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Abstract: Since the entropy is a popular randomness measure, there are many studies for the
estimation of entropies for given random samples. In this paper, we propose an estimation method of
the Rényi entropy of order α. Since the Rényi entropy of order α is a generalized entropy measure
including the Shannon entropy as a special case, the proposed estimation method for Rényi entropy
can detect any significant deviation of an ergodic stationary random source’s output. It is shown
that the expected test value of the proposed scheme is equivalent to the Rényi entropy of order α.
After deriving a general representation of parameters of the proposed estimator, we discuss on the
particular orders of Rényi entropy such as α→ 1, α = 1/2, and α = 2. Because the Rényi entropy of
order 2 is the most popular one, we present an iterative estimation method for the application with
stringent resource restrictions.

Keywords: entropy estimation; Shannon entropy; Rényi entropy; quadratic entropy; random number
generation; nearest neighbor distance; security

1. Introduction

Since the entropy is a popular randomness measure, many studies are devoted to the efficient
estimation of the Shannon or Rényi entropy for given random samples. In particular, one of the
important applications for entropy estimator is random number generators (RNGs). RNG is one of the
fundamental cryptographic primitives and a good RNG can be modelled as an ergodic random source.
For block ciphers and public key cryptography, an RNG also can be used as a key-stream generator.
In addition, the digital signature algorithm (DSA) requires a random number for its computation [1].
Since a statistical bias in random numbers can be exploited to reduce the computational complexity of
the exhaustive search by an attacker, the entire security of the crypto-systems usually depends on the
statistically quality of RNG output.

In order to obtain the unpredictability of random output, many crypto-systems require a true
(physical) random number generator (TRNG) [2–4] as well as pseudo-random number generators
(PRNG). However, a TRNG output can be easily influenced by environments such as temperature,
electro-magnetic wave, and so on. Therefore, an on-the-fly statistical test scheme, as known as online
test, is requested to guarantee the statistical quality of RNG output in cryptographic standards [5].
In particular for the applications with stringent resource constraints such as sensor nodes, smart cards,
etc., an online test scheme for RNG should both have compact size in hardware/software and detect a
various range of statistical bias to ensure the security of the systems [6]. That is, we need a good and
efficient test scheme of the statistical quality of random sources. Therefore, it is highly desirable to
construct low-cost and reliable entropy estimation methods of the random output of TRNG.
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When it comes to the randomness measure, the Shannon entropy is one of the widely used
measures. Let F2 = {0, 1} be the finite field with two elements. Let X be a random variable for L-bit
random symbols in FL

2 from the random source S and the probability of occurring random symbol b
from the random source S is denoted by Pr(b). Then, the Shannon entropy of L-bit blocks from the
random source S is defined as

HL(X) = − ∑
b∈FL

2

Pr(b) log2 Pr(b). (1)

In various literature, there have been developed efficient estimators of the Shannon entropy [7–11].
In addition, the complexity of estimating the Shannon entropy of a distribution on k elements from
independent samples also has been developed [10,12,13].

In 1961, another generalized entropy measure is defined by Rényi [14]. The Rényi entropy
is popularly used in a number of signal processing and pattern recognition applications [15–17].
For example, Rényi entropy has been used in cryptography, in the study of bio-informatics, and in
the bio-medical applications [18]. Sometimes, the Rényi entropy can provide more strict randomness
measure for the cryptographic applications such as the privacy amplification [19]. Rényi entropy of
order α for L-bit blocks from the random source S is defined as

Rα,L(X) =
1

1− α
log2 ∑

b∈FL
2

Pr(b)α, (2)

where α > 0 and α 6= 1. Note that Rényi entropy is defined as the log base 2 of the expectation of
Pr(b)α−1 normalized by 1− α.

Generally, a random source used in a cryptographic protocol should have a maximum entropy.
As a result, Shannon entropy (or Rényi entropy) is recognized as one important measure of randomness.
For example, standards such as NIST STS (Statistical Test Suits) [20] or AIS.31 [5], a widely used
standard for evaluating TRNGs, include Entropy Estimation items. The proposed method estimates
the actual Rényi entropy value very accurately, as can be confirmed from the simulation results.
Therefore, if the estimation result shows a lower value (from the maximum), it can be interpreted as a
signal that the random sources are generating a significant deviated output from the perfect.

The Rényi entropy is a generalization of the Shannon entropy since it contains the definition of the
Shannon entropy when α approaches to one [21]. In particular, notice that it is easy to prove the Rényi
entropy is always less than or equal to Shannon entropy by using Jensen’s inequality [22] for α > 1, i.e.,

Rα,L(X) ≤ HL(X). (3)

Here, the equality holds for the equiprobable random source. Therefore, Rényi entropy can be
used as the lower bound of the Shannon entropy for a random source S.

There are some studies for the estimation of Rényi entropy [15,23,24]. In particular, many
applications such as machine learning [16], blind deconvolution of linear channels [25], information
flows in financial data [26] and cryptography [19] have paid attention to the Rényi entropy of order 2,
also called the quadratic entropy or collision entropy [15]. The most straightforward approach for
entropy estimation is the direct calculation of entropy based on the probability mass function (pmf)
or the probability density function (pdf) of empirical data. For example, Erdogmus and Principe
proposed the Rényi entropy or order estimator by using the non-parametic estimation of the pdf of a
random variable [16]. In order to estimate the pdf of a given sample distribution, they used the Parzen
windowing method, in which the pdf is approximated by the sum of kernels such as the Gaussian
function. In addition, there are many non-parametric approaches to estimate entropies, which are
usually based on the data compression [27] or the nearest neighbor distance [7,8,28,29]. There are
results on the estimation of Rényi entropy rate of Markov chains [30]. This can be also considered for
randomness measure for RNG because a skewed RNG can be modelled as Markov chain with vaying
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transition probability. However, many of them are not suitable in constrained devices with stringent
resource restriction due to the computational complexity.

In this paper, we propose a low complexity estimation method of the Rényi entropy of order
α, where α is a real number. This method does not require any initialization phase contrary to the
previous Maurer’s universal statistical test [8] and Coron’s refined test [7] which are widely used for
estimating Shannon entropy especially in cryptographic applications [5,20]. In the proposed scheme,
we can estimate the Rényi entropy of order α without introducing complicated computations such as
logarithms or divisions. We show that the expected value of the proposed test function is equivalent
with the Rényi entropy of order α. That is, the output of the proposed estimation method almost
surely converges to the Rényi entropy of order α values with large samples. Because the requirement
of a large sample size for accurate estimation can be a drawback of the proposed scheme in some
applications, we also propose an iterative algorithm for the Rényi entropy of order 2, which requires a
relatively short sample size and shows accurate test results. Using the simple counting method, we can
efficiently implement test module of RNGs based on the Rényi entropy of order 2. Therefore, it can be
used as a statistical tester of RNGs for many embedded security systems such as smart cards. This is
an extended version of the conference paper [31]. In this paper, we generalized the order from integer
to real number. Also, iterative estimation method is included for more constrained environments.

The remainder of this paper is organized as follows: in Section 2, previous entropy estimation
schemes are reviewed. In particular, for the comparison, Maurer’s universal statistical test and Coron’s
refined scheme are presented in detail since they are the popular nearest neighbor distance based
schemes, which are exploited by the proposed scheme. In Section 3, the proposed estimation scheme for
the Rényi entropy of order α is presented. Firstly, we describe the estimation method and show that the
expected value of the proposed test function is equivalent with the Rényi entropy of order α. We suggest
the iterative estimation algorithm, which requires a relatively small sample size. Then, numerical results
are given in Section 4. For the three block sizes and two sample sizes, the estimated values are compared
with the Rényi entropy of order 2 or order 1/2. For the iterative algorithm, we can check that the
proposed algorithm is more stable with less sample size. Finally, we conclude this paper in Section 5.

2. Previous Works

2.1. The Nearest Neighbor Distance

In 1992, Maurer proposed the universal statistical test for evaluating statistical quality of random
number generators [8]. By universal, this method can detect various kinds of statistical defects in random
data. Maurer conjectured that the test result of his estimation method is related to Shannon entropy of
L-bit blocks. Later, this conjecture was proved by Coron and Naccache [32]. The Maurer’s universal
statistical test is included in the statistical test suite by NIST for evaluating RNGs in cryptographic
applications [20].

Let N = (Q + K)L. Let sN denote the generated random sequence with length N. In the Maurer’s
universal statistical test, an initialization phase is required for the first Q L-bit blocks. In order to make
it so each of 2L blocks occurs at least once during the initialization phase with high probability, the size
of Q should be greater than 10× 2L [8]. Then, in the evaluation phase, the next K L-bit blocks are used
for the entropy estimation.

Let bn(sN) = [sL(n−1)+1, · · · , sLn] be the n-th L-bit block of sN . Then, the Maurer’s universal
statistical test is based on the following test function:

fM(sN) =
1
K

K+Q

∑
n=Q+1

log2 Dn(sN),
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where

Dn(sN) =

{
n, if ∀i < n, bn(sN) 6= bn−i(sN),

min{i | i ≥ 1, bn(sN) = bn−i(sN)}, otherwise.
(4)

That is, Dn(sN) is a distance between the index of the current pattern b and the nearest previous
index of the same pattern b. Note that this distance Dn(sN) is conversely proportional to the probability
of occurring the pattern b. That is, if the probability of occurring the pattern b is small, the expected
value of the distance Dn(sN) is large, and vice versa. In fact, Coron and Naccache proved that Maurer’s
universal statistical test is closely related to the Shannon entropy for a source emitting the sequence of
binary random variables, UN = U1, · · · , UN as follows [7]:

lim
L→∞

[
E[ fM(UN)]− HL(UN)

]
=
∫ ∞

0
eζ log2 ζdζ ∼= −0.8327462. (5)

Later, Coron refined the Maurer’s universal statistical test as an exact entropy estimator without
the numerical discrepancy presented in (5) [7].

Therefore, Coron’s refined test is adopted as an estimating method of Shannon entropy in AIS.31
specification, the German standard for cryptographic TRNGs [5]. Coron modified test function as

fC(sN) =
1
K

K+Q

∑
n=Q+1

g(Dn(sN)), (6)

where

g(i) =
1

ln(2)

i−1

∑
k=1

1
k

(7)

and K and Q are given as the same parameters of the Maurer’s universal statistical test. Then, he proved
that the expected value of the test function fC(sN) is equal to the Shannon entropy of L-bit blocks of
the random source as follows [7]:

E[ fC(UN)] = HL(UN).

Note that, in Coron’s test, a logarithm is substituted by a summation of a series of integer divisions.
In his paper, he proposed the approximated method in order to reduce computational complexity as
follows [7]:

i−1

∑
k=1

1
k
≈ 1

ln(2)
ln(i− 1) +

1
2(i− 1)

− 1
12(i− 1)2 +O( 1

(i− 1)4 )− 0.577216. (8)

2.2. Previous Entropy Estimation Approach

One of the widely used estimators for Shannon or Rényi entropy is the “plug-in” estimator.
The “plug-in” approach estimates parameters and then substitutes them into the entropy function,
(1) or (2). For example, let Nk be the frequency of the symbol k and N the total number of samples.
Then, we have probability mass function (pmf) pk = Nk/N. Using this pmf, we can directly calculate
entropy of the given sample using (1) or (2).

Since the pdf of a random sample is unknown a priori, the estimation of pdf of a random variable
is complicated and usually contains some complex functions. For example, Erdogmus and Principe
proposed the estimation of entropy based on the non-parametic direct estimation of pdf, that is,
the Parzen window method in the context of minimizing error entropy [16]. The Parzen estimator of
the error pdf fe(ζ) is given by
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f̂e(ζ) =
1
N

N

∑
i=1

κ(ζ − ei, σ2), (9)

where N is the sample size and κ is the kernel function, usually implemented by using the
multidimensional Gaussian function with a radially symmetric variance σ2. Then, we can directly
calculate the Rényi entropy or Shannon entropy using the estimated pdf in (9). However, the computation
of the sum of the Gaussian functions is usually infeasible in most constrained devices.

3. New Estimation Method of the Rényi Entropy of Order α

In this section, we derive the parameters for the estimation of the Rényi entropy of order α, for a
real number α. In this derivation, we assume that an ergodic random source S and random sequences
from the source S are over F2 and consecutive and distinct L symbols are treated as a basic element of
test function. Thus, the maximum value of Rényi entropy (and also Shannon entropy) will be L-bit.
For the estimation of Rényi entropy, we firstly focus on the estimation of inner summation in (2). Then,
to obtain exact value of Rényi entropy, the logarithm and division by 1− α will be applied to the result
of the estimation. The test function is given as

f (sN) =
1
K

K

∑
n=1

g(Dn(sN)), (10)

where Dn(sN) is the index distance defined in (4). Now, for given real number α and the index distance
Dn(sN) = k, we are going to find the values of g(k) for each k ≥ 1 which is closely related to the inner
summation (2) for the estimation of Rényi entropy of order α. The following theorem gives us the
general representation of g(k) for given α.

Main Result: Proposed Test Function of Rényi Entropy of Order α

For the estimation of Rényi entropy of order α, the parameters g(k) of estimator for given index distance k
in (10) are given as

g(k) =

{
1, if k = 1,

(−1)k−1Pα−2
k−1 , if k ≥ 2,

(11)

where

Pα−2
k−1 =

(
α− 2
k− 1

)
=

(α− 2)(α− 3) · · · (α− k)
(k− 1)!

. (12)

The derivation of the proposed test function can be justifed as in the following proof.

Proof. We start from the the expectation of the test function f (sN) given as

E[ f (UN
S )] =

∞

∑
k=1

Pr[Dn(UN
S ) = k]g(k), (13)

where UN
S is a vector of random variables for random sequence sN of L-bit symbols and g(k) is the

k-th parameter for the estimation. Then, the probability Pr[Dn(UN
S ) = k] can be represented as

Pr[Dn(UN
S ) = k] = ∑

b∈BL

Pr[bn = b, bn−1 6= b, · · · , bn−k+1 6= b, bn−k = b].
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If the random variable is stationary, we have

Pr[Dn(UN
S ) = k] = ∑

b∈BL

Pr[b]2(1− Pr[b])k−1. (14)

From (13) and (14), the expectation can be represented as

E[ f (UN
S )] = ∑

b∈BL

Pr[b]γ(Pr[b]),

where γ(·) is defined as

γ(x) = x
∞

∑
k=1

(1− x)k−1g(k).

Here, we are going to find the representation of g(k) that satisfies the expected value of
E( f (UN

S )) = ∑b∈FL
2

Pr(b)α. Then, we have

γ(x) = x
∞

∑
k=1

(1− x)k−1g(k) = xα−1.

By removing x at both sides, the equation is simplified as

∞

∑
k=1

(1− x)k−1g(k) = xα−2.

By substituting x = 1− t, we have

∞

∑
k=1

tk−1g(k) = (1− t)α−2. (15)

From (15), for α = 2, we have ∑∞
k=1 tk−1g(k) = 1. That is, g(1) = 1, otherwise g(k) = 0. For α 6= 2,

the Tayler series at t = 0 of the right hand side of (15), (1− t)α−2, is given as

(1− t)α−2 =
∞

∑
k=0

(
α− 2

k

)
tk(−1)k, (16)

where (
α− 2

k

)
= Pα−2

k =
(α− 2)(α− 3) · · · (α− 1− k)

k!

and Pα−2
0 = 1. Note that the combination in (16) is a generalized binomial expansion for the real

number α and a positive integer k [33]. Thus, we have

∞

∑
k=0

tkg(k + 1) =
∞

∑
k=0

(−1)kPα−2
k tk.

Finally, the parameter g(k) of the estimator for the exact Rényi entropy of order α for a real
number α is given as

g(k) =

{
1, if k = 1,

(−1)k−1Pα−2
k−1 , if k ≥ 2.



Entropy 2018, 20, 657 7 of 18

Table 1 shows examples of parameters of the proposed estimator for some cases of α. For the
integer α ≥ 3, we can see the negative values of g(k). This means that the test function in (10) may
be negative after accumulation of parameters for given random samples. Therefore, in this case, we
need to take absolute value of test result before applying logarithm to calculate actual Rényi entropy
of order α.

Table 1. Values of the parameter g(k) of the proposed estimator for some α’s.

α\k 1 2 3 4 5 6 7 8 9 10 · · · n
1
2 1 3

2
15
8

35
16

315
128

693
256

3003
1024

6435
2048

109395
32768

230945
65536 · · · (2n−1)!

4n−1((n−1)!)2

α→ 1 1 1 1 1 1 1 1 1 1 1 · · · 1
2 1 0 0 0 0 0 0 0 0 0 · · · (−1)n−1( 1

n−1)

3 1 −1 0 0 0 0 0 0 0 0 · · · (−1)n−1( 2
n−1)

4 1 −2 1 0 0 0 0 0 0 0 · · · (−1)n−1( 3
n−1)

5 1 −3 3 −1 0 0 0 0 0 0 · · · (−1)n−1( 4
n−1)

6 1 −4 6 −4 1 0 0 0 0 0 · · · (−1)n−1( 5
n−1)

7 1 −5 10 −10 5 −1 0 0 0 0 · · · (−1)n−1( 6
n−1)

8 1 −6 15 −20 15 −6 1 0 0 0 · · · (−1)n−1( 7
n−1)

9 1 −7 21 −35 35 −21 7 −1 0 0 · · · (−1)n−1( 8
n−1)

10 1 −8 28 −56 70 −56 28 −8 1 0 · · · (−1)n−1( 9
n−1)

Now we are going to derive representation of g(k) for some particular orders, α → 1, α = 1/2,
and α = 2 in the next subsections. First, let us start from the case of α approaching to 1, where Rényi
entropy converges to Shannon entropy.

3.1. Convergence of Rényi Entropy and Shannon Entropy

The proposed estimation method converges to the same estimator of Shannon entropy by Coron [7]
as in the following theorem.

Theorem 1. The proposed test function of Rényi entropy converges to the test function of Shannon entropy by
Coron when α goes to 1.

Proof. If α→ 1, from (11), the parameter converges

g(k)→ (−1)k−1 (−1)(−2) · · · (−(k− 1))
(k− 1)!

= 1. (17)

This means that every case will be counted and the test function f (sN) in (10) will always converge
to 1. To obtain actual value of Rényi entropy, the test function f (sN) should be applied by the logarithm
of base 2 and divided by (1− α)→ 0. To obtain the converged value for α→ 1, we can use L’Hospital’s

theorem to log2 f (sN)
1−α . Then, we have

lim
α→1

log2 f (sN)

1− α
= lim

α→1

d(log2 f (sN))

dα

1
d(1−α)

dα

= lim
α→1
− 1

f (sN) ln 2
d f (sN)

dα

= lim
α→1
− 1

f (sN) ln 2
1
K

K

∑
n=1

dg(Dn(sN))

dα
. (18)
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From (11), we can obtain the derivative of g(k) with respect to α as

lim
α→1

dg(Dn(sN))

dα
= (−1)i−1

[
(α− 3) · · · (α− i)

(i− 1)!
+

(α− 2)(α− 4) · · · (α− i)
(i− 1)!

+ · · ·+ (α− 2) · · · (α− (i− 1))(α− i)
(i− 1)!

]
α=1

= −1− 1
2
− 1

3
− · · · − 1

i− 1
= −

i−1

∑
k=1

1
k

. (19)

From (17), we also have f (sN) = 1
K ∑K

n=1 1 = 1 when α goes 1. Therefore, from (18) and (19), we have

lim
α→1

log2 f (sN)

1− α
=

1
K

K

∑
n=1

G(Dn(sN)),

where G(Dn(sN)) = 1
ln 2 ∑i−1

k=1
1
k for Dn(sN) = i. It is exactly the same result by Coron given in (6)

and (7) [32].

That is, the proposed estimator includes the previous result as a special case and it can be
considered as evidence that the proposed approach is valid for the entropy estimation.

3.2. Proposed Test Function for Rényi Entropy of Order 1
2

In this subsection, we will derive a simplified test function for Rényi entropy of order 1/2.
This order of Rényi entropy is closely related to the exponent of the average growth rate of average
guesswork [34,35]. From the main result, for k > 1 and α = 1

2 , we have

g(k) = (−1)k−1
(
− 3

2
k− 1

)
= (−1)k−1 (−

3
2 )(−

5
2 ) · · · (−

2k−1
2 )

(k− 1)!

= (−1)2(k−1) 1× 3× · · · × (2k− 1)
2k−1(k− 1)!

=
1× 2× 3× 4× · · · × (2k− 2)(2k− 1)

22(k−1)[(k− 1)!]!

=
(2k− 1)!

4k−1[(k− 1)!]
. (20)

However, the calculation of the factorial is a complicated task and takes a long time even for
the moderate size of integer. Therefore, we need to simplify (20) for the practical implementation.
First, we can use the Stirling’s approximation given as

k! ≈ kke−k
√

2πk.

Then, we have

(2k− 1)!
4k−1[(k− 1)!]2

=

√
2π × (2k− 1)2k−1e−(2k−1)

√
2k− 1

4k−1 × 2π × (k− 1)2(k−1)e−2(k−1)(k− 1)

=

√
2k− 1

e
√

2π × 4k−1
×
(

2k− 1
k− 1

)2k−1

=
2
√

2k− 1
e
√

2π
×
(

2k− 1
2k− 2

)2k−1

=
2
√

2k− 1
e
√

2π
×
(

1 +
1

2(k− 1)

)2k−1
.
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Note that, for large enough k, the right-most factor in the last equality converges to the natural
number e as follows:

lim
k→∞

(
1 +

1
2(k− 1)

)2k−1
≈ lim

k→∞

(
1 +

1
k

)k
= e.

Thus, we have for large k

g(k) =
(2k− 1)!

4k−1[(k− 1)!]2
≈ 2e

√
2k− 1

e
√

2π
=

√
2
π
(2k− 1). (21)

When it comes to a big enough size of k, if k ≥ 10, the error rate of the original value of g(k)
and its approximation in (21) is less than 1.31%. In Section 4, we use only the first five g(k) for Rényi
entropy of order 1/2 such as g(1) = 1, g(2) = 1.5, g(3) = 1.875, g(4) = 2.1875, and g(5) = 2.4609.

The remainder terms are estimated as
√

2
π (2n− 1) = 0.7979

√
2n− 1 for n ≥ 6:

f (sN) =
1
K

K

∑
n=1

g(Dn(sN))

=
1
K

5

∑
n=1

Ang(n) +
1
K

K

∑
n=6

An

√
2
π

√
2× n− 1,

where An (n ≥ 1) is the number of symbol k of random samples with length N. In Section 4, we will
see the small block size such as L = 4 or L = 6, the number of uses of exact values of g(k) should be
large to obtain more exact estimation results. However, for L = 8, only the first five exact values of
g(k) is enough to obtain good results.

3.3. Estimation of Collision Entropy

In this section, we discuss the estimation method of the Rényi entropy of α = 2 for L-bit blocks.
This case is both one of the widely used Rényi entropy orders and we can very efficiently implement
the estimator for this case. We will see that this case is based on a simple counting of consecutive
occurrence of the same L-bit random samples. The test value eventually converges to the Rényi entropy
of order 2 with increasing sample size.

Assume an ergodic random source S. Then, from (12), the test function for ‘collision entropy’ is
given as

fR(sK) = − log2
1
K

K

∑
n=1

g(Dn(sK)), (22)

where

g(k) =

{
1, if k = 1,

0, otherwise.
(23)

The proposed scheme can be classified as the entropy estimator based on the nearest neighbor
distance, which is also used in the Maurer’s and Coron’s tests.

From the main result, it can be readily proved that the expected value of the proposed test function
in (22) is equivalent to the Rényi entropy of order 2 as in the following proposition.

Proposition 1. The expected value of the test function in (22) is equivalent with the Rényi entropy of order 2
(collision entropy) of L-bit sample from an ergodic random source S.
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Notice that the test function in (22) can be efficiently implemented as in the following description.
Let Vth be the threshold to accept a given sample as random. The threshold Vth can be determined
according to applications and a relevant statistical significant level. For implementation, the division
and log base 2 in (22) are not essential for the decision and it is enough to only count the number of
occurrences such that Dn(sK) = 1. For example, in order to accept the given sample as random, the test
function in (22) should be greater than the specified threshold of estimated entropy value as follows:

fR(sK) = log2 K− log2

K

∑
n=1

Gn(sK) > Vth. (24)

Then, (24) can be converted into the following relation:

K

∑
n=1

Gn(sK) < K · 2−Vth . (25)

Since the right-hand side (RHS) is fixed in (25) when the sample size K is also fixed, it is enough
to check the number of times that the specified event on the left-hand side (LHS) is less than the
pre-determined value in the RHS. This testing function will be referred to as the basic test of the
iterative estimation algorithm presented in the following subsection.

Now, let us compare the computational complexity required by the proposed Rényi entropy
estimation method with the complexity required by another entropy estimation methods based on the
neareast neighbor distance. The required number of operations for three entropy estimation methods
based on the nearest neighbor distance is listed in Table 2.

Table 2. Comparison of required number of operations for given N samples.

Method Required Number of Operations

Maurer [8] (N − 1)L + (N − 1)S + D

Coron [7] (N − 1)L + 3(N − 1)S + (3N + 1)D

Proposed (α = 2) L + (N − 1)S + D

L: logarithm, S: summation, and D: division.

As you can seed in Table 2, the proposed method can minimize the number of logarithms
and divisions for estimation. Note that the logarithm or division is much more complicated than
summation. Therefore, the proposed method has the lowest computational complexity when it is
compared with the other nearest neighbor distance based estimations, Maurer’s method in NIST
STS [20] and Coron’s method in AIS.31 [5].

3.4. Iterative Estimation Algorithm for Collision Entropy

For the accurate estimation, the proposed test scheme requires a large sample size, which can be
a drawback of the proposed scheme in some applications since it takes much time to collect enough
samples for a single estimation. In order to mitigate this drawback, we propose an iterative testing
scheme, which will always watch the generated random samples on-the-fly and continuously update
the test value with a new counting result for a shorter sample size. The proposed iteration algorithm is
presented in Algorithm 1.

In Algorithm 1, NS is the sample size for the basic test and w (0 ≤ w < 1) is the weight of the
previously accumulated value. Algorithm 1 consists of basic tests, which are continuously carried out
when the test is running. The inside statements of for-loop in Algorithm 1 correspond to the basic test
that is explained in Section 3.3. Let NI be the number of iterations. Algorithm 1 can be justified as in
the following proposition.



Entropy 2018, 20, 657 11 of 18

Algorithm 1: Iterative Estimation Algorithm for Rényi Entropy of Order 2 (Collision Entropy)
Input :Random sample r
Output :Accumulated value S for Rényi entropy of order 2

begin
S := 0 // Initialization;
while Test is Running do

C := 0 // Counter;
p := 0 // Previous sample;
for i = 1 to NS do

t := r // Get new random sample;
if t == p then C ++ // If current sample is the same as the previous, increase counter;
p := t // Store current random sample;

S := w× S + C // Accumulation;
RE :=

[
S/(NS × 1

1−w )
]

// Test value.;

return − log2 RE

Proposition 2. For the stationary random source, after sufficiently large number of iterations, the test value in
Algorithm 1 will converge to the Rényi entropy of order 2 (collision entropy).

Proof. For convenience, let us introduce indices to the counted value C and the accumulated value S
in Algorithm 1 such as Ck and Sk where 1 ≤ k ≤ NI . Then, the final accumulated value in Algorithm 1
is given as

SNI =
NI

∑
k=1

wNI−kCk.

Suppose that the bias of random sample is stationary. That is, the bias level which can be
represented as Pr(1) in the binary representation is fixed for several consecutive iterations, namely NI
iterations. Then, we can substitute the counted values Ck with the average of them, C where

C =
1

NI

NI

∑
k=1

Ck. (26)

Then, the SNI can be represented as

SNI = C
NI

∑
k=1

wNI−k = C× 1− wNI

1− w
.

For a large integer NI , we have SNI
∼= C

1−w . That is, RE :=
[
S/(NS × 1

1−w )
]

in Algorithm 1 can be
rewritten as

RE =
SNI

NS × 1
1−w

∼=
C× 1

1−w

NS × 1
1−w

=
C

NS
.

That is, the output RE of Algorithm 1 is the average of counted values from the basic tests over
the sample size NS. Due to the time average in (26), the proposed algorithm can give us more stable
estimated entropy values of the given random samples.

The weight w will determine a trade-off between converging speed and reducing fluctuation,
which will be shown in the next section. If w is close to 1, the estimated value shows less fluctuation
at the cost of the sensitivity to the bias changes. In addition, if we choose w = 2m−1

2m , then the
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multiplication in the final step corresponds to m-bit left shift. Moreover, wS = (2mS − S)/2m in
Algorithm 1 can be implemented using m-bit left shift, dlog2 Se-bit subtraction, and m-bit right shift.

4. Numerical Results

In this section, we present simulation results for the proposed entropy estimator with distinct sample
sizes. Simulation results are presented in three ways. First, we present the estimation performance of two
sample sizes for Rényi entropy of order 2. Second, we show estimation performance for Rényi entropy of
order 1/2. Finally, we present the result of estimating Rényi entropy in an iterative manner.

4.1. Simulation for Rényi Entropy of Order 2

In this simulation, we use L = 4, 6, and 8-bit blocks as a single input to the estimator. Therefore,
the maximum entropies are also 4, 6 and 8-bit, respectively. For the simulation of the proposed estimator
for the Rényi entropy of order 2, we choose two sample sizes; K1 = 256,000 and K2 = 10,240,000 which
will be called the moderate sample size and the large sample size in the subsequent discussion,
respectively. The moderate sample size is the same as the sample size specified in the entropy test
for L = 8 of AIS.31 for physical random number generators [5]. For the simulation, we generate
500 random sequences with two distinct lengths K1 and K2. Each random sequence has a specified
bias, which is represented as probability of occurring 1, Pr(1), in a binary random sequence with a
range from 0.001 to 0.5.

Figure 1a shows the simulation results for the Rényi entropy of order 2 with the moderate sample
size K1 = 256,000. Notice that the test results are more accurate for high bias case (close to 0) than the
low bias case (close to 0.5) clearly presented in Figure 1a for the sample size K1. The simulation results
for the Rényi entropy of order 2 with the large sample size K2 = 10,240,000 are depicted in Figure 1b.
In this figure, it is easy to see that the Rényi entropy of order 2 is less than or equal to the Shannon
entropy as represented in (3). In addition, the test values of the proposed scheme are almost close to
the Rényi entropy of order 2 as asserted in Proposition 1.

(a) Sample size: K1 = 256,000. (b) Sample size K2 = 10,240,000.

Figure 1. Entropy calculation and estimation for 4-, 6-, and 8-bit blocks of two sample sizes.
The estimated Rényi entropy of order 2 closely follows the real entropy value for high statistical
bias, while it fluctuates for low bias (Pr(1)→ 0.5).

Let us evaluate the amount of fluctuation for a given sample size K. Denote the probability of
occurring block b as pb. The amount of the fluctuation of the test values can be represented using the
standard deviation σU of the number of occurrences of each block as in the following equation:

fR(sK) = log2 K− log2(mU ± kσU) = log2 K− log2 mU − log2
(
1± kσU

mU

)
,

where mU is the mean of the number of occurrences of each block and k is the number of standard
deviations as which the test value is allowed to be away from the mean value. The mean and variance
can be represented as
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mU = ∑
b∈FL

2

K
[

Pr(b)
]2,

σU = ∑
b∈FL

2

Pr(b)
√

K Pr(b)(1− Pr(b)).

Since the amount of the fluctuation is maximized at the no bias case (i.e., Pr(1) = 0.5), we can
write the test function at that case as follows:

fR(sK) = log2
1
pb
− log2

(
1± k

√
1− pb

Kpb

)
.

Then, the amount of fluctuations at no bias case for K1 can be evaluated as in the following example.

Example 1. For example, suppose that K = 256, 000, L = 8, k = 2.58 (for 99% confidence), and the random
sample has no bias. Then, pb = 1/256, mU = Kpb = 1000, and 2.58σU = 2.58

√
Kpb(1− pb) = 81.42. Therefore,

we have the test function of the Rényi entropy of order 2 given as

8− 0.1129 < fR(sK) < 8 + 0.1225

with 99% confidence.

In Figure 2a, the center line (dashed-dot) is the mean value of test function. The upper (dot) and
lower (dashed) lines correspond 2.58σU and −2.58σU lines, respectively. That is, with 99% confidence,
we can say that the test value of the Rényi entropy of order 2 will be between the upper and lower
lines. In fact, the estimated value line (solid) is located between the upper and the lower lines in
Figure 2a. For the Rényi entropy of order 2 with the large sample size, Figure 2b shows that the three
lines are almost merged even in the no bias case. As we can check in the enlarged box on the left side
of Figure 2b, the deviation from the real entropy value is small.

Note that, in the randomness test, we are more interested in checking whether the given sample
is random or not, rather than in identifying the exact test value. Thus, it is enough that the test value is
accurate within the around of the specified threshold. Therefore, we can find a suitable sample size
according to the application and accuracy of the test. In particular, when the post-processed TRNGs
are available, it is more important to detect a low entropy value because the post-processing method
can reduce some statistical bias in the random samples [36].

(a) Sample size: K1 = 256, 000. (b) Sample size K2 = 10, 240, 000.

Figure 2. Deviation range of the test function for the given statistical bias and two sample sizes.
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4.2. Simulation for Rényi Entropy of Order 1/2

In this simulation, we use L = 4, 6, and 8-bit blocks as a single input to the estimator of Rényi
entropy of order 1/2. For the case of the proposed estimator for the Rényi entropy of order 1/2,
we also choose two sample sizes; K1 = 256,000 and K3 = 1,024,000. For the simulation, we generate
500 random sequences with two distinct lengths K1 and K2. Each random sequence has a specified
bias, which is represented as probability of occurring 1, Pr(1), in a binary random sequence with range
from 0.001 to 0.5.

In Figure 3a,b, the simulation results for the Rényi entropy of order 1/2 with the moderate sample
size K1 = 256,000 and large sample size K3 = 1,024,000. Note that, for L = 8, the estimated entropy is
almost matched with the actual values of the Rényi entropy of order 1/2 except for the bias range from
0.2 to 0.05. However, for L = 6, the deviation of the estimated entropy from the exact Rényi entropy of
order 1/2 is slightly greater than that of the case for L = 8. For L = 4, there exists the greater deviation
between the estimated entropy values and the exact entropy values. This is because we only use the
first five exact values of g(k) in (20) in the simulation. If we increase the number of uses of exact values
of g(k) instead of approximated values in (21), we can improve the quality of the estimation as in
Figure 4. In Figure 4, we compare the results obtained by the uses of the first five exact values and the
first 40th exact values, respectively.

(a) Sample size: K1 = 256, 000. (b) Sample size K3 = 1, 024, 000.

Figure 3. Rènyi entropy of order 1/2 calculation and estimation for 4-, 6-, and 8-bit blocks of two sample
sizes. The first five values of exact g(k) are used. Remainder values are approximated using (21).

Figure 4. Entropy estimations the Rényi entropy of order 1/2 with the different number of uses of the
exact parameters of g(k) for 4-bit blocks. of the sample size. D is the number of the exact values of
parameters of g(k).

4.3. Simulation for Iterative Estimation Scheme of Rényi Entropy of Order 2

Finally, since increasing sample size usually involves tangible cost, collecting of a large number of
random samples is not suitable for the constrained devices. In that case, we can apply the iterative
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estimation scheme presented in Section 3.4 with the smaller size of random sample instead of collecting
large random samples for a single entropy estimation. Figure 5 shows the estimation results using
Algorithm 1 with weight value 7/8 for the sample sizes 51,200 and 12,800, respectively. In each
subfigure, three block sizes such as four, six, and eight bits are tested. In Figure 5, the first 150 iterations
show the accumulated test results for the no bias case, i.e., the probability of one in the binary
representation of random samples Pr(1) = 0.5. Due to the initialization of Algorithm 1, the first few
iterations show relatively big estimated value. For instance, if NI = 1, we have S = C1 and RE = C

8NS
.

That is, the estimated value is increased by three bits such that − log2 RE = 3− log2
C

NS
. However,

after about 25 iterations, the accumulated value converges to the Rényi entropy of order 2. Then, after
the first 150 iterations, Pr(1) is suddenly changed from 0.5 to 0.35. In that situation, the accumulated
test value smoothly converges to the new Rényi entropy value of order 2 for Pr(1) = 0.35 within about
25 iterations again. Finally, after the first 300 iterations, the probability of one is abruptly changed
again from 0.35 to 0.2. Similar to the previous bias change (0.5→ 0.35), the accumulated test value
accordingly converges to new entropy value. Since the number of possible alphabets are exponentially
increasing according to the block size L, for a given sample size NS, the smaller block size (i.e., L = 4)
shows less fluctuating test results.

Figure 5c,d show the simulation results of Algorithm 1 with weight 3/4. The overall tendency
is similar to the results in Figure 5a,b except that the converging speed becomes faster at the cost of
higher fluctuations.
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(b) NS = 12,800 and w = 7/8
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(c) NS = 51,200 and w = 3/4
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(d) NS = 12,800 and w = 3/4

Figure 5. Iterative Rényi entropy estimation based on the basic test with two distinct sample sizes
and weights. At the 150th and 300th iterations, the statistical bias is changed from Pr(1) = 0.5 to
Pr(1) = 0.35, and to Pr(1) = 0.2, respectively.



Entropy 2018, 20, 657 16 of 18

It is also interesting to check the convergence speed. How quickly the proposed method converges
to the actual entropy value when the environment changes depends on the sample size NS and weight
w. When we carefully observe Figure 5, it can be discovered that the larger the sample size and weight,
the smaller the fluctuation. However, if the weight is large, the average value is reached at a slower
rate. That is, the convergence speed is more related to weight than the sample size. However, it is not
trivial to determine when the test value reached the real entropy of the random source.

5. Conclusions

In this paper, we proposed a new estimating method of the Rényi entropy of order α.
After presenting the general representation of parameters of the proposed estimator, we investigate the
simplified form of three particular orders, such as α→ 1, α = 1/2, and α = 2 in detail. It turned out
that the proposed estimator of the Rényi entropy of order 2 which is the widely applicable order can
be efficiently implemented by using counting and comparison logics for random samples. The main
motivation for this research is to develop a lightweight randomness test method that does not require
complex computations to be applicable to systems with limited computational environments such
as in the various IoT (Internet of Things) devices. The proposed scheme has a useful and interesting
property such that the higher statistical bias in the random sequences, the more accurate detection
of that bias for moderate sample size. Because the detection of high bias cases is more critical for
the TRNG evaluation, the proposed scheme is acceptable as an on-the-fly entropy estimator with a
moderate sample size. However, for the accurate estimation over the wide range of biases, we should
test a large amount of random samples. Therefore, we propose an iterative algorithm that continuously
carries out the basic tests for the relatively short sample size and updates the accumulated test value.
Although it is demonstrated that the proposed method can estimate Rényi entropy of order α, more
research on accuracy and convergence speed of the proposed method is also required. We keep this
problem as further work.

Funding: This work was supported by the Institute for Information and Communications Technology Promotion
(IITP) grant, which is funded by the Korean government (MSIT) (2017-0-00441, Development of Core Technologies
of Intrusion Tolerance System for Autonomous Vehicles).

Acknowledgments: The author would like to thank anonymous reviewers and the associate editor for their
valuable suggestions and comments that helped to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. NIST. Digital signature standard (DSS). In Proceedings of the Federal Information Processing Standard
(FIPS PUB 186), Gaithersburg, MD, USA, 19 May 1994.

2. Bucci, M.; Luzzi, R. Design of testable random bit generators. In International Workshop on Cryptographic
Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2005; pp. 147–156.
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