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Abstract: In this work, we show that it is possible to obtain important ubiquitous physical
characteristics when an aggregation of many systems is taken into account. We discuss the possibility
of obtaining not only an anomalous diffusion process, but also a Non-Linear diffusion equation,
that leads to a probability distribution, when using a set of non-Markovian processes. This probability
distribution shows a power law behavior in the structure of its tails. It also reflects the anomalous
transport characteristics of the ensemble of particles. This ubiquitous behavior, with a power law in
the diffusive transport and the structure of the probability distribution, is related to a fast fluctuating
phenomenon presented in the noise parameter. We discuss all the previous results using a financial
time series example.
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1. Introduction

In recent years, many papers have been written focusing on the study of anomalous collective
motions and particularities on probability distributions. In fact, when revising the work done in this
area, it is possible to identify different lines of research such as: granular systems [1], turbulence [2],
financial processes [3], social dynamics [4,5], among others. We could say that the ubiquitous
characteristics that in principle are present in the systems under study have two remarkable properties:
power law behavior in the structure of its distribution and dynamic characteristics of a system of many
particles with anomalous diffusion (i.e., a power law behavior in its diffusion). The first characteristic
occurs in a wide variety of physical, biological and artificial phenomena. Some of these are as dissimilar
as the occurrence of the frequency in the use of words, the abundance in the size of biological species,
the size of vortices in turbulences, etc. Along with this, it is interesting to note, as we mentioned before,
that the characteristics associated with the collective movement of some of these systems, where the
second moment, i.e., < x(t)2 >= tα, being α = 1 the value for the exponent where the system behaves
in a normal way, is the typical quantity to be studied [6].

In this contribution, we will describe particular features at the microscopic level of the system,
and how they will impact on the macroscopic characteristics of such behaviors, focusing on a financial
time series example. We will first write about the evolution equation of a particle (i.e., a microscopic
description), using a Langevin formalism characterized by a stochastic integro–differential equation.
Then, we will use a set of similar microscopical systems, to describe the properties of the macroscopical
systems (i.e., macroscopic laws). We will arrive to a highly Non-Linear Fokker–Planck equation that
was study in relation of nonadditive entropies and complex Systems [7,8]. It has been noticed that the
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last remark applies in situations where the phase space is partly visited [9]. This approach applies to
may situations, as reported elsewhere (see for example [10–12] and references therein) .

It is important to mention that a central part of our analysis is based on the average of a fluctuating
quantity, in an unbalanced equilibrium state of the macroscopical system. The parts that compose this
system are cells, or networks of cells, that are characterized to be in a local equilibrium, and can be
treated as a collection of similar (or equivalent) particles following the same microscopic dynamics.
In that way, we can see the natural emergence of power laws on a compound of mixed complex
systems [13].

Also, we will show an application to financial time series. The analysis of these temporal series
has a long tradition in statistical physics and complex systems science, see for example [3,14–20]. In the
last section we draw final remarks.

2. Microscopic Dynamics

Let us start the presentation by studying the microscopic dynamics of a Brownian particle,
where dissipation is described by a memory kernel γ(t). This considers the history of the individual
process of the particle (remember that the Brownian particle is influenced by an external noise,
which gives unique characteristics to the realization, for each run of the model or trajectory of each
particle, for an experiment in real physical systems). The stochastic integro–differential equation reads
as follows [21,22]

Mẍ(t) + M
∫ t

0+
γ(t− t′)ẋ(t′)dt′ + ξ(t) = 0. (1)

In the previous equation, ξ(t) characterizes a Gaussian long–range correlated noise. M is the mass
associated with the particle and γ(t) is a dissipative kernel. We have formally denoted with 0+ a possible
cut–off. For the stochastic term of the equation, we choose ξ(t) as such it has the following properties

〈ξ(t)〉 = 0, (2)

〈ξ(t)ξ(0)〉 = 2A0Γ[α] cos(απ/2)t−α, (3)

with t > 0. The parameter for the coupling strength with the complex bath is A0. A microscopic
random–matrix model was applied in the study of anomalous diffusions [23,24], used to calculate the
kernel γ(t). Then, the (dissipative) kernel γ(t) is defined by

MkBT γ(t) = 2A0Γ(α) cos
(απ

2

)
t−α , t > 0. (4)

In this equation, α is related with the complexity of the bath. Notice that for non–integer values
of α, the bath is called fractal [25]. The behavior of the spectral density is characterized by α when
the regime is non-Ohmic [24]. It is also important to mention that if the Riemann–Liouville fractional
derivative is introduced

∂r f (t)
∂tr =

1
Γ(−r)

∫ t

0

f (s)ds
(t− s)r+1 , (5)

with −1 < r < 0 [26,27], we can write and equivalente equation for Equation (1) as

Mẍ + Mγα
∂α−1 ẋ
∂tα−1 + ξ(t) = 0, (6)

which is a fractional Langevin equation. The previous fractional Langevin equation describes the
subdiffusion, for 0 < α < 1, and the superdiffusion regime for 1 < α < 2. We have also defined γα

as follows [28]

γα =
πA0

MkBT sin(απ/2)
. (7)
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3. Power Law Behavior in the Movement of Ensemble of Particles

We can obtain several dynamical properties from the ensemble of particles, particularly the
position of the particle (its distribution) at any time can be calculated via

P(x, t) =
∫

P(x, V, t)dV, (8)

i.e., the marginal probability distribution. In this equation we observe that V(t) ≡ ẋ(t). As usual
in the case of Gaussian noises the joint probability distribution can be calculated using only a few
cumulants [6]. Then, using the second moment〈

x2(t)
〉
=

2kT
M

t2E2−α,3(−γαt2−α), (9)

we can calculate the probability distribution P(x, t). In the previous equation Eµ,ν is known as the
generalized Mittag–Leffler function [29].

We can observe the second moment in〈
x2(t→ ∞)

〉
≈ 2kT

Mγα

tα

Γ(1 + α)
≡ tα

b
, (10)

that shows an anomalous behavior [30], which we explicitly identify with a power law, with b =

MγαΓ(1 + α)/(2kT).
From the general previous analysis, we can re-obtain the asymptotic limit for α = 1, the classical

diffusive transport of the Ornstein–Uhlenbeck process [31]. The evolution for the asymptotic processes
corresponds to a diffusion equation, also studied in [32]

∂P(x, t|b)
∂t

=
αtα−1

2b
∂2P(x, t|b)

∂x2 . (11)

The last equation can be linked with the fractional Brownian motion (fBm) process [33],
see also [34–37]. This can be done when identifying α = 2H with α ∈ (0, 2), so P(x, t|b) is the
one time probability distribution of the fBm.

The solution for the last equation in the marginal regime can be written as

P(x, t|b) =
√

b
2πtα

exp
(
− b x2

2 tα

)
. (12)

4. A Marginalization of Weakly Coupled Systems

In the final equation of the last section, we have explicitly noted parameter b, i.e., we wrote P(x, t|b).
This conditional distribution assigns an event a probability given a particular value of b. As the reader
can guess, when doing a simple average over a distribution h(b) we can obtain the distribution P(x, t).
The resulting distribution, noted here as P(x, t), will be the result of a simple integration

P(x, t) =
∫

P(x, t|b)h(b) db. (13)

It is worth noting that the distribution h(b) will be determined by the specific spatiotemporal
dynamics of the entire system under consideration. For physical systems it is defined on a positive
support. One case, among the variety of possible elections, occurs when nearly independent
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microscopic Gaussian random variables, with average zero, contribute in an additive way to the
final dynamics of the system. If b is given by the sum

b =
n

∑
i=1

x2
i , (14)

then, the distribution of this stochastic variable follows

h(b) =
1

Γ(n/2)

(
n

2β0

)n/2
bn/2−1e−nb/(2β0), (15)

which is called Gamma-distribution of order n.
Now, if we consider the inverse of b (the “temperature” for physical systems), the distribution

that naturally arises is the inverse Gamma-distribution

h(v) =
β0

Γ(n/2)

(
nβ0

2

)n/2
vn/2−2e−nβ0/(2v). (16)

Also, it is important to mention some important contributions to the field when considering
multiplicative noises. Following these lines, if we have a random variable which formally can be
expressed by

ui =
n

∏
i=1

ξi (17)

where ξi are n random variables, invoking the Central Limit Theorem, we can find that the distribution
follows a log-normal distribution

h(b) =
1√

2πrb
e−ϕ2

(18)

with

ϕ =
1√
2r

log
(

h
m

)
(19)

with m and r2 as mean and variance.
These types of distributions give rise to the distribution P(x, t) with a slow decay, sometimes

more complex than the simple power law behavior [38].
Important analytical results can be seen if we perform the marginalization over Equation (9) using

the distribution written in Equation (13). We can find the evolution equation for the complete system as

∂P(x, t)
∂t

= D(t)
∂2P(x, t)

n−1
n+1

∂x2 , (20)

where the diffusion parameter D(t) follows

D(t) ∝ t
nα

n−1−
n+1
n−1 . (21)

The distribution that satisfies this equation presents a clear power law behavior

P(x, t) =

√
β0

πntα

Γ
[
(n+1)

2

]
Γ
[ n

2
] (

β0

n
x2

tα
+ 1
)− n+1

2

, (22)

as can be seen, this characteristic is more critical for larger values of x.
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5. Application to the Financial Time Series

In this section, we will discuss an application of the previously discussed theoretical approach
and results. We will show how we can understand the anomalous diffusion and the characteristics of
the distribution of returns (the logarithm of the fraction of the prices) when considering those from
the beginning of the process. With this definition of return we can appreciate that, as a new results,
the process shows not only a fat tail in its distribution, but also a clear anomalous diffusion process.

We will use the time series generated by the New York Stock Exchange (NYSE) during one year
for a highly traded stock: the International Business Machines (IBM).

As usual we will define the return as the difference of the price logarithm, but now taking into
account the beginning of the daily series

r(t) = ln[p(t)]− ln[p(t0)]. (23)

In this definition, p(t) is the price defined as the midpoint between the best bid and offer price in
the market (this is known as “quotes”). There are several ways to set the unit of the time index, time t.
Here time is updated whenever an event causes change in the midpoint between the prevailing best
quotes (this is the finest possible time scale).

Following Reference [39], we computed < r(t)2 > measuring each day the second moment at
different times.

The result (Figure 1) shows the well known fact that the diffusion is anomalous, with an exponent
α = 0.44.

Figure 1. Second moment of the return.The red line corresponds to the empirical fit α = 0.44, while the
black line shows α = 1.

We then measured the different values of b, the inverse of the variance, for each day. We obtained
the gamma distribution written in Equation (15) and performed the integration, Equation (13).
Following these steps we found the analytic distribution Equation (22).

In Figure 2 we show the collapse of the complementary cumulative distribution F, where is
defined (for a given f (x)) as

F = 1−
∫ ∞

0
f (x)dx (24)

and
r∗ = r

tα/2 . (25)
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The figure shows the empirical result for various times (different colors in the figure). The
analytical result is also shown. We include an inset showing the complementary cumulative
distribution for the parameter b.

Figure 2. Collapse of the empirical complementarycumulative distribution for time t = 100, 200, 1000
and 2000. The continuous blue line is the theoretical curve, after the marginalization Equation (13).
Inset: Complementary cumulative distribution for b, and the fit to a gamma distribution.

6. Final Remarks

In the present work, we have shown that it is possible to obtain important behaviors, ubiquitous
in many systems. First, we found that power laws are not only present in the distribution of variables
that are relevant in the understanding of a physical problem, but also in the dynamical properties of
them. We have also shown an analytical way to connect the microscopic characteristics of a single
particle, with the microscopic characteristics of the full system. Among the main results obtained we
find that anomalous behaviors appear in the financial time series when considering the price at time
zero as a reference for the return. Another result is the possibility of obtaining the fat tail distribution
when using the same approach. It is worth noting that the previous results also holds (for α = 1) for a
temporally homogeneous Gauss–Markov process, like the mentioned Ornstein–Uhlenbeck process.
In this case the function to be marginalized is the ubiquitous Gaussian distribution.
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