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Abstract: Frequentist and Bayesian phase estimation strategies lead to conceptually different results
on the state of knowledge about the true value of an unknown parameter. We compare the two
frameworks and their sensitivity bounds to the estimation of an interferometric phase shift limited
by quantum noise, considering both the cases of a fixed and a fluctuating parameter. We point
out that frequentist precision bounds, such as the Cramér–Rao bound, for instance, do not apply to
Bayesian strategies and vice versa. In particular, we show that the Bayesian variance can overcome the
frequentist Cramér–Rao bound, which appears to be a paradoxical result if the conceptual difference
between the two approaches are overlooked. Similarly, bounds for fluctuating parameters make no
statement about the estimation of a fixed parameter.

Keywords: quantum metrology; Bayesian estimation; parameter estimation

1. Introduction

The estimation of a phase shift using interferometric techniques is at the core of metrology and
sensing [1–3]. Applications range from the definition of the standard of time [4] to the detection
of gravitational waves [5,6]. The general problem can be concisely stated as the search for optimal
strategies to minimize the phase estimation uncertainty. The noise that limits the achievable phase
sensitivity can have a “classical” or a “quantum” nature. Classical noise originates from the coupling
of the interferometer with some external source of disturbance, like seismic vibrations, parasitic
magnetic fields or from incoherent interactions within the interferometer. Such noise can, in principle,
be arbitrarily reduced, e.g., by shielding the interferometer from external noise or by tuning interaction
parameters to ensure a fully coherent time evolution. The second source of uncertainty has an
irreducible quantum origin [7,8]. Quantum noise cannot be fully suppressed, even in the idealized
case of the creation and manipulation of pure quantum states. Using classically-correlated probe states,
it is possible to reach the so-called shot noise or standard quantum limit, which is the limiting factor
for the current generation of interferometers and sensors [9–12]. Strategies involving probe states
characterized by squeezed quadratures [13] or entanglement between particles [14–19] are able to
overcome the shot noise, the ultimate quantum bound being the so-called Heisenberg limit. Quantum
noise reduction in phase estimation has been demonstrated in several proof-of-principle experiments
with atoms and photons [20,21].

There is a vast amount of literature dealing with the parameter estimation problem that
has been mostly developed following two different approaches [22–24]: frequentist and Bayesian.
Both approaches have been investigated in the context of quantum phase estimation [18,20,25–31] and
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implemented/tested experimentally [32–36]. They build on conceptually different meanings attached
to the word “probability” and their respective results provide conceptually different information on
the estimated parameters and their uncertainties.

In the limit of a large number of repeated measurements, the sensitivity reached by the frequentist
and Bayesian methods generally agree: this fact has very often induced the belief that the two
paradigms can be interchangeably used in the phase estimation theory without acknowledging their
irreconcilable nature. Overlooking these differences is not only conceptually inconsistent but can
even create paradoxes, as, for instance, the existence of ultimate bounds in sensitivity proven in one
paradigm that can be violated in the other.

In this manuscript, we directly compare the frequentist and the Bayesian parameter
estimation theory. We study different sensitivity bounds obtained in the two frameworks
and highlight the conceptual differences between the two. Besides the asymptotic regime of
many repeated measurements, we also study bounds that are relevant for small samples.
In particular, we show that the Bayesian variance can overcome the frequentist Cramér–Rao bound.
The Cramér–Rao bound is a mathematical theorem providing the highest possible sensitivity in a phase
estimation problem. The fact that the Bayesian sensitivity can be higher than the Cramér–Rao bound
is therefore paradoxical. The paradox is solved by clarifying the conceptual differences between the
frequentist and the Bayesian approaches, which therefore cannot be directly compared. Such difference
should be considered when discussing theoretical and experimental figures of merit in interferometric
phase estimation.

Our results are illustrated with a simple test model [37,38]. We consider N qubits with basis
states |0〉 and |1〉, initially prepared in a (generalized) GHZ state |GHZ〉 = (|0〉⊗N + |1〉⊗N)/

√
2,

with all particles being either in |1〉 or in |0〉. The phase-encoding is a rotation of each qubit in the
Bloch sphere |0〉 → e−iθ/2|0〉 and |1〉 → e+iθ/2|1〉, which transforms the |GHZ〉 state into |GHZ(θ)〉 =
(e−iNθ/2|0〉⊗N + e+iNθ/2|1〉⊗N)/

√
2. The phase is estimated by measuring the parity (−1)N0 , where N0

is the number of particles in the state |0〉 [37,39–41]. The parity measurement has two possible results
µ = ±1 that are conditioned by the “true value of the phase shift” θ0 with probability p(±1|θ0) = (1±
cos (Nθ0))/2. The probability to observe the sequence of results µ = {µ1, µ2, . . . , µm} in m independent
repetitions of the experiment (with same probe state and phase encoding transformation) is

p(µ|θ0) =
m

∏
i=1

p(µi|θ0) =

(
1 + cos (Nθ0)

2

)m+
(

1− cos (Nθ0)

2

)m−
, (1)

where m± is the number of the observed results ±1, respectively. Notice that p(µ|θ0) is the conditional
probability for the measurement outcome µ, given that the true value of the phase shift is θ0 (which we
consider to be unknown in the estimation protocol). Equation (1) provides the probability that will be
used in the following sections for the case N = 2 and θ0 ∈ [0, π/2]. Sections 2 and 3 deal with the case
where θ0 has a fixed value and in Section 4 we discuss precision bounds for a fluctuating phase shift.

2. Frequentist Approach

In the frequentist paradigm, the phase (assumed having a fixed but unknown value θ0) is estimated
via an arbitrarily chosen function of the measurement results, θest(µ), called the estimator. Typically,
θest(µ) is chosen by maximizing the likelihood of the observed data (see below). The estimator,
being a function of random outcomes, is itself a random variable. It is characterized by a statistical
distribution that has an objective, measurable character. The relative frequency with which the event
θest occurs converges to a probability asymptotically with the number of repeated experimental trials.
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2.1. Frequentist Risk Functions

Statistical fluctuations of the data reflect the statistical uncertainty of the estimation. This is
quantified by the variance, (

∆2θest
)

µ|θ0
= ∑

µ

(
θest(µ)− 〈θest〉µ|θ0

)2 p(µ|θ0), (2)

around the mean value 〈θest〉µ|θ0
= ∑µ θest(µ)p(µ|θ0), the sum extending over all possible

measurement sequences (for fixed θ0 and m). An important class is that of locally unbiased estimators,

namely those satisfying 〈θest〉µ|θ0
= θ0 and

d〈θest〉µ|θ
dθ

∣∣
θ=θ0

= 1 (see, for instance, [42]). An estimator is
unbiased if and only if it is locally unbiased at every θ0.

The quality of the estimator can also be quantified by the mean square error (MSE) [23]

MSE(θest)µ|θ0
= ∑

µ

(
θest(µ)− θ0

)2 p(µ|θ0), (3)

giving the deviation of θest from the true value of the phase shift θ0. It is related to Equation (2) by
the relation

MSE(θest)µ|θ0
=
(
∆2θest

)
µ|θ0

+
(
〈θest〉µ|θ0

− θ0

)2
. (4)

In the frequentist approach, often the variance is not considered as a proper way to quantify the
goodness of an estimator. For instance, an estimator that always gives the same value independently
of the measurement outcomes is strongly biased: it has zero variance but a large MSE that does not
scale with the number of repeated measurements. Notice that the MSE cannot be accessed from the
experimentally available data since the true value θ0 is unknown. In this sense, only the fluctuations of
θest around its mean value, i.e., the variance (∆2θest)µ|θ0

, have experimental relevance. For unbiased
estimators, Equations (2) and (4) coincide. In general, since the bias term in Equation (4) is never
negative, MSE(θest)µ|θ0

≥
(
∆2θest

)
µ|θ0

and any lower bound on (∆2θest)µ|θ0
automatically provides

a lower bound on MSE(θest)µ|θ0
but not vice versa. In the following section, we therefore limit

our attention to bounds on (∆2θest)µ|θ0
. The distinction between the two quantities becomes more

important in the case of a fluctuating phase shift θ0, where the bias can affect the corresponding bounds
in different ways. We will see this explicitly in Section 4.

2.2. Frequentist Bounds on Phase Sensitivity

2.2.1. Barankin Bound

The Barankin bound (BB) provides the tightest lower bound to the variance (2) [43]. It can be
proven to be always (for any m) saturable, in principle, by a specific local (i.e., dependent of θ0)
estimator and measurement observable. Of course, since the estimator that saturates the BB depends
on the true value of the parameter (which is unknown), the bound is of not much use in practice.
Nevertheless, the BB plays a central role, from the theoretical point of view, as it provides a hierarchy
of weaker bounds which can be used in practice with estimators that are asymptotically unbiased.
The BB can be written as [44]

(
∆2θest

)
µ|θ0
≥ ∆2θBB ≡ sup

θi ,ai ,n

{
∑n

i=1 ai[〈θest〉µ|θi
− 〈θest〉µ|θ0

]
}2

∑µ [∑
n
i=1 aiL(µ|θi, θ0)]

2 p(µ|θ0)
, (5)

where L(µ|θi, θ) = p(µ|θi)/p(µ|θ) is generally indicated as likelihood ratio and the supremum is taken
over n parameters ai ∈ R, which are arbitrary real numbers, and θi, which are arbitrary phase values
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in the parameter domain. For unbiased estimators, we can replace 〈θest〉µ|θi
= θi for all i and the BB

becomes independent of the estimator:

(
∆2θest

)
µ|θ0
≥ ∆2θub

BB ≡ sup
θi ,ai ,n

{∑n
i=1 ai[θi − θ0]}2

∑µ [∑
n
i=1 aiL(µ|θi, θ0)]

2 p(µ|θ0)
. (6)

A derivation of the BB is presented in Appendix A.
The explicit calculation of ∆2θBB is impractical in most applications due to the number of free

variables that must be optimized. However, the BB provides a strict hierarchy of bounds of increasing
complexity that can be of great practical importance. Restricting the number of variables in the
optimization can provide local lower bounds that are much simpler to determine at the expense of not
being saturable in general, namely, for an arbitrary number of measurements. Below, we demonstrate
the following hierarchy of bounds:(

∆2θest

)
µ|θ0
≥ ∆2θBB ≥ ∆2θEChRB ≥ ∆2θChRB ≥ ∆2θCRLB, (7)

where ∆2θCRLB is the Cramér–Rao lower bound (CRLB) [45,46] and ∆2θChRB is the
Hammersley–Chapman–Robbins bound (ChRB) [47,48]. We will also introduce a novel extended
version of the ChRB, indicated as ∆2θEChRB.

2.2.2. Cramér–Rao Lower Bound and Maximum Likelihood Estimator

The CRLB is the most common frequentist bound in parameter estimation. It is given by [45,46]:

∆2θCRLB =

(
d〈θest〉µ|θ0

dθ0

)2

mF(θ0)
. (8)

The inequality
(
∆2θest

)
µ|θ0
≥ ∆2θCRLB is obtained by differentiating 〈θest〉µ|θ0

with respect to θ0 and
using a Cauchy–Schwarz inequality:(d〈θest〉µ|θ0

dθ0

)2

=

(
∑
µ

(
θest(µ)− 〈θest〉µ|θ0

)dp(µ|θ0)

dθ0

)2

≤ mF(θ0)
(
∆2θest

)
µ|θ0

, (9)

where we have used ∑µ
dp(µ|θ0)

dθ0
= 0 and ∑µ

1
p(µ|θ0)

( ∂p(µ|θ)
∂θ |θ0)

2 = m ∑µ
1

p(µ|θ0)
( ∂p(µ|θ)

∂θ |θ0)
2 valid for m

independent measurements, and

F (θ0) = ∑
µ

1
p(µ|θ0)

(
∂p(µ|θ)

∂θ

∣∣∣
θ0

)2

(10)

is the Fisher information. The equality
(
∆2θest

)
µ|θ0

= ∆2θCRLB is achieved if and only if

θest(µ)− 〈θest〉µ|θ0
= λθ0

d log p(µ|θ0)

dθ0
, (11)

with λθ0 a parameter independent of µ (while it may depend on θ0). Noticing that
d〈θest〉µ|θ0

dθ0
=

∑µ

(
θest(µ) − f (θ0)

) dp(µ|θ0)
dθ0

, the CRLB can be straightforwardly generalized to any function f (θ0)

independent of µ. In particular, choosing f (θ0) = θ0, we can directly prove that MSE(θest)µ|θ0
≥

∆2θCRLB, which also depends on the bias.
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Asymptotically in m, the saturation of Equation (8) is obtained for the maximum likelihood
estimator (MLE) [22,23,49]. This is the value θMLE(µ) that maximizes the likelihood p(µ|θ0)

(as a function of the parameter θ0) for the observed measurement sequence µ,

θMLE(µ) ≡ arg maxθ0
{p(µ|θ0)}. (12)

For a sufficiently large sample size m (in the central limit), independently of the probability distribution
p(µ|θ0), the MLE becomes normally distributed [18,22,23,49]:

p(θMLE|θ0) =

√
mF (θ0)

2π
e−

mF(θ0)
2 (θ0−θMLE)

2
(m� 1), (13)

with mean given by the true value θ0 and variance equal to the inverse of the Fisher information.
The MLE is well defined provided that there is a unique maximum in the considered phase interval.
In the case of Equation (1), this condition is fulfilled provided that one restrict the phase domain to
[0, π/(2N)] for instance.

In Figure 1, we plot the results of a maximum likelihood analysis for the example considered in
this manuscript. In this case, the MLE is readily calculated and given by θMLE(µ) =

1
2 arccos(m+−m−

m++m− ),
and the Fisher information is F(θ0) = N2, independent of θ0 (we recall that N = 2 in our example).
In Figure 1a we plot the bias 〈θMLE〉µ|θ0

− θ0 (dots) as a function of m, for θ0 = π/4. Error bars are
±∆θCRLB. Notice that 〈θMLE〉µ|θ0

= θ0 for every m. This does not mean that the estimator is locally
unbiased: indeed, the derivative d 〈θMLE〉µ|θ0

/dθ0 [see panel (b)] is different from 1 for every value
of m. We have d 〈θMLE〉µ|θ0

/dθ0 → 1 asymptotically in m. In Figure 1b, we plot mF(θ0)(∆2θMLE)µ|θ0

as a function of the number of independent measurements m (red dots). This quantity is compared
to mF(θ0)∆2θCRLB = (d 〈θMLE〉µ|θ0

/dθ0)
2 (red line). With increasing sample size m, (∆2θMLE)µ|θ0

→
1/
(
mF(θ0)

)
corresponding to the CRLB for unbiased estimators.
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Figure 1. (a) Bias 〈θMLE〉µ|θ0
− θ0 (green dots) as function of m with error bars (∆θMLE)µ|θ0

. The red
lines are±∆θCRLB = ±|d〈θMLE〉µ|θ0

/dθ0|/
√

mF(θ0); (b) variance of the maximum likelihood estimator
multiplied by the Fisher information, mF(θ0)(∆2θMLE)µ|θ0

(red circles), as a function of the sample
size m. It is compared to the bias (d〈θMLE〉µ|θ0

/dθ0)
2 (red dashed line). We recall that θ0 = π/4 and

F(θ0) = 4 here.

2.2.3. Hammersley–Chapman–Robbins Bound

The ChRB is obtained from Equation (5) by taking n = 2, a1 = 1, a2 = −1, θ1 = θ0 + λ, θ2 = θ0,
and can be written as [47,48]
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∆2θChRB = sup
λ

(
〈θest〉µ|θ0+λ − 〈θest〉µ|θ0

)2

∑µ
p(µ|θ0+λ)2

p(µ|θ0)
− 1

. (14)

Clearly, restricting the number of parameters in the optimization in Equation (5) leads to a less strict
bound. We thus have ∆2θBB ≥ ∆2θChRB. For unbiased estimators, we obtain

∆2θub
ChRB = sup

λ

λ2

∑µ
p(µ|θ0+λ)2

p(µ|θ0)
− 1

. (15)

Furthermore, the supremum over λ on the right side of Equation (14) is always larger or equal to its
limit λ→ 0:

sup
λ

(
〈θest〉µ|θ0+λ − 〈θest〉µ|θ0

)2

∑µ
p(µ|θ0+λ)2

p(µ|θ0)
− 1

≥ limλ→0

(
〈θest〉µ|θ0+λ−〈θest〉µ|θ0

)2

∑µ
p(µ|θ0+λ)2

p(µ|θ0)
−1

=

( d〈θest〉µ|θ0
dθ0

)2

m ∑µ
1

p(µ|θ0)

( dp(µ|θ0)
dθ0

)2 , (16)

provided that the derivatives on the right-hand side exist. We thus recover the CRLB as a limiting
case of the ChRB. The ChRB is always stricter than the CRLB and we obtain the last inequality in
the chain (7). Notice that the CRLB requires the probability distribution p(µ|θ0) to be differentiable
[24]—a condition that can be dropped for the ChRB and the more general BB. Even if the distribution
is regular, the above derivation shows that the ChRB, and more generally the BB, provide tighter error
bounds than the CRLB. With increasing n, the BB becomes tighter and tighter and the CRLB represents
the weakest bound in this hierarchy, which can be observed in Figure 2a. Next, we determine a stricter
bound in this hierarchy.
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m

Figure 2. (a) comparison between unbiased frequentist bounds for the example considered
in this manuscript, Equation (1): the CRLB m∆2θub

CRLB = 1/F(θ0) (black line), the
Hammersley–Chapman–Robbins bound m∆2θub

ChRB (Equation (15), filled triangles) and the extended
Hammersley–Chapman–Robbins bound m∆2θub

EChRB (Equation (18), empty triangles); (b) values of λ

achieving the supremum in Equation (15), as a function of m.

2.2.4. Extended Hammersley–Chapman–Robbins Bound

We obtain the extended Hammersley–Chapman–Robbins bound (EChRB) as a special case of
Equation (5), by taking n = 3, a1 = 1, a2 = A, a3 = −1, θ1 = θ0 + λ1, θ2 = θ0 + λ2, and θ3 = θ0, giving

∆2θEChRB = sup
λ1,λ2,A

(
〈θest〉µ|θ0+λ1

+ A〈θest〉µ|θ0+λ2
− (1 + A)〈θest〉µ|θ0

)2

∑µ
[p(µ|θ0+λ1)−p(µ|θ0)+Ap(µ|θ0+λ2)]

2

p(µ|θ0)

, (17)
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where the supremum is taken over all possible λ1, λ2 ∈ N and A ∈ R. Since the ChRB is obtained from
Equation (17) in the specific case A = 0, we have that ∆2θEChRB ≥ ∆2θChRB. For unbiased estimators,
we obtain

∆2θub
EChRB = sup

λ1,λ2,A

(λ1 + Aλ2)
2

∑µ
[p(µ|θ0+λ1)−p(µ|θ0)+Ap(µ|θ0+λ2)]

2

p(µ|θ0)

. (18)

In Figure 2a, we compare the different bounds for unbiased estimators and for the example considered
in the manuscript: the CRLB (black line), the ChRB (filled triangles) and the EChRB (empty triangles),
satisfying the chain of inequalities (7). In Figure 2b, we show the values of λ in Equation (15) for which
the supremum is achieved in our case.

3. Bayesian Approach

The Bayesian approach makes use of the Bayes–Laplace theorem, which can be very simply
stated and proved. The joint probability of two stochastic variables µ and θ is symmetric:
p(µ, θ) = p(µ|θ)p(θ) = p(θ|µ)p(µ) = p(θ, µ), where p(θ) and p(µ) are the marginal distributions,
obtained by integrating the joint probability over one of the two variables, while p(µ|θ) and p(θ|µ) are
conditional distributions.

We recall that in a phase inference problem, the set of measurement results µ is generated by
a fixed and unknown value θ0 according to the likelihood p(µ|θ0). In the Bayesian approach to the
estimation of θ0, one introduces a random variable θ and uses the Bayes–Laplace theorem to define the
conditional probability

ppost(θ|µ) =
p(µ|θ)ppri(θ)

pmar(µ)
. (19)

The posterior probability ppost(θ|µ) provides a degree of belief, or plausibility, that θ0 = θ (i.e., that θ

is the true value of the phase), in the light of the measurement data µ [50]. In Equation (19),
the prior distribution ppri(θ) expresses the a priori state of knowledge on θ, p(µ|θ) is the likelihood
that is determined by the quantum mechanical measurement postulate, e.g., as in Equation (1),
and the marginal probability pmar(µ) =

∫ b
a dθ p(θ, µ) is obtained through the normalization for the

posterior, where a and b are boundaries of the phase domain. The posterior probability ppost(θ|µ)
describes the current knowledge about the random variable θ based on the available information,
i.e., the measurement results µ.

3.1. Noninformative Prior

In the Bayesian approach, the information on θ provided by the posterior probability always
depends on the prior distribution ppri(θ). It is possible to account for the available a priori information
on θ by choosing a prior distribution accordingly. However, if no a priori information is available,
it is not obvious how to choose a “noninformative” prior [51]. The flat prior ppri(θ) = const was
first introduced by Laplace to express the absence of information on θ [51]. However, this prior
would not be flat for other functions of θ and, in the complete absence of a priori information,
it seems unreasonable that some information is available for different parametrizations of the problem.
To see this, recall that a transformation of variables requires that ppri(ϕ) = ppri(θ)|d f−1(ϕ)/dϕ| for
any function ϕ = f (θ). Hence, if ppri(θ) is flat, one obtains that ppri(ϕ) = |d f−1(ϕ)/dϕ| is, in general,
not flat.

Notice that ppri(θ) ∝
√

F(θ)—called Jeffreys prior [52,53]—where F(θ) is the
Fisher information (10), remains invariant under re-parametrization. For arbitrary
transformations ϕ = f (θ), the Fisher information obeys the transformation property
F(ϕ) = F(θ)(dθ/dϕ)2 = F(θ)(d f−1(ϕ)/dϕ)2. Therefore, if ppri(θ) ∝

√
F(θ) and we perform

the change of variable ϕ = f (θ), then the transformation property of the Fisher information ensures
that ppri(ϕ)= ppri(θ)|d f−1(ϕ)/dϕ| ∝

√
F(ϕ). Notice that, as in our case, the Fisher information F(θ)
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may actually be independent of θ. In this case, the invariance property does not imply that Jeffreys
prior is flat for arbitrary re-parametrizations ϕ = f (θ), instead,

√
F(ϕ) = |d f−1(ϕ)/dϕ|.

3.2. Posterior Bounds

From the posterior probability (19), we can provide an estimate θBL(µ) of θ0. This can be
the maximum a posteriori, θBL(µ) = arg maxθ ppost(θ|µ), which coincides with the maximum
likelihood Equation (12) when the prior is flat, ppri(θ) = const, or the mean of the distribution,

θBL(µ) =
∫ b

a dθ θ ppost(θ|µ).
With the Bayesian approach, it is possible to provide a confidence interval around the estimator,

given an arbitrary measurement sequence µ, even with a single measurement. The variance

(
∆2θBL(µ)

)
θ|µ

=
∫ b

a
dθ ppost(θ|µ)

(
θ − θBL(µ)

)2 (20)

can be taken as a measure of fluctuation of our degree of belief around θBL(µ). There is no such
concept in the frequentist paradigm. The Bayesian posterior variance

(
∆2θBL(µ)

)
θ|µ and the frequentist

variance (∆2θBL)µ|θ0
have entirely different operational meanings. Equation (20) provides a degree

of plausibility that θBL(µ) = θ0, given the measurement results µ. There is no notion of bias in this
case. On the other hand, the quantity (∆2θBL)µ|θ0

measures the statistical fluctuations of θBL(µ) when
repeating the sequence of m measurements infinitely many times.

Ghosh Bound

In the following, we derive a lower bound to Equation (20) first introduced by Ghosh [54].
Using

∫ b
a dθ ppost(θ|µ) = 1, we have

∫ b

a
dθ (θ − θBL(µ))

dppost(θ|µ)
dθ

= ppost(θ|µ)
(
θ − θBL(µ)

)∣∣b
a −
∫ b

a dθ ppost(θ|µ) = f (µ, a, b)− 1, (21)

where f (µ, a, b) = bppost(b|µ)− appost(a|µ)− θBL(µ)(ppost(b|µ)− ppost(a|µ)) depends on the value of
the posterior distribution calculated at the boundaries. If ppri(a) = ppri(b) = 0, we have f (µ, a, b) = 0.
Analogously with the derivation of the (frequenstist) CRLB, we exploit the Cauchy–Schwarz inequality,(∫ b

a
dθ

(
dppost(θ|µ)

dθ

)2 1
ppost(θ|µ)

)(∫ b

a
dθ ppost(θ|µ) (θ − θBL(µ))

2
)
≥ ( f (µ, a, b)− 1)2,

leading to (∆2θBL(µ))θ|µ ≥ ∆2θGB(µ), where [54]

∆2θGB(µ) =
( f (µ, a, b)− 1)2∫ b

a dθ 1
ppost(θ|µ)

(
dppost(θ|µ)

dθ

)2 . (22)

The above bound is a function of the specific measurement sequence µ and depends on∫ b
a dθ 1

ppost(θ|µ)
( dppost(θ|µ)

dθ

)2 that we can identify as a “Fisher information of the posterior distribution”.
The Ghosh bound is saturated if and only if

θ − θBL(µ) = λµ
d log p(θ|µ)

dθ
, (23)

where λµ does not depend on θ while it may depend on µ.



Entropy 2018, 20, 628 9 of 22

3.3. Average Posterior Bounds

While Equation (20) depends on the specific µ, it is natural to consider its average over all possible
measurement sequences at fixed θ0 and m, weighted by the likelihood p(µ|θ0):(

∆2θBL

)
µ,θ|θ0

= ∑
µ

(
∆2θBL(µ)

)
θ|µ p(µ|θ0) = ∑

µ

∫ b

a
dθ p(θ, µ|θ0)

(
θ − θBL(µ)

)2, (24)

which we indicate as average Bayesian posterior variance, where p(θ, µ|θ0) = ppost(θ|µ)p(µ|θ0).
We would be tempted to compare the average posterior sensitivity (∆2θBL)µ,θ|θ0

to the frequentist
Cramér–Rao bound ∆2θCRLB. However, because of the different operational meanings of the frequentist
and the Bayesian paradigms, there is no reason for Equation (24) to fulfill the Cramér–Rao bound:
indeed, it does not, as we show below.

Likelihood-Averaged Ghosh Bound

A lower bound to Equation (24) is obtained by averaging the Ghosh bound Equation (22) over the
likelihood function. We have (∆2θBL)µ,θ|θ0

≥ ∆2θaGB, where [18]

∆2θaGB = ∑
µ

( f (µ, a, b)− 1)2∫ b
a dθ 1

ppost(θ|µ)
( ∂ppost(θ|µ)

∂θ

)2
p(µ|θ0). (25)

This likelihood-averaged Ghosh bound is independent of µ because of the statistical average.

3.4. Numerical Comparison of Bayesian and Frequentist Phase Estimation

In the numerical calculations shown in Figure 3, we consider a Bayesian estimator given by
θBL(µ) =

∫ b
a dθ θ ppost(θ|µ) with prior distributions

ppri(θ) =
2
π

eα sin(2θ)2 − 1
eα/2 I0(α/2)− 1

, (26)

where I0(α) is the modified Bessel function of the first kind. This choice of prior distribution can
continuously turn from a peaked function to a flat one when changing α, while being differentiable
in the full phase interval. The more negative is α, the more ppri(θ) broadens in [0, π/2]. In particular,
in the limit α → −∞, the prior approaches the flat distribution, which in our case coincides with
Jeffreys prior since the Fisher information is independent of θ. In the limit α = 0, the prior is given
by limα→0 ppri(θ) = 4 sin(2θ)2/π. For positive values of α, the larger α, the more peaked is ppri(θ)

around θ0 = π/4. In particular ppri(θ) ≈ e−4α(θ−π/4)2
/
√

π/4α for α� 1. Equation (26) is normalized
to one for θ ∈ [0, π

2 ]. In the inset of the different panels of Figure 3, we plot ppri(θ) for α = −100 [panel
(a)], α = −10 (b), α = 1 (c) and α = 10 (d).

In Figure 3, we plot, as a function of m, the posterior variance (∆2θBL)µ,θ|θ0
(blue circles)

that, as expected, is always larger than the likelihood-averaged Ghosh bound Equation (25)
(solid blue lines). For comparison, we also plot the frequentist variance (∆2θBL)µ|θ0

= ∑µ

(
θBL(µ)−

〈θBL〉µ|θ0

)2 p(µ|θ0) (red dots) around the mean value 〈θBL〉µ|θ0
= ∑µ θBL(µ)p(µ|θ0) of the estimator.

This quantity obeys the Cramér–Rao theorem
(
∆2θBL

)
µ|θ0
≥ ∆2θCRLB and the more general chain of

inequalities (7). This is confirmed in the figure where we show ∆2θCRLB = |d〈θBL〉µ|θ0
/dθ0|2/

(
mF(θ0)

)
(red line). Notice that, when the prior narrows around θ0, the variance

(
∆2θBL

)
µ|θ0

decreases, but, at the
same time, the estimator becomes more and more biased, i.e., |d〈θBL〉µ|θ0

/dθ0| decreases as well
(note indeed that the red dashed line is proportional to |d〈θBL〉µ|θ0

/dθ0|2).
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Figure 3. Comparisons of phase estimation variance as a function of the sample size for Bayesian and
frequentist data analysis under different prior distributions, (a) α = −100, (b) α = −10, (c) α = 1,
(d) α = 10. In all figures, Red circles (frequentist) are m(∆2θBL)µ|θ0

, the red dashed line is the
Cramér-Rao lower bound m∆2θCRLB, Equation (8). Blue circles (Bayesian) are m(∆2θBL)µ,θ|θ0

, the blue
solid line is the likelihood-averaged Ghosh bound m∆2θaGB, Equation (25). The inset in each panel is
ppri(θ), Equation (26), for the corresponding values of α.

Interestingly, in Figure 3, we clearly see that the Bayesian posterior variance (∆2θBL)µ,θ|θ0
and the

likelihood-averaged Ghosh bound may stay in some cases below the (frequentist) ∆2θCRLB [see panels
(a) and (b)], even if the prior is almost flat. The discrepancy with the CRLB is remarkable and can
be quite large for small values of m. Still, there is no contradiction since (∆2θBL)µ,θ|θ0

and
(
∆2θBL

)
µ|θ0

have different operational meanings and interpretations. They both respect their corresponding
sensitivity bounds.

Asymptotically in the number of measurements m, the Ghosh bound as well as its likelihood
average converge to the Cramér–Rao bound. Indeed, it is well known that in this limit the posterior
probability becomes a Gaussian centered at the true value of the phase shift and with variance given
by the inverse of the Fisher information,

ppost(θ|µ) =
√

mF(θ0)

2π
e−

mF(θ0)
2 (θ−θ0)

2
, (m� 1), (27)

a result known as Laplace–Bernstein–von Mises theorem [18,23,55]. By replacing Equation (27) into
Equation (22), we recover a posterior variance given by 1/

(
mF(θ0)

)
.

4. Bounds for Random Parameters

In this section, we derive bounds of phase sensitivity obtained when θ0 is a random variable
distributed according to p(θ0). Operationally, this corresponds to the situation where θ0 remains fixed
(but unknown) when collecting a single sequence of m measurements µ. In between measurement
sequences, θ0 fluctuates according to p(θ0).
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4.1. Frequentist Risk Functions for Random Parameters

Let us first consider the frequentist estimation of a fluctuating parameter θ0 with the estimator
θest. The mean sensitivity obtained by averaging (∆2θest)µ|θ0

, Equation (3), over p(θ0) is

(∆2θest)µ,θ0 =
∫ b

a
dθ0(∆2θest)µ|θ0

p(θ0)

= ∑
µ

∫ b

a
dθ0 p(µ|θ0)p(θ0)

(
〈θest〉µ|θ0

− θest(µ)
)2 (28)

= ∑
µ

∫ b

a
dθ0 p(µ, θ0)

(
〈θest〉µ|θ0

− θest(µ)
)2,

where µ and θ0 are both random variables and we have used p(µ|θ0)p(θ0) = p(µ, θ0).
An averaged risk function for the efficiency of the estimator is given by averaging the mean

square error (3) over p(θ0), leading to

MSE(θest)µ,θ0 =
∫

dθ0MSE(θest)µ|θ0
p(θ0) =

∫
dθ0 ∑

µ

(
θest(µ)− θ0

)2 p(µ, θ0). (29)

Analogously to Equation (4), we can write

MSE(θest)µ,θ0 =
(
∆2θest

)
µ,θ0

+
∫

dθ0

(
〈θest〉µ|θ0

− θ0

)2
p(θ0). (30)

In the following, we derive lower bounds for both (∆2θest)µ,θ0 and MSE(θest)µ,θ0 . Notice that
bounds on (∆2θest)µ,θ0 hold also for MSE(θest)µ,θ0 due to MSE(θest)µ,θ0 ≥ (∆2θest)µ,θ0 . Nevertheless,
bounds on the average the mean square error are widely used (and are often called Bayesian
bounds [56]) since they can be expressed independently of the bias.

4.2. Bounds on the Mean Square Error

We first consider bounds on MSE(θest)µ,θ0 , Equation (29), for arbitrary estimators.

4.2.1. Van Trees Bound

It is possible to derive a general lower bound on the mean square error (29) based on the following
assumptions:

1. ∂p(µ,θ0)
∂θ0

and ∂2 p(µ,θ0)

∂θ2
0

are absolutely integrable with respect to µ and θ0;

2. p (a) ξ(a)− p (b) ξ(b) = 0, where ξ(θ0) = ∑µ (θest(µ)− θ0) p(µ|θ0).

Multiplying ξ(θ0) by p(θ0) and differentiating with respect to θ0, we have

∂p(θ0)ξ(θ0)

∂θ0
= ∑

µ

(θest(µ)− θ0)
∂p(µ, θ0)

∂θ0
− p(θ0).

Integrating over θ0 in the range of [a, b] and considering the above properties, we find

∑
µ

∫ b

a
dθ0 (θBL(µ)− θ0)

∂p(µ, θ0)

∂θ0
= 1. (31)

Finally, using the Cauchy–Schwarz inequality, we arrive at MSE(θest)µ,θ0 ≥ ∆2θVTB, where

∆2θVTB =
1

∑µ

∫ b
a dθ0

1
p(µ,θ0)

( ∂p(µ,θ0)
∂θ0

)2 (32)
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is generally indicated as Van Trees bound [24,56,57]. The equality holds if and only if

θest(µ)− θ0 = λ
d log p(µ, θ0)

dθ0
, (33)

where λ does not depend on θ0 and µ. It is easy to show that

∑
µ

∫ b

a
dθ0

1
p(µ, θ0)

(
∂p(µ, θ0)

∂θ0

)2

= m
∫ b

a
dθ0 p(θ0)F(θ0) +

∫ b

a
dθ0

1
p(θ0)

(
∂p(θ0)

∂θ0

)2

, (34)

where the first term is the Fisher information F(θ0), defined by Equation (10), averaged over p(θ0),
and the second term can be interpreted as a Fisher information of the prior [24]. Asymptotically in
the number of measurements m and for regular distributions p(θ0), the first term in Equation (34)
dominates over the second one.

4.2.2. Ziv–Zakai Bound

A further bound on MSE(θest)µ,θ0 can be derived by mapping the phase estimation problem to
a continuous series of binary hypothesis testing problems. A detailed derivation of the Ziv–Zakai
bound [24,58,59] is provided in Appendix B. The final result reads MSE(θest)µ,θ0 ≥ ∆2θZZB, where

∆2θZZB =
1
2

∫
dh h

∫
dθ0 (p (θ0) + p (θ0 + h)) Pmin (θ0, θ0 + h) , (35)

and

Pmin (θ0, θ0 + h) =
1
2

(
1−∑

µ

∣∣∣∣ p (θ0) p (µ|θ0)

p (θ0) + p (θ0 + h)
− p (θ0 + h) p (µ|θ0 + h)

p (θ0) + p (θ0 + h)

∣∣∣∣
)

(36)

is the minimum error probability of the binary hypothesis testing problem. This bound has been
adopted for quantum phase estimation in Ref. [26]. To this end, the probability Pmin(θ0, θ0 + h) can
be maximized over all possible quantum measurements, which leads to the trace distance [7]. As the
optimal measurement may depend on θ0 and h, the bound (35), which involves integration over all
values of θ0 and h, is usually not saturable. We remark that the trace distance also defines a saturable
frequentist bound for a different risk function than the variance [60].

4.3. Bounds on the Average Estimator Variance

We now consider bounds on (∆2θest)µ,θ0 , Equation (28), for arbitrary estimators.

4.3.1. Average CRLB

Taking the average over p(θ0) of Equation (7), we obtain a chain of bounds for (∆2θest)µ,θ0 .
In particular, in its simplest form, we have (∆2θest)µ,θ0 ≥ ∆2θaCRLB, where

∆2θaCRLB =
∫ b

a
dθ0

(
d〈θest〉µ|θ0

dθ0

)2

mF(θ0)
p(θ0) (37)

is the average CRLB.

4.3.2. Van Trees Bound for the Average Estimator Variance

We can derive a general lower bound for the variance (28) by following the derivation of the Van
Trees bound, which was discussed in Section 4.2.1. In contrast to the standard Van Trees bound for the
mean square error, here the bias enters explicitly. Defining ξ(θ0) = ∑µ

(
θest(µ)− 〈θest〉µ|θ0

)
p(µ|θ0)
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and assuming the same requirements as in the derivation of the Van Trees bound for the MSE,
we arrive at

∑
µ

∫ b

a
dθ0
(
θest(µ)− 〈θest〉µ|θ0

)∂p(µ, θ0)

∂θ0
=
∫ b

a
dθ0

d〈θest〉µ|θ0

dθ0
p(θ0).

Finally, a Cauchy–Schwarz inequality gives (∆2θest)µ,θ0 ≥ ∆2θfVTB, where

∆2θfVTB =

(∫ b
a dθ0

d〈θest〉µ|θ0
dθ0

p(θ0)
)2

∑µ

∫ b
a dθ0

1
p(µ,θ0)

( ∂p(µ,θ0)
∂θ0

)2 , (38)

with equality if and only if

θest(µ)− 〈θest〉µ|θ0
= λ

d log p(µ, θ0)

dθ0
, (39)

where λ is independent of θ0 and µ.
We can compare Equation (38) with the average CRLB Equation (37). We find

∫ b

a
dθ0

( d〈θest〉µ|θ0
dθ0

)2

mF(θ0)
p(θ0) ≥

(∫ b
a dθ0

d〈θest〉µ|θ0
dθ0

p(θ0)
)2

m
∫ b

a dθ0 p(θ0)F(θ0)
≥
(∫ b

a dθ0
∣∣ d〈θest〉µ|θ0

dθ0

∣∣p(θ0)
)2

∑µ

∫ b
a dθ0

1
p(µ,θ0)

( ∂p(µ,θ0)
∂θ0

)2 ,

where in the first step we use Jensen’s inequality, and the second step follows from Equation (34) which
implies m

∫ b
a dθ0 p(θ0)F(θ0) ≤ ∑µ

∫ b
a dθ0

1
p(µ,θ0)

( ∂p(µ,θ0)
∂θ0

)2 since
∫ b

a dθ0
1

p(θ0)

( dp(θ0)
dθ0

)2 ≥ 0.
We thus arrive at

(∆2θest)µ,θ0 ≥ ∆2θaCRLB ≥ ∆2θfVTB, (40)

which is valid for generic estimators.

4.4. Bayesian Framework for Random Parameters

The Bayesian posterior variance, (∆2θBL)µ,θ|θ0
, Equation (24), averaged over p(θ0) is

(∆2θBL)µ,θ,θ0 =
∫ b

a
dθ0(∆2θBL)µ,θ|θ0

p(θ0)

= ∑
µ

∫ b

a
dθ
∫ b

a
dθ0 ppost(θ|µ)p(µ|θ0)p(θ0)

(
θ − θBL(µ)

)2 (41)

= ∑
µ

∫ b

a
dθ ppost(θ|µ)p(µ)

(
θ − θBL(µ)

)2,

where p(µ) =
∫ b

a dθ0 p(µ|θ0)p(θ0) is the average probability to observe µ taking into account
fluctuations of θ0.

A bound on Equation (41) can be obtained by averaging Equation (25) over p(θ0), or, equivalently,
averaging the Ghosh bound, Equation (22), over p(µ). We obtain the average Ghosh bound for random
parameters θ0, (∆2θBL)µ,θ,θ0 ≥ ∆2θaGBr, where

∆2θaGBr =
∫ b

a
dθ0 ∑

µ

( f (µ, a, b)− 1)2∫ b
a dθ 1

ppost(θ|µ)

(
dppost(θ|µ)

dθ

)2 p(µ|θ0)p(θ0)

= ∑
µ

( f (µ, a, b)− 1)2∫ b
a dθ 1

ppost(θ|µ)

(
dppost(θ|µ)

dθ

)2 p(µ). (42)
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The bound holds for any prior ppri(θ) and is saturated if and only if, for every value of µ, there exists
a λµ such that Equation (23) holds.

Bayesian Bounds

In Equation (41), the prior used to define the posterior ppost(θ|µ) via the Bayes–Laplace
theorem is arbitrary. In general, such a prior ppri(θ) is different from the statistical distribution
of θ0, which can be unknown. If p(θ0) is known, then one can use it as a prior in the Bayesian
posterior probability, i.e., ppri(θ) = p(θ0). In this specific case, we have pmar(µ) = p(µ), and
thus ppost(θ|µ)p(µ) = ppost(θ|µ)pmar(µ) = p(µ, θ). In other words, for this specific choice of prior,
the physical joint probability p(µ, θ0) of random variables θ0 and µ coincides with the Bayesian p(µ, θ).
Equation (41) thus simplifies to

(∆2θBL)µ,θ = ∑
µ

∫ b

a
dθ p(µ, θ)

(
θ − θBL(µ)

)2. (43)

Notice that this expression is mathematically equivalent to the frequentist average mean square
error (29) if we replace θ with θ0 and θBL(µ) with θest(µ). This means that precision bounds for
Equation (29), e.g., the Van Trees and Ziv–Zakai bounds can also be applied to Equation (43).
These bounds are indeed often referred to as “Bayesian bounds” (see Ref. [24]).

We emphasize that the average over the marginal distribution pmar(µ), which connects
Equations (24) and (43), has operational meaning if we consider that θ0 is a random variable distributed
according to p(θ0), and p(θ) is used as prior in the Bayes–Laplace theorem to define a posterior
distribution. In this case, and under the condition f (µ, a, b) = 0 (for instance if the prior distribution
vanishes at the borders of the phase domain), using Jensen’s inequality, we find

∆2θaGBr = ∑
µ

p(µ)∫ b
a dθ 1

ppost(θ|µ)
( dppost(θ|µ)

dθ

)2

≥ 1

∑µ p(µ)
∫ b

a dθ 1
ppost(θ|µ)

( dppost(θ|µ)
dθ

)2
(44)

=
1

∑µ

∫ b
a dθ 1

p(θ,µ)

( ∂p(θ,µ)
∂θ

)2 ,

which coincides with the Van Trees bound discussed above. We thus find that the averaged Ghosh
bound for random parameters (42) is sharper than the Van Trees bound (38):

(∆2θBL)µ,θ ≥ ∆2θaGBr ≥ ∆2θVTB, (45)

which is also confirmed by the numerical data shown in Figure 4.
In Figure 4, we compare

(
∆2θBL

)
µ,θ with the various bounds discussed in this section. As p(θ0),

we consider the same prior (26) used in Figure 3. We observe that all bounds approach the Van
Trees bound with increasing sharpness of the prior distribution. Asymptotically in the number of
measurements m, all bounds converge to the Cramér–Rao bound.
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Figure 4. Comparisons of average posterior Bayesian variance, m(∆2θBL)µ,θ (dots), as a function of
the sample size m under different prior distributions, (a) α = −100, (b) α = −10, (c) α = 1, (d)
α = 10. This variance is compared to to the average Ghosh bound for random parameters m(∆2θaGBr)

(grey line), the Van Trees bound m(∆2θVTB) (green line), the Ziv–Zakai bound m(∆2θZZB) (red line)
and 1/F(θ0) (black horizontal line). The inset in each panel is the prior ppri(θ), Equation (26), for the
corresponding values of α.

5. Discussion and Conclusions

In this manuscript, we have clarified the differences between frequentist and Bayesian approaches
to phase estimation. The two paradigms provide statistical results that have a different conceptual
meaning and cannot be compared. We have also reviewed and discussed phase sensitivity bounds in
the frequentist and Bayesian frameworks, when the true value of the phase shift θ0 is fixed or fluctuates.
These bounds are summarized in Table 1.

In the frequentist approach, for a fixed θ0, the phase sensitivity is determined from the width of the
probability distribution of the estimator. The physical content of the distribution is that, when repeating
the estimation protocol, the obtained θest(µ) will fall, with a certain confidence, in an interval around
the mean value 〈θest〉µ|θ0

(e.g., 68% of the times within a 2(∆θest)µ|θ0
interval for a Gaussian distribution)

that, for unbiased estimators, coincides with the true value of the phase shift.
In the Bayesian case, the posterior ppost(θ|µ) provides a degree of plausibility that the phase shift

θ equals the interferometer phase θ0 when the data µ was obtained. This allows the Bayesian approach
to provide statistical information for any number of measurements, even a single one. To be sure,
this is not a sign of failure or superiority of one approach with respect to the other one, since the two
frameworks manipulate conceptually different quantities. The experimentalist can choose to use one or
both approaches, keeping in mind the necessity to clearly state the nature of the statistical significance
of the reported results.
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Table 1. Frequentist vs Bayesian bounds for fixed and random parameters.

Paradigm Risk Function Bounds Remarks

θ 0
fix

ed

Fr
eq

ue
nt

is
t

(∆2θest)µ|θ0

BB Equation (5)

hierarchy of bounds, Equation (7)EChRB Equation (17)

MSE(θest)µ|θ0

ChRB Equation (14)
CRLB Equation (8)

Ba
ye

si
an (∆2θBL)µ|θ0

GB Equation (22) function of µ

(∆2θBL)µ,θ|θ0
aGB Equation (25) average over likelihood p(µ|θ0)

θ 0
ra

nd
om

Fr
eq

ue
nt

is
t

(∆2θest)µ,θ0

aCRLB Equation (37) hierarchy of bounds, Equation (40)fVTB Equation (38)

MSE(θest)µ,θ0

VTB Equation (32) bounds are independent of the biasZZB Equation (35)

Ba
ye

si
an (∆2θBL)µ,θ,θ0 aGBr Equation (42) prior ppri(θ) and fluctuations p(θ0) arbitrary

(∆2θBL)µ,θ
VTB Equation (32) prior ppri(θ) and fluctuations p(θ0) coincide
ZZB Equation (35) hierarchy of bounds, Equation (45)

The two predictions converge asymptotically in the limit of a large number of measurements.
This does not mean that in this limit the significance of the two approaches is interchangeable (it cannot
be stated that in the limit of large repetition of the measurements, frequentist ad Bayesian provide the
same results). In this respect, it is quite instructive to notice that the Bayesian 2σ confidence may be
below that of the Cramér–Rao bound, as shown in Figure 3. This, at first sight, seems paradoxical,
since the CRLB is a theorem about the minimum error achievable in parameter estimation theory.
However, the CRLB is a frequentist bound and, again, the paradox is solved taking it into account that
the frequentist and the Bayesian approaches provide information about different quantities.

Finally, a different class of estimation problems with different precision bounds is encountered if
θ0 is itself a random variable. In this case, the frequentist bounds for the mean-square error (Van Trees,
Ziv–Zakai) become independent of the bias, while those on the estimator variance are still functions
of the bias. The Van Trees and Ziv–Zakai bounds can be applied to the Bayesian paradigm if the
average of the posterior variance over the marginal distribution is the relevant risk function. This is
only meaningful if the prior ppri(θ) that enters the Bayes–Laplace theorem coincides with the actual
distribution p(θ0) of the phase shift θ0.

We conclude with a remark regarding the so-called Heisenberg limit, which is a saturable lower
bound on the CRLB over arbitrary quantum states with a fixed number of particles. For instance,
for a collection of N two-level systems, the CRLB can be further bounded by ∆θest ≥ 1/

√
mF(θ0) ≥

1/
(√

mN
)

[18,20]. This bound is often called the ultimate precision bound since no quantum state
is able to achieve a tighter scaling than N. From the discussions presented in this article, it becomes
apparent that Bayesian approaches (as discussed in Section 3) or precision bounds for random
parameters (Section 4) are expected to lead to entirely different types of ‘ultimate’ lower bounds.
Such bounds are interesting within the respective paradigm for which they are derived, but they
cannot replace or improve the Heisenberg limit since they address fundamentally different scenarios
that cannot be compared in general.
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Appendix A. Derivation of the Barankin Bound

Let θest be an arbitrary estimator for θ. Its mean value

〈θest〉µ|θ = ∑
µ

θest(µ)p(µ|θ) (A1)

coincides with θ if and only if the estimator is unbiased (for arbitrary values of θ). In the following,
we make no assumption about the bias of θest and therefore do not replace 〈θest〉µ|θ by θ.

Introducing the likelihood ratio

L(µ|θi, θ0) =
p(µ|θi)

p(µ|θ0)
(A2)

under the condition p(µ|θ0) > 0 for all µ, we obtain with Equation (A1) that

∑
µ

θest(µ)L(µ|θi, θ0)p(µ|θ0) = 〈θest〉µ|θi
, (A3)

for an arbitrary family of phase values θ1, . . . , θn picked from the parameter domain. Furthermore, we
have

∑
µ

L(µ|θi, θ0)p(µ|θ0) = ∑
µ

p(µ|θi) = 1 (A4)

for all θi. Multiplying both sides of Equation (A4) with 〈θest〉µ|θ0
and subtracting it from (A3) yields

∑
µ

(
θest(µ)− 〈θest〉µ|θ0

)
L(µ|θi, θ0)p(µ|θ0) = 〈θest〉µ|θi

− 〈θest〉µ|θ0
. (A5)

Let us now pick a family of n finite coefficients a1, . . . , an. From Equation (A5), we obtain

∑
µ

(
θest(µ)− 〈θest〉µ|θ0

)( n

∑
i=1

aiL(µ|θi, θ0)

)
p(µ|θ0) =

n

∑
i=1

ai

(
〈θest〉µ|θi

− 〈θest〉µ|θ0

)
. (A6)

The Cauchy–Schwarz inequality now yields(
n

∑
i=1

ai

(
〈θest〉µ|θi

− 〈θest〉µ|θ0

))2

≤
(

∆2θest

)
µ|θ0

(
∑
µ

( n

∑
i=1

aiL(µ|θi, θ0)

)2

p(µ|θ0)

)
, (A7)

where (
∆2θest

)
µ|θ0

= ∑
µ

(
θest(µ)− 〈θest〉µ|θ0

)2
p(µ|θ0) (A8)

is the variance of the estimator θest. We thus obtain

(
∆2θest

)
µ|θ0
≥

(
∑n

i=1 ai

(
〈θest〉µ|θi

− 〈θest〉µ|θ0

))2

∑µ (∑
n
i=1 aiL(µ|θi, θ0))

2 p(µ|θ0)
, (A9)

for all n, ai, and θi. The Barankin bound then follows by taking the supremum over these variables.
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Appendix B. Derivation of the Ziv–Zakai Bound

Derivations of the Ziv–Zakai bound can be found in the literature (see, for instance,
Refs. [24,58,59]). This Appendix follows these derivations closely and provides additional background,
which may be useful for readers less familiar with the field of hypothesis testing.

Let X ∈ [0, a] be a random variable with probability density p(x). We can formally write
p(x) = −dP(X ≥ x)/dx, where P(X ≥ x) ≡

∫ a
x p(y)dy is the probability that X is larger or equal than

x. We obtain from integration by parts

〈X2〉 =
∫ a

0
x2 p(x)dx = −

[
x2P(X ≥ x)

]a

0
+ 2

∫ a

0
P(X ≥ x)xdx

= 2
∫ a

0
P(X ≥ x)xdx (A10)

=
1
2

∫ 2a

0
P
(

X ≥ h
2

)
hdh,

where we assume that a is finite [if a → ∞ the above relation holds when lima→∞ a2P(X ≥ a) = 0].
Finally, we can formally extend the above integral up to ∞ since P(X ≥ a) = 0:

〈X2〉 = 1
2

∫ ∞

0
P
(

X ≥ h
2

)
hdh. (A11)

Following Ref. [59], we now take ε = θest(µ)− θ0 and X = |ε|. We thus have

MSE(θest)µ,θ0 = 〈|ε|2〉 = 1
2

∫ ∞

0
P
(
|ε| ≥ h

2

)
hdh. (A12)

We express the probability as

P
(
|ε| ≥ h

2

)
= P

(
ε >

h
2

)
+ P

(
ε ≤ −h

2

)
= P

(
θest(µ)− θ0 >

h
2

)
+ P

(
θest(µ)− θ0 ≤ −

h
2

)
=

∫
P
(

θest(µ)− θ0 >
h
2

∣∣∣θ0

)
p(θ0)dθ0 +

∫
P
(

θest(µ)− θ0 ≤ −
h
2

∣∣∣θ0

)
p(θ0)dθ0.

Next, we replace θ0 with θ0 + h in the second integral:

P
(
|ε| ≥ h

2

)
=

∫
P
(

θest(x)− θ0 >
h
2

∣∣∣θ0

)
p(θ0)dθ0 +

∫
P
(

θest(x)− θ0 ≤
h
2

∣∣∣θ0 + h
)

p(θ0 + h)dθ0

=
∫
(p(ϕ) + p(ϕ + h))

[
p(ϕ)

p(ϕ) + p(ϕ + h)
P
(

θest(x)− ϕ >
h
2

∣∣∣θ0 = ϕ
)
+

+
p(ϕ + h)

p(ϕ) + p(ϕ + h)
P
(

θest(x)− ϕ ≤ h
2

∣∣∣θ0 = ϕ + h
)]

dϕ.

We now take a closer look at the expression within the angular brackets and interpret it in the
framework of hypothesis testing. Suppose that we try to discriminate between the two cases θ0 = ϕ

(hypothesis 1, denoted H1) and θ0 = ϕ+ h (denoted H2). We decide between the two hypothesis H1 and
H2 on the basis of the measurement result x using the estimator θest(x). One possible strategy consists
in choosing the hypothesis whose value is closest to the obtained estimator. Hence, if θest(x) ≤ ϕ+ h/2,
we assume H1 to be correct and, otherwise, if θest(x) > ϕ + h/2, we pick H2.

Let us now determine the probability to make an erroneous decision using this strategy. There are
two scenarios that will lead to a mistake. First, our strategy fails whenever θest(x) ≤ ϕ + h/2 when
θ0 = ϕ + h. In this case, H2 is true, but our strategy leads us to choose H1. The probability for this to
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happen, given that θ0 = ϕ + h, is P(θest(x)− ϕ ≤ h
2 |θ0 = ϕ + h). To obtain the probability error of

our strategy, we need to multiply this with the probability with which θ0 assumes the value ϕ + h,
which is given by p(H2) =

p(ϕ+h)
p(ϕ)+p(ϕ+h) . Second, our strategy also fails if θest(x) > ϕ + h/2 for θ0 = ϕ.

This occurs with the conditional probability P(θest(x)− ϕ > h
2 |θ0 = ϕ), and θ0 = ϕ with probability

p(H1) =
p(ϕ)

p(ϕ)+p(ϕ+h) . The total probability to make a mistake is consequently given by

Perr(ϕ, ϕ + h) = P
(

θest(x)− ϕ >
h
2

∣∣∣H1
)

p(H1) + P
(

θest(x)− ϕ ≤ h
2

∣∣∣H2

)
p(H2)

=
p(ϕ)

p(ϕ) + p(ϕ + h)
P
(

θest(x)− ϕ >
h
2

∣∣∣θ0 = ϕ
)
+ (A13)

+
p(ϕ + h)

p(ϕ) + p(ϕ + h)
P
(

θest(x)− ϕ ≤ h
2

∣∣∣θ0 = ϕ + h
)

,

and we can rewrite Equation (A13) as

P
(
|ε| ≥ h

2

)
=
∫ ∞

−∞
(p(ϕ) + p(ϕ + h))Perr(ϕ, ϕ + h)dϕ. (A14)

The strategy described above depends on the estimator θest and may not be optimal. In general,
a binary hypothesis testing strategy can be characterized in terms of the separation of the possible
values of x into the two disjoint subsets X1 and X2 which are used to choose hypothesis H1 or H2,
respectively. That is, if x ∈ X1 we pick H1 and otherwise H2. Since one of the two hypotheses must be
true, we have

1 = p(H1) + p(H2)

=
∫

X1

dxp(x|H1)p(H1) +
∫

X2

dxp(x|H1)p(H1) +
∫

X1

dxp(x|H2)p(H2) +
∫

X2

dxp(x|H2)p(H2) (A15)

=
∫

X1

dxp(x|H1)p(H1) +
∫

X2

dxp(x|H2)p(H2) + PX1
err(H1, H2),

where the error made by such a strategy is given by

PX1
err(H1, H2) = P(x ∈ X2|H1)p(H1) + P(x ∈ X1|H2)p(H2)

=
∫

X2

p(x|H1)p(H1)dx +
∫

X1

p(x|H2)p(H2)dx (A16)

= p(H1) +
∫

X1

[p(x|H2)p(H2)− p(x|H1)p(H1)] dx.

This probability is minimized if p(x|H2)p(H2) < p(x|H1)p(H1) for x ∈ X1 and, consequently,
p(x|H2)p(H2) ≥ p(x|H1)p(H1) for x ∈ X2. This actually identifies an optimal strategy for hypothesis
testing, known as the likelihood ratio test: if the likelihood ratio p(x|H1)/p(x|H2) is larger than the
threshold value p(H2)/p(H1), we pick H1, whereas, if it is smaller, we pick H2. With this choice,
the error probability is minimal and reads

Pmin(H1, H2) =
∫

X2

[p(x|H1)p(H1)− p(x|H2)p(H2)] dx +
∫

X1

[p(x|H2)p(H2)− p(x|H1)p(H1)] dx +

+
∫

X1

p(x|H1)p(H1)dx +
∫

X2

p(x|H2)p(H2)dx (A17)

=
1
2
− 1

2

∫
|p(x|H1)p(H1)− p(x|H2)p(H2)| dx,

where we used Equation (A15).
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Applied to our case, we obtain

Pmin(ϕ, ϕ + h) =
1
2

(
1−∑

µ

∣∣∣∣ p(µ|θ0 = ϕ)p(ϕ)

p(ϕ) + p(ϕ + h)
− p(µ|θ0 = ϕ + h)p(ϕ + h)

p(ϕ) + p(ϕ + h)

∣∣∣∣
)

. (A18)

This result represents a lower bound on PX1
err(ϕ, ϕ + h) for arbitrary choices of X1. This includes the

case discussed in Equation (A13). Thus, using

Perr(ϕ, ϕ + h) ≥ Pmin(ϕ, ϕ + h) (A19)

in Equation (A14) and inserting back into Equation (A12), we finally obtain the Ziv–Zakai bound for
the mean square error:

MSE(θest)µ,θ0 ≥
1
2

∫ ∞

0
hdh

∫
dθ0(p(θ0) + p(θ0 + h))Pmin(θ0, θ0 + h). (A20)

This bound can be further sharpened by introducing a valley-filling function [61], which is not
considered here.
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