an event, in this case, an assembly process. 
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As illustrated by these examples, knowledge units for Information Gain extend beyond written 
information to physical components, visual control boards, and other physical artefacts used in the 
assembly of individual physical products. A summary of the conceptual framework for modelling is 
provided in Table 2. 

Table 2. Conceptual framework for modelling. 

Type of Information 
Gain/Cognitive Load 

Reduction 

Example 
Knowledge 

Unit 

Mode of Information 
Gain/Cognitive Load 

Reduction 

Design for Information Gain and Cognitive 
Load Reduction 

Design In Gain 
Examples 

Design Out Load 
Examples 

Intrinsic 
Physical 

components 
Material Interaction 

Pragmatics 

Design components 
for simplicity of 

assembly 

End ambiguous 
component 

assembly features 

Extraneous 
Visual control 

boards 
Performative Pragmatics 

Design for 
jigs/templates for 

clarity and 
engagement 

End tools stored 
without visual 
control boards 

Germane 
Assembly 

workstations 
Schema Relevance 

Design work cells for 
adaptive flexibility 

End ad hoc 
development of 
factory layouts 

4. Modelling Examples 

4.1. Discrete Equal Probability 

Application of the conceptual framework for modelling entropy in order to inform cognitive 
load reduction and Information Gain is described in the following paragraphs. Entropy can be given 
precise mathematical definition. Specifically, the entropy (H) of a random variable X can be written 
as Equation (1) if the random variable X takes on values in a set X = {x1, x2, …xn} and is defined by a 
discrete probability distribution P(X): 

𝐻𝐻(𝑋𝑋) = −�𝑃𝑃(𝑥𝑥) log𝑃𝑃(𝑥𝑥)
𝑥𝑥𝑥𝑥𝑥𝑥

 (1) 

Entropy is high when uncertainty about an event is high. For example, as shown by Equation 
(2), there is entropy of 2.58 if a component can be orientated in six different ways with equal 
probability. Then, entropy reduces to 0.00 if the component is redesigned so it can be orientated in 
only one way. Hence, redesign brings an Information Gain of 2.58: 

𝐻𝐻(𝑂𝑂) = − � 𝑃𝑃(𝑥𝑥) log𝑃𝑃(𝑥𝑥)
𝑜𝑜𝑥𝑥{1,2,3,4,5,6}

 (2) 

= − [1/6log1/6+1/6log1/6+1/6log1/6+1/6log1/6+1/6log1/6+1/6log1/6]  

= 2.584962500721156  

As summarized in Table 3, modelling can include measurement of intrinsic, extraneous and 
germane entropy. Sources of entropy related to physical components include picking, orientating and 
placing; sources of entropy related to visual control boards include conceptual, presentational and 
linguistic; sources of entropy related to assembly workstations include component access, work 
sequence and physical positioning. 
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Table 3. Sources of entropy. 

Type of Information Gain/Load Reduction Example of Knowledge Unit Sources of Entropy References 

Intrinsic Physical components 
Picking 

Orientating 
Placing 

[45,46] 

Extraneous Visual control boards 
Conceptual 

Presentational 
Linguistic 

[47,48] 

Germane Assembly workstation 
Component access 

Work sequence 
Physical positioning 

[49,50] 

A summary of modelling Information Gain targets for one assembly task at one workstation is 
shown in Table 4. This shows that the design of the physical component allows it to be picked in one 
way, orientated in three ways, and placed in two ways, which leads to an Information Gain target for 
that physical component in this task of 2.58. The design of the visual control board for the tool needed 
in placing the physical component has no conceptual ambiguity. This is because the full outline shape 
of the tool is inset into visual control board. Thus, there is direct conceptual equivalence between the 
image on the visual control board and the physical tool itself. Also, there is no linguistic ambiguity 
because words are not used on the visual control board. However, the outline shape of the tool to be 
used is positioned too close to the outline shapes of two similar sizes of the same tool type. Hence, it 
can be difficult to differentiate between the three, which leads to an Information Gain target for the 
visual control board in this task of 1.58. 

Table 4. Information Gain targets for one task at one workstation. 

Type of Information 
Gain/Load Reduction 

Example 
Knowledge Unit 

Sources of 
Entropy 

Entropy 
Number of Different Ways of 
Carrying Out the Same Work 

Entropy 

Intrinsic 
Physical 

components 

Picking 1 0.00 
Orientation 3 1.58 

Placing 2 1.00 
Target  2.58 

Extraneous 
Visual control 

boards 

Conceptual 1 0.00 
Presentational 3 1.58 

Linguistic words not used 0.00 
Target  1.58 

Germane 
Assembly 

workstation 

Component 
access 

2 1.00 

Work sequence 2 1.00 
Physical 

positioning 
5 2.32 

Target  4.32 

The design of the assembly workstation allows two different ways of accessing the physical 
component from its storage bin. Also, there are two ways of sequencing the work with the physical 
component, and five different physical positions with which the work with the physical component 
can be done. This leads to an Information Gain target for the assembly workstation in this task of 
4.32. 

4.2. Discrete Unequal Probability 

As summarized in Table 5, targets will differ from those recorded in Table 4 when there is 
unequal distribution across the different ways of carrying out the work in one task. 
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Table 5. Targets for one task at one workstation—unintended unequal distributions. 

Type of Information 
Gain/Load Reduction 

Example 
Knowledge Unit 

Sources of 
Entropy 

Entropy 
Number of Different Ways 
of Carrying Out the Same 

Work 
Entropy 

Intrinsic 
Physical 

components 

Picking 1 0.00 
Orientation (2.0, 0.5, 0.5) 3 1.25 

Placing 2 1.00 
Target  2.25 

Extraneous 
Visual control 

boards 

Conceptual 1 0.00 
Presentational (1.0, 1.0, 1.0) 3 1.58 

Linguistic words not used 0.00 
Target  1.58 

Germane 
Assembly 

workstation 

Component 
access 

2 1.00 

Work sequence 2 1.00 
Physical 

positioning 
(4.0, 0.2, 0.2, 0.2, 0.2) 5 1.00 

Target  3.00 

These unequal distributions may be unintended. For example, a human expert in the task will 
usually carry out the orientation in the one way that is most efficient: except for sometimes when 
lacking motivation due to being bored, etc. [51,52]. This can lead to one way of orientating the 
physical component being used two out of three times and the other two ways being used equally: 
leading to a distribution of 2/3, 0.5/3, 0.5/3 rather than 1/3, 1/3, 1/3. This leads to entropy of 1.25 rather 
than 1.58. By contrast, poor design of the visual control board could lead to there being an equal 
distribution of recurring uncertainty and hence the same target of 1.58 as shown in Table 4. Yet, as 
shown in Equation (3), the entropy of physical positioning (PP) may be much less if one way of 
physical positioning is taken four times out of five, but not every time due factors such as loss of 
motivation due to boredom, etc., [50–52]. This can lead to an entropy and Information Gain target 
very similar to when there are two ways of doing the same task. In particular, the Information Gain 
target is 1.0006, which is very close to 1.0 and close to 1.32 less than entropy of 2.32 when each of the 
five ways is used with equal frequency: 

𝐻𝐻(𝑃𝑃𝑃𝑃) = − � 𝑃𝑃(𝑥𝑥) log𝑃𝑃(𝑥𝑥)
𝑝𝑝𝑝𝑝𝑥𝑥{1,2,3,4,5}

 (3) 

= − [4/5log4/5 + 0.2/5log0.2/5 + 0.2/5log0.2/5 + 0.2/5log0.2/5 + 0.2/5log0.2/5]  

= 1.0005594662738457  

4.3. Joint Entropy 

By contrast, sources of entropy can be reduced for both human operatives and assembly robots 
by designing individual products to be based on modular product architectures and families of 
components [53,54]. Such engineering design can increase the number of times that the same 
knowledge units, such as physical components, are used in different knowledge categories, such as 
products. This can enable human operatives to become increasingly familiar with the existence of 
knowledge units and the understanding of their meaning. Also, assembly robots can carry out the 
same task repeatedly in slightly different settings and potentially learn how to carry out the task with 
increasing efficiency [55]. Entropy arising from repeated use of the same task in different products 
can be modelled in terms of joint entropy. For example, familiarity (familiar not familiar) with 
product variation (F) and ways of orientating (3/5, 1/5, 1/5) physical component (O) can be modelled 
in terms of joint entropy as shown by Equation (4): 
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𝐻𝐻(𝐹𝐹,𝑂𝑂) ≡ 𝐻𝐻�𝑃𝑃(𝐹𝐹,𝑂𝑂)� = −��𝑃𝑃(𝑓𝑓, 𝑜𝑜) log𝑃𝑃(𝑓𝑓, 𝑜𝑜)
𝑜𝑜∈𝑂𝑂𝑓𝑓∈𝐹𝐹

 (4) 

In this case, joint entropy involves the following joint distributions: 

P(familiar, 3/5 orientation) = 2.5/5 (5) 

P(not familiar, 3/5 orientation) = 0.5/5 (6) 

P(familiar, 1/5 orientation) = 0.75/5 (7) 

P(not familiar, 1/5 orientation) = 0.25/5 (8) 

P(familiar,1/5 orientation) = 0.75/5 (9) 

P(not familiar, 1/5 orientation) = 0.25/5 (30) 

Applying Equation (8) as show below entropy is 2.08: 
H(F,O) = − [2.5/5log2.5/5 + 0.5/5log0.5/5 + 0.75/5log0.75/5 +  

0.25/5log0.25/5 + 0.25/5log0.25/5 + 0.25/5log0.25/5] 
(41) 

H(F,O) = 2.0854752972273345 (52) 

4.4. Conditional Entropy 

Conditional entropy involves the entropy of one knowledge unit being dependent upon another. 
For example, without engineering design of product architectures and families of components for 
simplicity of assembly, it could be possible for knowledge of component orientation (O) to be 
dependent upon familiarity (F) with product type. Conditional entropy can be written as shown in 
Equation (13) when the vertical bar | means “given that”: 

H (O|F) (63) 

If O is completely dependent upon F, then O has 0.00 entropy when there is no uncertainty of F. 
Accordingly, the relationship between conditional entropy and joint entropy can be expressed as 
shown in Equation (14), where full knowledge of F results in O no longer being conditional on F: 

H (O|F) + H(F) = H(F,O) (74) 

As shown in Equation (15), conditional entropy can be described in very similar terms to joint 
entropy as shown in Equation (4): 

𝐻𝐻(𝑂𝑂|𝐹𝐹) = −��𝑃𝑃(𝑓𝑓, 𝑜𝑜) log𝑃𝑃(𝑜𝑜|𝑓𝑓)
𝑜𝑜∈𝑂𝑂𝑓𝑓∈𝐹𝐹

 (8) 

However, rather than calculate conditional entropy, it is preferable to make the its elimination a 
priority in the engineering design of assembly work. This is important to avoid chains of uncertainty 
spreading throughout factory operations, which can lead to multiple problems for productivity and 
quality. Conditional entropy can be reduced by replacing iterative processes of action-observation-
action with processes where repeated observation to determine next actions is not needed. For 
example, car bodies can be fabricated by humans who are skilled in the craft of panel beating. This 
involves sequential action and observation as the skilled human operative starts to beat sheet metal 
into compound curves with, for example, pear shaped mallets. Then, observes the emerging panel 
shape to determine where next to beat the sheet metal with what force using which mallet. This 
sequential process is used in some low-volume sports car production when relatively easily formed 
aluminum alloy is used. However, panel beating has been replaced in the vast majority of car 
production with automated presses that produce body panels in a few seconds. Similarly, but with 
more versatility, additive manufacturing such as 3D printing can replace time-consuming cost-
generating iterations of craft-based action and observation with a continuous automated process [56]. 
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4.5. Differential Entropy 

It is not always realistic to model entropy as having discrete probabilities. For example, 
beginners are likely to try out more ways of performing tasks than experts [57,58]. However, there is 
uncertainty about how many ways they will try out for each task. Hence, it is appropriate to apply 
continuous probability distributions such as the Normal Distribution. Differential entropy, which is 
the entropy of a continuous random variable, can be described as shown in Equation (16) where 
natural logarithm (ln) is applied to square root of pi times the variance (σ2). Here, variance is the 
principal determinant of differential entropy as the other factors are constant: 

h(x) = ½ + ln(√2𝜋𝜋𝜋𝜋2) (169
) 

For example, the mean of ways beginners try out for each task can be 3.0 and the variance can 
be 2.0. In that case, the differential entropy can be calculated as shown in Equation (23). The 
multiplication by 1.442695041 in Equation (22) is applied to enable differential entropy to be 
expressed in the same unit of measurement as discrete probability distributions for entropy. This is 
useful, for example, to enable comparisons to be made [59]: 

2 × π = 6.28318530718 (17) 

6.28318530718 × 2.00 = 12.5663706144 (18) 

√12.5663706144 = 3.5449077018 (19) 

ln 3.54490770182 = 1.2655121235 
(100

) 

½ + 1.2655121235 = 1.7655121235 (111
) 

1.7655121235 × 1.442695041= 2.54709558540 (122
) 

h(X) = 2.54709558540 
(133

) 

5. Preliminary Modelling Methodology 

In accordance with the conceptual framework encompassing cognitive load and work 
pragmatics, the examples above illustrate that physical artefacts of production, such as components, 
control boards and workstations can carry situated entropy and can bring Information Gain. Based 
on this conceptualization of physical artefacts as pragmatic knowledge units in cognitive factories, a 
preliminary methodology for modelling situated entropy and its reduction through Information Gain 
is introduced in this section. In particular, the focus of the preliminary methodology is Net 
Information Gain brought about by six strategies, all of which can be applied in reducing different 
types of situated entropy. 

5.1. Methodology Focus—Net Information Gain 

Adaptations of knowledge units or the introduction of new technologies to supplement 
knowledge units can introduce additional sources of entropy. For example, augmented reality (AR) 
work instructions overlay computer-generated information on the real world environment; often 
using semi-transparent head-mounted displays. Since the new Millennium, it has been argued that 
AR can provide a better medium for assembly information than traditional media [60]. However, as 
summarized in Tables 6 and 7 AR introduces new sources of entropy from uncertainties related to 
the fit of AR technology to task, place and person. For example, the information communicated 
through AR must be the up-to-date digital information for the exact features of the particular task for 
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the specific product type. This can involve complicated data management challenges when there are 
an increasing number of new options for product types. Also, the workplace must be suitable for 
enabling reliable wireless transmission of large data files. In addition, assembly operatives who use 
AR must have natural vision capable with dealing with AR displays without suffering headaches, 
etc. 

Table 6. Work instruction entropy sources for human operatives. 

Type of Information 
Gain/Load Reduction 

Example 
Knowledge Unit 

Sources of Entropy 
Entropy 

Number of Different Ways of 
Carrying Out the Same Work 

Entropy 

Extraneous 
Work 

Instructions 
Information 

Conceptual 1 0.00 
Presentation 2 1.00 

Linguistic 1 0.00 
 Target  1.00 

Table 7. AR work instruction entropy sources for human operatives. 

Type of Information 

Gain/Load Reduction 

Example Knowledge 

Unit 
Sources of Entropy 

Entropy 

Number of Different Ways of 

Carrying Out the Same Work 
Entropy 

Extraneous 
Augmented Reality 

Work Instructions 

Information 

Conceptual 1 0.00 

Presentation 1 0.00 

Linguistic 1 0.00 

Communication 

Task fit 3 1.58 

Place fit 2 1.00 

Person fit 2 1.00 

Target  3.58 

Hence, even if, as shown in Table 7, AR reduces entropy from presentational ambiguity to zero, 
AR can introduce entropy into the communication of the information [15,61]. Thus, rather than Net 
Information Gain, there can be net increase in situated entropy. Let X denote state of product after 
assembly, Z denote information contained in augmented reality work instructions which human 
operator understands as Y due to possible misfit to the task or communication errors. Accordingly, 
as summarized in Equation (24)–(26) the modelling of situated entropy should take into account that 
steps taken to reduce extant situated entropy can introduce new sources of situated entropy and 
confound Information Gain: 

H(X,Y|Z) (144
) 

= H(X|Z) 
(155

) 

+ H(Y|X,Z) (26) 

Equations (25) and (26) follow from Equation (24) by the chain rule for conditional entropy. 
Conditional entropy H(X|Z) in Equation (25) is commonly referred to as equivocation and 
corresponds to the uncertainty in the product assembly from the work instruction point of view. A 
case that is of specific interest is when H(X|Z) = 0. By its definition H(X|Z) = 0 when X becomes 
deterministic after observing Z. In other words, the assembly of the product is deterministic given 
work instructions as shown in Table 7. On the other hand, conditional entropy H(Y|X,Z) in Equation 
(26) can be referred to as prevarication as it represents the uncertainty in the operator’s understanding 
of work instructions from the technical writer point of view. 

5.2. Methodology Strategy One: Apply Engineering Methods 
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The examples in Section 4 illustrate how situated entropy can be reduced through application of 
engineering methods that increases Information Gain intrinsic to physical components. The 
reengineering of production processes that include arcane craft practices can involve introduction of 
automated processes that can reduce conditional entropy. The reengineering of physical components 
to reduce the number of ways they can be picked, orientated and placed can reduce discrete entropy. 
The reengineering of product types can lead to rationalization involving introduction of product 
architectures and families of parts that can reduce joint entropy. Thus, as summarized in Equations 
(27) to (29) the application of engineering methods can reduce situated entropy from the complexity 
of conditional entropy to the comparative simplicity of discrete entropy with few ways of carrying 
out a task. Typically, the lower the situated entropy, the higher the potential for automation. 
However, often successful application of engineering methods involves large-scale capital 
investment. For example, replacing the complex conditional entropy of panel beating with the 
minimal discrete entropy of automated presses can involve capital investments, which are so large 
that tens of thousands of the same shape panel have to be sold. The more variation in customer 
requirements there are, the less potential there can be for entropy reduction through engineering 
methods alone [3]. Let random variables X, Y, and Z denote the possible state of physical components 
in the final product, for example, location and orientation in three-dimensional space. Furthermore, 
let us assume that random variables X, Y, Z take values from sets A, B, and C with sizes |A|, |B|, 
and |C|, respectively. Then, by properties of joint entropy we obtain with equality in Equation (28) 
if and only if X, Y, and Z are independent and equality in Equation (29) if and only if X, Y, Z are 
uniformly distributed on A, B, and C, respectively. In words, the application of engineering methods 
that reduce the number of ways of carrying out a given task leads to reduction of upper bound on 
joint entropy as shown in Equation (29). The upper bound Equation (28), on the other hand, 
represents the worst-case scenario where components x, y, and z are independently designed. If they 
are jointly designed, for example, the location and orientation of x determines the location and 
orientation of y and location and orientation of y determines in turn the location and orientation of 
z, then H(Y|X) and H(Z|X,Y) are zero in Equation (27) which leads to significant reduction in situated 
entropy. Similar conclusions can be drawn when x, y, and z represent product architectures, families 
of products, or modules rather than physical components: 

H(X,Y,Z) = H(X) + H(Y|X) + H(Z|X,Y) (27) 

<= H(X) + H(Y) + H(Z) (28) 

<= log(|A|) + log(|B|) + log(|C|) (29) 

5.3. Methodology Strategy Two—Introducing Embedded Artificial Cognition 

A complementary strategy can be to deploy embedded artificial cognition through advanced 
automation technologies such as self-adapting production lines [62]. Such production technologies 
can reduce the amount of knowledge needed by workers in low volume manufacturing of a mix of 
products. Detailed description of such technologies is outside the scope of this paper. However, it is 
important to note that the potential of such technologies to reduce situated entropy is accompanied 
by their potential to introduce new sources of germane entropy: for example, through disruption of 
established workstation layouts. In particular, introduction of embedded technologies can reduce the 
number of iterations of traditional actions and observations, and so reduce traditional sources of 
conditional entropy. Nonetheless, as summarized in Equation (30) there can be new sources of 
conditional entropy. For example, expert panel beaters make many observations as they look at the 
emerging shapes of sheet metal that they are working with mallets etc. By contrast, the objectives of 
deploying a self-adapting production line can include eliminating the need for human observations. 
However, this type of “black box” can lead to outcomes without explanation. Such opacity of artificial 
cognition in workplaces is being addressed by research into improving its transparency [63]. 
Meanwhile, the operation of artificial cognition needs to involve human observation of control 
panels/dashboards etc., which results in traditional observations such as those of panel beaters being 
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replaced by new types of observations. Let Xi denote the action of self-adapting line applied to the 
ith component of a product and Yi denote the observation of the outcome of the corresponding action. 
For simplicity, let us consider only two physical components. Then, by the lower-additivity property 
of conditional entropy we obtain: 

H(X1,X2|Y1,Y2) <= H(X1|Y1) + H(X2|Y2) 
(160

) 

with equality if and only if (X1|Y1) and (X2|Y2) are stochastically independent. In words, performing 
action on many components and jointly observing its outcome at once rather than in sequential way 
reduces the situated entropy. However, the observations needs to be done jointly (Y1,Y2) which, in 
turn, implies that information presented to possible human supervisor is of new type. In particular, 
several observations are first combined and then presented to an observer. 

5.4. Methodology Strategy Three—Introducing Enactive Artificial Cognition 

A further complementary strategy can be to deploy enactive artificial cognition through new 
technologies. For example, electrochromic materials that change their colour or opacity due to actions 
such as the application of a voltage; thermochromic materials that change in colour depending on 
their temperature; and photochromic materials that change colour in response to light. More 
sophisticated is adaptive structure technology, i.e., adaptatronics, which combines conventional 
fabricated structures with active material systems that include sensor and actuator functioning. In 
connection with suitable adaptive controller systems, adaptive structure systems can adapt to their 
respective operational environment [64]. Exactly how such technological advances, which introduce 
some rudimentary possibilities for enactive artificial cognition, can be applied in the production of 
physical goods is an open question outside of the scope of this paper. However, it is apparent that 
colour changes in smart materials can introduce new sources of extraneous cognitive load alongside 
potential Information Gain. Hence, colour changes need to be related clearly to explanation of what 
the colours means in the context in which they are displayed. Equations (24)–(26) in Section 5.1. are 
relevant to calculation of Net Information Gain from such sources. 

5.5. Methodology Strategy Four—Enhance Embodied Artificial Cognition 

In addition to seeking to introduce Net Information Gain through engineering methods, 
embedded artificial cognition and enactive artificial cognition, steps can be taken to reduce situated 
entropy by enhancing the embodied cognition of those doing the work. The acquisition robot 
psychomotor skills can involve the “imitation learning” of “robot apprenticeship learning” and 
“robot learning from demonstration”. Both involve demonstration, observation, imitation, practice, 
and feedback [65]. A proposed advantage of robot learning from demonstration is that it can enable 
adaptation of skills to new settings with minimal extra programming. Indeed, a goal of robot learning 
from demonstration is that humans can teach robots new tasks without those humans having any 
knowledge of programming [66]. This can involve application of advances in computer vision 
concerned with human activity recognition [67]. At the same time, it is important to determine which 
aspects of demonstrations are essential to achieving the desired outcome, through data analyses 
and/or from advice by human experts. Also, it is necessary to determine how demonstrations can be 
imitated by robots, which perceive differently to humans and are physically different to humans [68]. 
Furthermore, as robots do not naturally position themselves in the same way humans for optimal 
performance, combined motion and task planning is needed for robot workers [69]. Given the 
challenges of robot learning from demonstration, it is important to engineer production tasks for least 
action. In particular, the Principle of Least Action is founded upon scientific observations that nature 
tends to act as simply as possible: for example, by taking a path between two points that requires the 
least action. Indeed, it has been argued that it is “Nature’s Command” to “follow the path of least 
action” [70]. The Principle of Least Action has been found to be able to simplify explanation of a wide 
range of highly complex phenomena involving physical motion. However, unlike an equation of 
motion, Principle of Least Action (PLA) does not explicitly specify what will happen. Rather, PLA 



Entropy 2018, 20, 659  13 of 21 

 

asserts that the action will be the least of any conceivable actions with the path of least action offering 
minimal action compared to all possible paths [71,72]. As summarized in Equations (31) and (32), 
engineering tasks towards least action can involve going from the conditional entropy of eight 
sequential steps of position, motion and observation to the joint entropy of four flowing motions such 
as seamless flow between positioning, picking, orientating and placing. For simplicity, let us consider 
only two motions of a robot. Let X1 and X2 denote the motions of robot and Y1 and Y2 denote the 
corresponding observations of robot state. Then, by the lower-additivity property of conditional 
entropy we obtain: 

H(X1,X2|Y1,Y2) (171
) 

<= H(X1|Y1) + H(X2|Y2) (182
) 

with equality if and only if (X1|Y1) and (X2|Y2) are independent. In words, it is beneficial to combine 
a few motions into a one flowing motion because it reduces the situated entropy. Execution of 
motions as independent motions in a step-by-step way actually leads to the largest possible entropy. 

5.6. Methodology Strategy Five—Enhance Embodied Cognition of Human Operatives 

Also, steps can be taken to reduce situated entropy by enhancing the embodied cognition of 
human operatives. For example, the embodied cognition of human operatives can be enhanced by 
wearable robotics such as motorized exoskeletons [73]. However, use of wearable robotics can require 
additional conscious thought, which impairs smooth performance of psychomotor skills. In 
particular, getting into the zone of smooth performance of psychomotor skills can be hindered by 
difficulties of achieving sensory fusion between the human and the wearable robotics. One barrier to 
doing so is that physical movement in the performance of a psychomotor skill can begin before 
related brain waves start. Hence, controlling wearable robotics through via brain-machine interface 
systems (BMI) is an intractable challenge [74]. Improving the ergonomics of wearable robotics could 
reduce the amount of conscious thought needed in their use, and so increase potential for smooth 
performance of psychomotor skills [75]. Then, over the longer term, if an individual uses a wearable 
robotics for thousands of hours, it may be possible that neural plasticity could lead to adaptation of 
that individual’s relevant brain functioning. In doing so, neural plasticity could facilitate smooth 
performance of psychomotor skills with the wearable robot. Examples of such effects from neural 
plasticity are provided by people who develop autonomous understanding of inputs received 
through Cochlear Implants [76]. However, use of wearable robotics can involve many areas of the 
brain, and so neural adaptation may take longer or may not be possible. Hence, wearable robotics 
can introduce new sources of unpredictability in human performance as human operatives have to 
think about how to move with the exoskeleton instead of just moving naturally. This unpredictability 
can be modelled in terms of discrete unequal probability for isolated tasks. Modelling in terms of 
differential entropy for multiple tasks across factory operations can be carried out through use of 
Equation (20) shown in Section 4.5. Differential entropy is dependent upon variance with increases 
in variances bringing increasing in differential entropy. Accordingly, variance in the performance of 
human operatives arising from use wearable robotics is the key consideration in modelling associated 
differential entropy. Further specificity may be introduced into modelling by taking human 
biocybernetic cycles into consideration, which involves human decision making and physical action 
deteriorating due to energy depletion, e.g., as time since food intake increases [77]. Thus, differential 
entropy can be modelled in relation to times of working day, such as the hour leading up to lunch 
break have higher variance than preceding hours and overtime hours having further increased 
variance. 

5.7. Methodology Strategy Six—Balance Deployment of Artificial and Natural Embodied Cognition 
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Typically, robots are deployed most in make-to-stock (MTS) mass production of standard goods, 
while deployed least in engineer-to-order (ETO) one-of-a-kind production of unique original goods. 
In between these two extremes of MTS and ETO is assemble-to-order (ATO) production of mass 
customized goods. Modelling of situated entropy can be needed frequently in ATO. This is because 
components, instructions and workstations can have to undergo frequent changes due to changes in 
the type and number of choices offered to customers in mass customization business models [3]. 
Modelling of situated entropy can be needed in some aspects of every customer order for ETO 
production. This is because the many of the sub-assemblies and assemblies of ETO goods are unique 
to each customer order [56]. As described in Sections 5.2–5.5, there are at least four strategies that can 
be applied to reduce situated cognition in work carried out by robots. When doing so, it is important 
to recognize the limitations of artificial neural networks and reinforcement learning in dealing with 
change. In particular, their performance can rely on the number of cases available as training data 
and to direct automatic labelling [78]. This reliance can be problematic when there is low repetition 
of cases (ATO) or when each case is somewhat original (ETO). Although it may be possible in the 
future for virtual simulation methods to generate new labelled data samples from a few real data 
samples [79], such solutions require capital investment and computational expertise that are beyond 
the scope of small ETO companies. Also, ATO and ETO can be considered to be sparse reward 
environments for reinforcement learning [80] when exactly what has to be learnt keeps changing as 
ATO options change and new ETO customers have individual requirements. Inverse reinforcement 
learning that extracts a reward function from observed behaviour [81] is also of limited usefulness 
when behaviour needs to change frequently as ATO options change and new ETO customers come 
and go. These challenges make facilitating imitation learning through engineering for least action, 
outlined in Section 5.5, particularly important for improving robot performance in ATO and ETO. 
Overall, it is important to eliminate conditional entropy that involves repeated iterations of multi-
criteria observations in robot work. Where this is not possible to eliminate conditional entropy, it is 
desirable to avoid the computational load of computer vision in observations. This can be achieved 
only to some extent through application of other methods of sensing that are computationally lighter 
[82]. Hence, in deciding what work can best be done by humans and what work can best be done by 
robots, work involving conditional entropy where visual observation is essential should be done by 
humans. 

5.8. Methodology Summary 

All of the methodology strategies can be applied when developing new production processes. 
Individual methodology strategies can be applied separately when seeking to improve existing 
production. For example, when many engineering methods have already been applied to production 
processes and new alternatives need to be considered such as embedding artificial cognition. 
Throughout, extant situated entropy, new Information Gain, new situated entropy, and Net 
Information Gain should be measured in terms of conditional, joint, differential or discrete entropy 
as appropriate. 

6. Discussion 

In this section, implications are discussed for theory building, applied research, and production 
practice. 

6.1. Implications for Theory Building 

The modelling reported above illustrates that entropy in cognitive factories is situated. For 
example, there can be numerous different ways of picking, orientating, and placing a physical 
component. To address the consequent entropy, physical components can be redesigned. Similarly, 
visual control boards and assembly workstations can bring situated entropy, but can be redesigned 
to increase Information Gain and reduce situated entropy. Also, the situated entropy involved in 
physical work is affected by the extent of knowledge of those doing the work. For example, work can 
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be done by knowledgeable experts or by beginners who lack knowledge about physical components, 
visual control boards, and assembly workstations. The number of different ways that work can be 
done and the knowledge of the worker, about the ways in which can be done, combine in affecting 
cognitive load. Thus, situated entropy in cognitive factories relates to Situated Cognition within 
which knowledge is bound to physical contexts and knowing is inseparable from doing [29]. 

As summarized in Figure 1, initial situated entropy and barriers to Information Gain can be 
much lower in Make-to-Stock (MTS) factories than in Engineer-to-Order (ETO) factories. This is 
because MTS production is characterised by high repetition of standardization in mass production, 
which is preceded by the rationalization of all components etc., to facilitate full automation involving 
few, if any, human operatives. By contrast, situated entropy can be much higher in Engineer-to-Order 
production. This is because ETO goods are intended to be one-of-a-kind in fulfilling the particular 
requirements of individual customers. Indeed, when variations in Assemble-to-Order (ATO) 
production are increased towards the level of Tailor-to-Order production (TTO), it can bring about 
increases in situated entropy that lead to assembly robots being replaced by human operatives [3]. 

 
Figure 1. Different levels of situated entropy in physical production. 

The conceptual framework for modelling summarized in Table 2 incorporates the situated 
nature of entropy in cognitive factories through inclusion of three types of work pragmatics: Material 
Interaction Pragmatics, Performative Pragmatics, and Relevance Theory. Overall, pragmatics is 
concerned with the ways in which context contributes to meaning, and is applied in the development 
of systems involving the sharing of knowledge among both humans and robots [79]. In addition, the 
conceptual framework incorporates the situated nature of cognition through inclusion of three types 
of cognitive load: intrinsic, extraneous and germane. Cognitive load is based on conceptualization of 
the mind as being like a computer in that it processes the information it receives, rather than merely 
responding to stimuli [31,83,84]. Through the inclusion of work pragmatics and cognitive load, 
modelling of Information Gain targets for cognitive factories introduces new specificity in theory 
building for situated entropy. 

6.2. Implications for Applied Research 

As summarized in Figure 2, technological advances introduce new opportunities for the 
reduction of situated entropy: even in ETO production where there is limited scope for 
standardization of physical components, etc. In particular, the embodied cognition of human 
operatives and assembly robots can be extended by introduction of embedded cognition in smart 
tooling and through factory buildings. In addition, there are opportunities to bring about enactive 
cognition through smart materials and adaptive structures that include materials with sensor-
actuator capabilities [85,86]. However, as illustrated by the example of augmented reality 
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summarized in Table 6, it is important that Information Gain brought about by extended cognition is 
Net Information Gain. In other words, it is important to take into account and minimize the situated 
entropy that embedded and enactive technologies can introduce in to physical production work. In 
doing so, the potential introduction of technologies for extended cognition can be analysed in terms 
of cognitive load and work pragmatics during applied research that seeks to bring increased precision 
in place of vague slogans such as Industry 4.0 that are associated with cognitive factories [87]. 
Hitherto, there has been consideration of the net financial benefits of introducing new production 
technologies. However, there has been little, if any, previous consideration of Net Information Gain 
from the introduction of new cognitive technologies into factory work. 

 
Figure 2. Taxonomy for distributed cognition situated in factory production. 

6.3. Implications for Practice 

As summarized in Figures 3 and 4, practitioners are faced with an ever-increasing variety of 
technologies that have potential for increasing embodied cognition and extended cognition. As 
illustrated by Equations in sections 4 and 5, application of Information Theory mathematics provides 
a straightforward basis for analysing situated entropy and providing targets for Net Information 
Gain. As summarized in Tables 4–7 this mathematics can be related easily to the practicalities of 
physical production in cognitive factories, such as the number of different ways of picking, 
orientating and placing of physical components. 

 
Figure 3. Taxonomy examples for augmenting embodied cognition of human operatives. 
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Figure 4. Taxonomy examples for embedded cognition. 

Detailed measurement of production processes is essential to the management of production 
processes [88]. The adage, “You can't control what you can't measure” has its origins in the 
development of computational systems, and is very pertinent to the management of work processes 
in factories [89]. Measurement of factory work processes was formalized in the time studies and 
motion studies more than one hundred years ago. Time studies evolved to focus on the definition of 
standard times for tasks, while motion study evolved towards improving work methods. They 
became integrated into time and motion studies, which continue to be used within industrial 
engineering practices for improving work systems [90]. Building on the notion that there could be 
precise measurement of factory work, statistical process control was introduced in the 1930’s. This is 
often applied under the slogan of Six Sigma within Total Quality Management that addresses many 
different types of work in organizations. The expansion of measurement to many different types of 
work has included development of cognitive task analysis. This method involves survey research, 
including observation studies and face-to-face interviews, in order to determine what knowledge is 
being used both explicitly and implicitly during work. All of these methods involving seeing 
improvement as an iterative process of measurement—improvement action—remeasurement [91–
94]. However, none of these involve measurement focused on situated entropy and Net Information 
Gain. As illustrated by the examples in section 4.0, situated entropy and targets for Net Information 
Gain can be measured through application of Information Theory mathematics, and expressed in 
terms of three types of cognitive load and three types of work pragmatics. This brings a sound 
theoretical basis for practical measurement in the management of cognitive factories. In particular, it 
is important to measure situated entropy introduced by new technologies that are intended to 
increase Information Gain. Then, it is important to take actions to reduce situated entropy in order to 
ensure that the introduction of new cognitive technologies reduce rather than inadvertently increase 
the complexity of production systems [95,96]. 

7. Conclusions 

By 2018, cognitive factories will have existed as a manufacturing systems goal for more than 10 
years. Reliance on human workers for sensorimotor/psychomotor tasks in the production of 
individual goods continues in spite of many efforts to improve the embodied cognition of robots. 
Nonetheless, human operatives make many “human errors” during production work. One step 
towards improving the performance of both assembly robots and human peratives is modelling 
situated entropy. This is because situated entropy can provide a measurement of task uncertainty 
that is applicable to both assembly robots and human operatives. At the same time, measurement of 
situated entropy can provide targets for Net Information Gain. 

In this paper, six contributions have been provided to advance modelling of situated entropy in 
cognitive factories. First, two theoretical frameworks have been brought together to structure the 
application of Information Theory mathematics. As summarized in Tables 1–3 these are cognitive 
load and work pragmatics. Second, as summarized in Tables 4–6 the conceptual framework derived 
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from these theoretical formulations has been related to the practicalities of physical production using 
examples of physical components, visual control boards and assembly workstations. Third, 
Information Theory mathematics has been applied to the practical examples within the conceptual 
framework, and a preliminary methodology for modelling in practice has been introduced. In 
particular, five types of situated entropy have been considered: discrete equal probabilities, discrete 
unequal probabilities, joint entropy, conditional entropy, and differential entropy. Fourth, through 
relating cognitive load and work pragmatics to production expressed in terms of Information Theory 
mathematics, the physical artefacts of work places, such as physical components, control boards and 
workstations, have been reframed as carriers of Information Gain and situated entropy, which may 
or may not bring Net Information Gain. Fifth, as summarized in Figure 1, situated entropy has been 
related to four types of cognitive factories, which involve different levels of uncertainty in production 
operations: MTS, ATO, TTO and ETO. Sixth, the need to measure net Information Gain in the 
introduction of new technologies for extended cognition has been discussed in relation to a taxonomy 
for distributed cognition situated in factory production. Overall, modelling of situated entropy is 
introduced as an opportunity for improving the planning and control of cognitive factories. 
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