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Abstract: As crucial equipment during industrial manufacture, the health status of rotating machinery
affects the production efficiency and device safety. Hence, it is of great significance to diagnose
rotating machinery faults, which can contribute to guarantee the running stability and plan for
maintenance, thus promoting production efficiency and economic benefits. For this purpose, a hybrid
fault diagnosis model with entropy-based feature extraction and SVM optimized by a chaos quantum
sine cosine algorithm (CQSCA) is developed in this research. Firstly, the state-of-the-art variational
mode decomposition (VMD) is utilized to decompose the vibration signals into sets of components,
during which process the preset parameter K is confirmed with the central frequency observation
method. Subsequently, the permutation entropy values of all components are computed to constitute
the feature vectors corresponding to different kind of signals. Later, the newly developed sine cosine
algorithm (SCA) is employed and improved with chaotic initialization by a Duffing system and
quantum technique to optimize the support vector machine (SVM) model, with which the fault
pattern is recognized. Additionally, the availability of the optimized SVM with CQSCA was revealed
in pattern recognition experiments. Finally, the proposed hybrid fault diagnosis approach was
employed for engineering applications as well as contrastive analysis. The comparative results show
that the proposed method achieved the best training accuracy 99.5% and best testing accuracy 97.89%.
Furthermore, it can be concluded from the boxplots of different diagnosis methods that the stability
and precision of the proposed method is superior to those of others.

Keywords: fault diagnosis; variational mode decomposition; permutation entropy; Duffing system;
chaos quantum sine cosine algorithm

1. Introduction

Rotating machinery plays a significant role in modern industrial fields, and its health status greatly
influences the production efficiency and product quality. Besides, once an unexpected or sudden fault
occurs, it could result in large economic losses. Hence, it is of great practical significance to diagnose
rotating machine faults [1]. During the running process of various kinds of rotating machines, rolling
element bearings are the most widely used parts. However, owing to their structural properties and
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operating environment, rolling bearing damage is inevitable and will affect the mechanical properties
of the equipment to some extent [2]. Therefore, some diagnostic measures need to be carried out for
rolling element bearings, thus promoting the stable and efficient operation of rotating machines [3,4].
Generally, when a fault occurs in a rolling element, it is accompanied by a certain amount of vibration
and sound. Thus, potential faults can be well detected with appropriate techniques for processing the
collected vibration or acoustic signals [5,6]. Due to the fact that vibration signals carry rich information
about potential faults, vibration analysis has been widely applied to diagnose the faults of rolling
element bearings, which always includes two procedures: one is the feature extraction of vibration
signals with signal processing techniques, and the other is the fault pattern recognition for the extracted
features [7,8].

After collecting the vibration signals, the extraction of representative features is the main mission.
However, the signals are always non-stationary and non-linear, which makes it difficult to extract the
pivotal features effectively. To solve this problem, many time-frequency signal processing methods
have been proposed in previous studies, such as wavelet transform (WT, [9]), empirical mode
decomposition (EMD, [10]), ensemble empirical mode decomposition (EEMD, [11]) and variational
mode decomposition (VMD, [12]). Among the above methods, WT [9] is an adaptive signal analysis
method proposed based on the localization idea of the Fourier transform, possessing strong recognition
ability for transient signals, and has been widely used to analyze non-stationary signals [13,14].
However, once the wavelet basis is designated, the generalization will be poor. EMD, originally
proposed by Huang [10], decomposes a given signal into components with different scales through
loop iteration, and possesses better adaptability since the decomposition only depends on the local
characteristics of the signal. Though EMD has attracted great attention due to its ability to deal with
non-stationary signals [15,16], its performance is severely affected by mode mixing and end effects.
To solve these problems, an improved version-EEMD was put forward with noise assistance [11]
and has become a focus in the field of signal processing [17,18]. Unlike EMD/EEMD that lack a
mathematical theory foundation, the newly proposed VMD [12] is a quasi-orthogonal signal processing
method which decomposes the given signal by solving a constrained variational problem. Besides, the
effectiveness and superiority of VMD have been verified in previous studies [19,20].

With the non-stationarity of the vibration signals weakened by the aforementioned methods, it is
necessary to extract fault features from the components. As it is known that information entropy is an
effective indicator for measuring the uncertainty degree of signals, combining entropy theory with
signal processing methods is expected to represent the fault characteristics well. For this reason,
different entropy methods, including energy entropy [21], sample entropy [22,23], approximate
entropy [24,25], permutation entropy [26,27] and so on, have been utilized to solve feature extraction
and fault diagnosis problems. For example, Xiao et al. [21] extracted the energy entropy of sub-band
signals decomposed from the stator current of doubly-fed wind turbine with dual-tree complex wavelet
transform. Zhang et al. [23] calculated the sample entropy of sub-bands of rolling bearings decomposed
by lifting wavelet packet transform. An et al. [25] calculated the approximate entropy of the selected
components of vibration signals from a wind turbine rolling bearing decomposed by adaptive local
iterative filtering. Shi et al. [27] combined the improved local mean decomposition with permutation
entropy to extract features. Among the above entropy methods, permutation entropy proposed by
Bandt et al. [28] is a time series method, which can detect the dynamic catastrophic behavior. Due to the
simple and fast calculation as well as strong anti-noise ability, permutation entropy was introduced to
measure the status characterization of rotary machines [29]. Subsequently, it has been widely applied
to extract features for fault diagnosis and shown outstanding performance [26,27].

During the fault pattern recognition stage, many machine learning methods have been proposed
in the previous literatures, including k-nearest neighbor [30], Bayesian decision [31], artificial neural
network (ANN, [32,33]), support vector machine (SVM, [34]) and so on. Among these recognition
techniques, k-nearest neighbor is simple in theory and susceptible to sample distribution. Bayesian
decision can acquire well performance with the consideration of priori probabilities. ANN has strong



Entropy 2018, 20, 626 30f 19

recognition ability when the number of samples is large. However, all three methods mentioned
above are based on empirical risk minimization, i.e., abundant samples are needed to achieve high
accuracy. In contrast, SVM, proposed by Vapnik [35] based on structural risk minimization, has
certain advantages in dealing with small samples and linearly inseparable problems. However, the
pattern recognition performance of SVM is influenced by the parameters. To solve the problem,
different optimization methods, such as particle swarm optimization [36], antlion algorithm [37], fruit
fly algorithm [38] and ant colony algorithm [39] were proposed and employed to choose the best
parameters for SVM.

Sine cosine algorithm (SCA) is a newly developed optimization algorithm proposed by
Mirjalili [40] that has shown good performance in many studies [41,42]. To achieve accurate fault
diagnosis for rotating machinery, a hybrid fault diagnosis model with entropy-based feature extraction
and SVM optimized by chaos quantum sine cosine algorithm (CQSCA) is developed in this research.
Firstly, the adaptive VMD is employed to decompose the vibration signals into a set of components,
during which stage the preset parameter K of VMD is ascertained with central frequency observation
method. Then, the permutation entropy values of all the sub-signals are calculated, thus to construct
the feature vector of the given fault sample. Subsequently, an improved SVM model with full fusion of
chaotic initialization, quantum technique and SCA for parameter selection, whose effectiveness has
been proved in pattern recognition experiments, is presented to classify different fault types. Finally,
the superiority of the proposed method was confirmed through engineering applications as well as
comparative analysis.

The remainder of this paper is organized as follows: Section 2 presents the base theory of VMD
and permutation entropy. Section 3 introduces the improved pattern recognition method based
on SVM optimized with chaos quantum sine cosine algorithm and validates the effectiveness with
pattern recognition experiment. Section 4 delineates the procedures of the proposed hybrid fault
diagnosis model with entropy-based feature extraction and SVM optimized by CQSCA. Section 5
illustrates the superiority of the proposed method with engineering application and comparative
analysis. The conclusions are summarized in Section 6.

2. Entropy-Based Feature Extraction with VMD

2.1. Variational Mode Decomposition

VMD [12] is a newly developed time-frequency signal processing technique, which is adaptive
and quasi-orthogonal. With VMD, a given signal can be decomposed into a set of intrinsic mode
functions (IMF) which are all band-limited. The decomposition process can be realized by solving a
constrained variational problem formulated as follows [12]:

My, Wy

min {z 9+ (805 + 4 ) « mk(t)]efwktuz}
k 2
K @
st Y my=f, k=12,...,K
k=1

where K is the total number of IMFs, 1y, is the time domain signal of the k-th IMF, and wy, is the center
pulsation of the k-th IMFE.

To obtain the solution of Equation (1), a quadratic penalty term and a Lagrangian multiplier are
introduced, and the augmented problem is provided as follows:
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where « and p(t) are respectively the balancing parameter and Lagrange multiplier.

Then the alternate direction method of multipliers (ADMM, [43]) is applied to deduce the solution
of Equation (2) by optimizing m, wy and f alternately, which is based on the ideas of Lagrange theory
and dual decomposition. The optimization problems of my and wy are respectively presented as

Equations (3) and (4):
2
} (©)
2

2
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2

The iterative formulas of problems (3) and (4) are inferred as follows:
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The Lagrangian multiplier is renewed according to Equation (7):
BTt =" +T(f = m) @)
i

where 7 is the update parameter. The prime procedures of VMD can be summarized as follows:

Step 1:  Initialize m%, wll, [31 n=1;
Step 2:  Update my and wy based on Equations (5) and (6);
Step 3:  Update p based on Equation (7), n =n + 1;

2
Step4: Ify, Hm,’(”rl —my ) > ¢, turn to Step 2, else stop iterating.
k

2.2. Permutation Entropy

The principle of permutation entropy (PE) does not consider the specific values of the data. Instead,
it is based on the comparison and reconstruction of adjacent data, which is simple in computation and
has the advantage of anti-interference [44]. Given a time series X = [x1, xp, ..., xn], the phase space is
reconstructed firstly within PE algorithm as follows:

X1 = [X1, X147+ o X1 (m—1)7]
Xi = [x,‘, Xitrs-- '/xi+(m71)r] ®)

XNf(mfl)T = [fo(mfl)T/ XN—(m=2)tr+ 7 xN|
Gathering the above formulas, an overall matrix X;" can be obtained:
T
X" =[X1,Xo, o, Xiso oo, XN— (m—1)7) )

where m is the embedded dimension with the integer scope [3, 7], while T is time delay and generally
set as the integer 1.
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Each element in X; can be sorted in ascending order: X; = [xi+(j1_1)r, S Xip(p-1o S - S
Xig( ]»m_l)T], where jq, j2,. .., jm are the column indexes of each element before ordering. If two elements

are equal, i.e., X; = Xit(j,—1)r, they will be sorted sequentially which means:

jp=17
if 2 jp <lJg Xir(—1r < Xis(jy-1)r (10)

Therefore, a symbol sequence can be obtained for any X;:

S =1lh,jare-rjm), 1 <1< m! (11)

The m-dimensional phase space maps a total of m! different symbol sequences [j1, f2, .-, jm],

among which symbol sequence S(I) is an individual. Accordingly, we can calculate the probability p;
!
of each symbol sequence, where p; is subject to ni pr =1
I=1

n

pr = N—(m=1)r (12)

where 7 is the occurrence times of each symbol sequence S(I).
According to the above formula, PE of the time series X can be defined as follows in the form of
information entropy:

Hp(m) = - Y p/inp, (13)
1=1

When p; = -4, Hp(m) reaches the maximum value In(m!). For convenience, Hp(m) is usually
normalized by In(m!):
_ Hp(m)

P In(m!)

where Hp is in the range of [0, 1], which represents the randomness of the time series Xj, i.e., the larger
Hp is, the more random the time series is.

(14)

3. Pattern Recognition Based on SVM Optimized by CQSCA

3.1. Support Vector Machine

SVM is a data mining method based on structural risk minimization and statistical learning
theory [35], whose core innovative idea is to map the sample space to a high-dimensional feature space
through nonlinear kernel transformation. Owing to the optimal hyper-plane in the high-dimensional
feature space, the nonlinear classification in sample space is realized by solving the linear classification
of feature space, which makes SVM can successfully deal with nonlinear pattern recognition problems.
Compared with traditional learning machines, SVM has an outstanding adaptability to limited samples
and is not sensitive to data dimension.

Given a data set {(x;, y;), i =1, 2, ..., n} from two classes, there must exist a classification
hyper-plane, the construction of which is the most important task for achieving pattern recognition
with SVM. The hyper-plane can be formulated as:

w-x+b=0 (15)

where w and b represent the weight vector and bias term, respectively, while w - x is the inner product
of wand x.

For a binary classification issue with labels —1 and 1, all the samples should meet a specific
condition as defined in Equation (16), thus the two types of samples can be completely separated:
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' >1 fory; =1
w xﬂ—b{ <1 for yi= -1 (16)

To solve linearly non-separable problems, slack variable ¢ and penalty factor C are introduced,
thus the generalized hyper-plane can be deduced by solving the following optimization problem:

n
minf = J[|w||*+C ¥ &
; i=1 (17)
s.t. yi(a x;i+b)>1-¢, i=12,...,n

During the process of mapping the samples into higher dimension space, radial basis kernel
function is always employed which is defined as:

K(xi, xj) = ¢(x;) - p(x;) = exp(—=g||xi — xj|[2) (18)

where g is the kernel parameter.
In accordance with Lagrange theory and duality principle, the dual form of optimization problem
(17) can be reformulated as:

n n
maxL = 21 i — %21 pipjyiyiK(xi, x;)
. = ij= (19)
st Y uiyi=0, u; >0, 1=12,...,n
i=1

where y; are Lagrange multipliers.
With the Lagrange multipliers acquired from the solution of the above dual problem, the decision
function of the original problem can be ascertained:

n

f(x) =sgn( ) uiK(x;,x) +b) (20)
i=1

3.2. Chaos Quantum Sine Cosine Algorithm (CQSCA)

3.2.1. Sine Cosine Algorithm

The optimization procedure of SCA includes two phases [40]: exploration and exploitation.
During the exploration phase, the algorithm is firstly initialized with a collection of random solutions
to start the optimization process. With the stochastic searching, SCA can locate feasible solutions
quickly in the searching space. Meanwhile, in the exploitation phase, the random solutions change
gradually and the changing rate is obviously lower than that during the exploration phase, which
contributes to a better searching in current space.

The positions of m individuals are randomly generated in initialization phase of SCA. Supposing
that each solution of the optimization problem corresponds to individual’s position in the searching
space, and the position of i — th (i = 1,2,...,m) individual is represented by X; = (X;1, Xp, - . -, XiD)T,
where D is individual’s dimension. The individual i’s best value is P; = (P;, Py, .. ., PZ-D)T. The position
of individual i will be updated by the following formulas in the iteration [40]:

X; 1 — Xl‘k + r1 X sin(rp) X ‘7’3Pik — X,‘k

Xik+1 = Xl'k + 71 X COS(VZ) X ‘7‘3Pik — X,‘k

(21)

where X; is the position of individual i in the k-th iteration. The above equations can be combined
as follows:
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,1y < 0.5
,T4 > 0.5

Xik +7r1 X Sin(i’z) X ‘7‘3P1'k — X,‘k

X; k+1 _ (22)

Xik + 7 X COS(?’z) X ‘rgpik — Xl'k

As is shown in the above equations, four parameters are mainly included in the updating
Equations [40]: r1, 72,73 and r4. The parameter r1 is a random number, dictating the next iteration
position’s movement direction of individual i. The parameter r; is a random number in [0, 27t], which
defines the distance that the movement should be towards or outwards the destination. To randomly
emphasize (r3 > 1) or deemphasize (r3 < 1) the effect from the best value of individual during the
movement, the parameter r3 is brought with a random weight with the range of [0, 2]. Lastly, the
parameter r4 is a random number in [0, 1] to switch equally between components, when r4 < 0.5, the
position of individual i iterates by sine component, otherwise iteration switches to cosine component.

During the searching process, SCA should balance the exploration and exploitation phases and
finally find the global optimum in the searching space. Accordingly, the amplitudes of the sine and
cosine functions are adaptively changed by adjusting 1 in the updating Equation [40]:

a
rn=a—t- 23
1 T (23)
where T, t and a are respectively the maximum number of iterations, the current number of iterations
and constant.

3.2.2. Quantum Sine Cosine Algorithm

QSCA is the improved version of SCA with quantum evolution [45]. In quantum description,
the smallest unit of information is a qubit, and any state of a qubit can be represented as a linear
combination of the basic states, called superposition |¢). The qubit can also be expressed by probability
amplitude |¢p) = [cos(6),sin(0)]”, where 6 is the phase of a qubit. The probability amplitude of
the qubit is directly used as the encoding of the solution vector to avoid the randomness of the
transformation in QSCA [45]. The coding pattern is:

sin(6;1) sin(6;,)

o cos(60;1 )
’”l‘[ » sin(6ip)

cos(in) |

cos(6ip) 1 1)

where 0;j = 2m X rand, rand is a random number in [0, 1], = 1,2,...,m, m is the size of populations,
j=1,2,...,D, D is the spatial dimension. As is shown in formula (24), each individual occupies two
positions in the space:

pi ¢ = [cos(0;1),cos(6:), ..., cos(bip)]

pit = [sin(61), sin(62), ..., sin(6;p)) @)

For convenient expression, p;¢ is called cosine position, while p;* is called sine position. Since
the individual’s traversal scope is [—1, 1] in every dimension, the two positions occupied by the
individuals need to be mapped to the solution space of the corresponding optimization problem.
Each probability amplitude of an individual qubit corresponds to an optimization variable in the
solution space. As the j-th qubit of the individual i is [cos(6), sin(6)]”, the corresponding solution
space variable is in [45]:

XijC:

[b;(1 + cos(6;;)) +a;(1 — cos(6;))]
X,‘js = i

[bj(l + sin((?l-]-)) + aj(l — sin(ei] ) 20

NI N =

During the status updating stage for all individuals, the movement of an individual’s position
is implemented by a quantum rotation gate. The individual’s position will move according to the
following rules:
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(1) The qubit updating of phase increment for individual i:

i Ab,,ry < 0.5
ApKHL ] X sin(ry) x Afg, 4 -
gl 11 % cos(rz) X Abg,r4 > 0.5 27)
2w+ 9g]' — 91']‘, ng — 91']' < =TT
where Agg: Qg'—ei]', —7T§9gj—9i]' <.

ng — 91']‘ — 27, ng — 9,']‘ > 7T
(2) The qubit updating of probability amplitude for individual i:

cos(0; K1) | | cos(A6;FT)  —sin(Af;FTT) cos(6;%) _ cos(6;% + Af;* 1) (28)
sin((?ijk“) sin(AGl-]-k“) COS(AGi]‘kJrl) sin((?i-k) sin((?i]-k + Agi]'kJrl)

After the above two updating processes, the two new positions are formulated as:

Pilc = (COS(Gl‘lk + A9i1k+1), COS(Qilk + A9i2k+1), .. ,COS(()ka + Agka+1))

29
P/* = (sin(0;1% + A0;,F1), sin(0,1% + A0, .. sin(6;p* + Af;pFT)) )

To increase the diversity of population and avoid local optimum, a mutation operator with
quantum non-gate is introduced in Reference [45]. Firstly, a random number within (0, 1) is created
and compared with the given mutation probability p;, for each individual. Then, a total number of
0.5D qubits from each individual are randomly selected, whose probability amplitudes are changed by
quantum non-gate if rand; < py,, otherwise, the amplitude phase remains unchanged:

[ 0 1 ] [ cos(8;;) 1 _ [ sin(6;;) ] _ [ cos(
1 0 sin(6;;) cos(8;;) sin(

The procedures of QSCA are detailed as follows [45]:

- 91 )
o) ] (30)

INTERNT]

Step 1:  Initialize the population and set relevant parameters according to Equation (24);

Step 2: 'Transform unit space to solution space on the basis of Equation (26), thus to calculate the
fitness of each individual;

Step 3:  Update individual’s status with Equations (27) and (28);

Step 4: Implement the mutation process based on the given mutation probability according to
Equation (30);

Step 5:  Loop steps 2—4 until the convergence condition is met or the maximum times of iterations
is reached.

3.2.3. Chaos Quantum Sine Cosine Algorithm

Chaos is a kind of seemingly irregular and random phenomenon happening within nonlinear
systems resulted from deterministic rules. It appears to be disorganized but has certain motion laws,
representing the complexity, randomness, and disorder within the systems. Chaotic variables have
the features of pseudo-randomness and ergodicity, which traverses all points in a certain scope of the
solution space without repeatability. The basic idea of searching with chaotic variables is to make full
use of the ergodicity, which means that some chaotic variables are created with a chaotic map and
transformed to the range of variables to be optimized, then the optimal parameters are searched [46].
With the chaotic variables, it would be more likely to find the global optimum. To promote the
searching performance of QSCA, a Duffing system [47] is employed to create the chaotic variables.
The dynamical equation of Duffing system is given by:

X" (£) +qx'(t) — ax(t) + px>(t) = A cos(wt) (31)
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where coefficient y is the damping degree, « is the toughness degree, 8 is the nonlinearity of power, A
is the amplitude of driving force, w is the circular frequency of driving force. The differential form of
Equation (31) can be obtained by transformation, which are given by:

X'(t) = y(t)

y'(t) = —yy(t) +ax(t) — Bx3(t) + A cos(wt) (32)

The coefficients of the Duffing system except driving force A are chosenas y=0.1,x =1, = 0.25,
w = 2. Given the initial values x(0) and y(0), the system’s status will evolve gradually with the value
of driving force A changing. When the dynamic behavior of the Duffing system is chaotic, chaotic
variables x and y will traverse the points in a certain scope. Then, some points from the traversed ones
are selected at a certain interval, after which a linear transformation from the chaotic variables space to
the solution space is executed, thus to produce the initial solutions X;, i = 1,2,...,m of QSCA.

3.3. SVM Optimized by CQSCA

The main procedures of the optimized SVM with the proposed chaos quantum sine cosine
algorithm (CQSCA) are as follows:

Step 1:  Create chaotic variables by a Duffing system based on Equation (31) and transform them to
the range of [0, 1];

Step 2:  Initialize the population with the processed chaotic variables;

Step 3:  Encode the quantum and transform unit space to solution space;

Step 4:  Calculate the fitness of each individual, i.e., the cross-validation accuracy of SVM;

Step 5:  Update individual’s status with Equations (27) and (28);

Step 6: Implement mutation process based on the given probability according to formula (31);

Step 7:  Loop steps 3—6 until the convergence condition is met or the maximum number of iterations
is reached;

Step 8: Choose C and g in accordance with the maximal cross-validation accuracy as the
optimal parameters;

Step 9:  Train the optimal SVM model with the training set;

Step 10: Recognize the testing set.

The flowchart of SVM optimized by CQSCA is shown in Figure 1.

‘ Feature matrix ‘

.

‘ Create chaotic variables ‘ Recognition completed ‘

‘ Initialize thipopulatmn ‘ Recognize testing set ‘
‘ Quantum encoding ‘
l Train the optimal SVM model
‘ Transform unit space to solution space T
l ‘ Output optimal C, g ‘

Calculate the fitness value
(cross validation accuracy)

!

‘ Update individual’s status ‘

eet the stopping conditions?

‘ Implement mutation process H Individual’s new position ‘

Figure 1. The flowchart of SVM optimized by CQSCA.




Entropy 2018, 20, 626 10 of 19

3.4. Pattern Recognition Experiments

To estimate the performance of the proposed method, some standard UCI datasets [48] including
wine, iris and heart were selected for pattern recognition experiment. The basic information of the
datasets is shown in Table 1. All attributes of the datasets were normalized to be in the range [0, 1].

Table 1. The basic information of the datasets.

Dataset Number of Attributes Number of Classes Number of Data
Wine 13 3 178
Iris 4 3 150
Heart 13 2 303

Five-fold cross-validation was utilized to search the optimal parameters of C and g, which means
that all the three datasets were haphazardly divided into five subsets, and each time one subset was
selected as testing data while the other four ones as training data. The searching scopes of C and g
were both [2710, 219]. The numbers of individuals and iterations were set as 30 and 100, respectively.
The constant a for changing the amplitudes of the sine and cosine functions was set as 2. The mutation
probability p,, was set as 0.04.

In order to compare with the proposed method (SVM-CQSCA), SVM optimized by PSO
(PSO-SVM) and SVM optimized by SCA (SCA-SVM) were employed. The searching scopes of
parameters C and g for SCA-SVM and PSO-SVM were the same as the configuration for SVM-CQSCA.
The constant a2 in SCA-SVM was set as 2. To measure the performance of all methods well, the
experiment was rerun for totally ten times. In each experiment, the best C and g were determined
based on the maximal cross-validation accuracy, then the SVM model was trained and applied to
classify all the data.

The experimental results are shown in Table 2, where the cross-validation accuracy and
classification accuracy both donate the average of all results. The parameters C and g are corresponding
to the best cross-validation accuracy. Meanwhile, the deviation scope is employed for error analysis
in accordance with the mean value. Additionally, boxplots are employed to reveal the performance
of different methods visually in Figure 2. As the results show, the proposed method achieves better
classification performance than other methods by introducing a Duffing system for chaotic initialization
and quantum technique for improving the optimization efficiency.
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Figure 2. Boxplots of recognition results with different recognition methods.
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Table 2. Pattern recognition results with different methods.

Accuracy (%)
Methods Dataset C g
Cross-Validation Classification
Wine 0.6629 2.9830 98.88, [0, 0] 99.27,[—0.39, 0.75]
PSO-SVM Iris 426.2439 0.0010 97.28, [0, 0] 97.28,[0, 0]
Heart 66.8865 0.0010 83.83, [0, 0] 85.54, [—0.40, 0.22]
Wine 603.7267 4.9808 98.88, [0, 0] 99.21, [—0.34, 0.75]
SCA-SVM Iris 490.5731 0.0010 97.28, [0, 0] 96.33, [—1.09, 0.84]
Heart 78.8959 0.0013 83.83, [0, 0] 84.65, [—0.50, 0.48]
Wine 508.2523 5.3278 98.88, [0, 0] 99.89, [—1.01, 0.12]
CQSCA-SVM Iris 600.7378 31.3525 97.28, [0, 0] 99.59, [—3.67, 0.45]
Heart 0.6663 0.1195 84.06, [—0.23, 0.41] 84.82,[—0.33, 0.63]

4. Hybrid Fault Diagnosis Based on VMD and SVM Optimized by CQSCA

The procedures of the proposed hybrid fault diagnosis approach with entropy-based feature
extraction and SVM optimized by chaos quantum sine cosine algorithm (CQSCA) are detailed as
follows:

Step 1:  Collect the vibration signals;

Step 2:  Select the mode number K of VMD through center frequency observation method;

Step 3:  Decompose all fault samples into sets of IMFs with VMD;

Step 4:  Calculate the PEs of all IMFs;

Step 5:  Construct the fault feature vectors with the PEs for all fault samples;

Step 6:  Search the optimal parameters C and g for SVM with the proposed CQSCA;

Step 7:  Train SVM with the optimal parameters C and g, thus the optimized SVM model is obtained;
Step 8:  Apply the optimal SVM model to recognize different types of faults.

The flowchart of the proposed hybrid fault diagnosis approach is shown in Figure 3.

‘ Collected vibration fault samples

1
‘ Determine K value of VMD ‘
{
‘ Decompose the signals by VMD ‘
iy T 1
‘ IMF1 ‘ ‘ IMFk ‘ ‘ IMF«k ‘
1 il 1
‘ Calculate the PE of each IMF ‘
l 1 il
‘ PE of IMF1 - ‘ PE of IMF« ‘ PE of IMFk
1 d il
‘ Assemble all the PEs into fault feature vectors ‘
d
‘ Fault feature vectors ‘
d
‘ Recognition with SVM optimized by CQSCA ‘
1

‘ Diagnosis completed ‘

Figure 3. Flowchart of the proposed hybrid fault diagnosis approach.
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5. Engineering Application
5.1. Data Collection

The experimental data gathered from Bearings Data Center of Case Western Reserve
University [49] were employed to validate the capability of the proposed method in this paper.
As shown in Figure 4, the experiment device mainly consists of a motor, an accelerometer and a torque
sensor/encoder. The bearing is a SKF deep groove ball bearing model 6205-2RS. Accelerometers were
placed at the end of the motor housing for data acquisition. The bearing data was collected from
the drive end (DE). The inner, outer and ball element diameters of the bearing were 0.9843, 2.0472
and 0.3126 inches respectively, and the number of ball elements is nine. Single point faults were
introduced to the test bearings by using electro-discharge machining, simulating the four working
states of the rolling bearing: normal state, inner race fault, outer race fault and ball element fault.
The fault diameters were 0.007 inches and 0.021 inches with the depth of 0.011 inches. In the experiment,
the rotation speed was 1797 rpm under the load of 0 hp and the sample frequency was 12,000 Hz.
The samples used in this paper include 7 types, namely normal state, outer race fault, inner race fault
and ball fault with diameters of 0.007 inches and 0.021 inches (i.e., each of the three types of faults has
two defect sizes). In addition, all data were partitioned into 59 segments containing 1024 sampling
points for each type of signals. Details of the experimental data are listed in Table 3.

—

Figure 4. Experiment device in bearing data center.

Table 3. Description of the experimental data.

Position of Fault Defect Size (Inches) Label of Classes Number of Samples

Normal - LO 59
Inner race 0.007 L1 59
Ball 0.007 L2 59
Outer race 0.007 L3 59
Inner race 0.021 L4 59
Ball 0.021 L5 59
Outer race 0.021 L6 59

5.2. Engineering Application

To verify the effectiveness of the proposed VMD-PE-CQSCA-SVM method, the experiment
was conducted with the comparison of EMD and EEMD during the signal decomposing phase.
Likewise, when optimizing the parameters C and g for SVM, PSO and SCA are employed for
comparison. In other words, eight different methods were applied to achieve the contrastive analysis,
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including EMD-PE-PSO-SVM, EMD-PE-SCA-SVM, EMD-PE-CQSCA-SVM, EEMD-PE-PSO-SVM,
EEMD-PE-SCA-SVM, EEMD-PE-CQSCA-SVM, VMD-PE-PSO-SVM, VMD-PE-SCA-SVM. When
decomposing the fault samples with VMD, the decomposing mode number K needs to be preset.
If the value of K is too small, the reduction of non-stationarity for original signal is limited. On the
contrary, when the value of K is too large, the center frequencies of adjacent components will be close to
each other, resulting in mode mixing. In our application, a detected signal under inner race fault with
diameter of 0.007 inches was applied to ascertain the parameter K. The normalized center frequencies
of all IMFs with different K are listed in Table 4. As it can be seen from Table 4, similar normalized
center frequencies appeared when K was set 5, i.e., excessive decomposition occurred. Hence, the total
number of modes was set 4.

Table 4. Normalized center frequencies with different K value.

Number of Modes Normalized Center Frequencies
2 0.2221 0.0860
3 0.2981 0.2253 0.0952
4 0.2982 0.2260 0.1121 0.0400
5 0.3041 0.2772 0.2238 0.1140 0.0494
6 0.3047 0.2813 0.2358 0.2100 0.1099 0.0490
7 0.3152 0.2992 0.2780 0.2357 0.2102 0.1096 0.0490

The decomposition results of signals from different kind of working states are shown in Figure 5,
from which it can be seen that the original non-stationary signals were decomposed into four
components with different frequency bands by VMD. As the time domain waveforms shown in
Figure 5, it is of apparent difference among the decomposing results from different kind of working
states. After decomposing the vibration signals, the PEs were calculated for each component to
constitute the fault feature vector. During the calculation of PEs, the embedded dimension m and the
time delay T were set as 3 and 1 respectively. The PEs of five samples from different type of signals
(LO-L6) are listed in Table 5.

Among the 59 feature vectors from each kind of operational condition, 40 were randomly selected
as training samples, while the other 19 ones were selected for testing. The penalty parameter C and
the kernel parameter ¢ of SVM were optimized by the proposed CQSCA which had 30 particles
and iterated 100 times, where the searching ranges of C and g were both [2719,21°]. During the
optimization process, the fitness value was measured with the five-fold cross validation accuracy.
Then, the SVM model with the selected optimal parameters C and g was trained and employed to
recognize the testing samples. In order to further verify the availability of the proposed method,
the experiment was repeated ten times and the training samples were selected randomly every time,
after which the average accuracy and corresponding deviation scope were calculated to evaluate
the performance in both training and testing phases. Furthermore, the optimal (C, g) is reported
corresponding to the best training accuracy.

In comparative experiment, all components decomposed by EMD and EEMD were employed to
calculate the PEs, during which process the parameter setting for PE calculation was the same as the
proposed method. The optimum parameters C and g in all the eight contrastive methods are decided
the alike way as done in proposed method, i.e., 30 particles and 100 iterations are presented, while the
search scopes of C and g are both [2719,219]_ In addition, the way of performance evaluation was the
same as done in the proposed method as well.
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Figure 5. The VMD decomposition results of signals from different working states: (a) fault-inner race
(0.007 inches); (b) fault-ball (0.007 inches); (c) fault-outer race (0.007 inches); (d) fault-inner race (0.021
inches); (e) fault-ball (0.021 inches); (f) fault-outer race (0.021 inches); (g) normal state.
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Table 5. Permutation entropy of different fault samples.

Permutation Entropy for Different Imf

Fault Label Sample Number

IMF1 IMF2 IMF3 IMF4

1 0.9629 0.8838 0.7110 0.5392

2 0.9713 0.8836 0.7111 0.5282

Lo 3 0.9589 0.8833 0.7132 0.5395
4 0.9468 0.8830 0.7146 0.5351

5 0.8836 0.7146 0.6281 0.5304

1 0.9931 0.9472 0.7797 0.6424

2 0.9941 0.9465 0.7839 0.6668

L1 3 0.9947 0.9476 0.7791 0.6485
4 0.9947 0.9425 0.7843 0.6350

5 0.9941 0.9486 0.7835 0.6539

1 0.9853 0.9592 0.6593 0.7678

2 0.9850 0.9518 0.6720 0.7502

L2 3 0.9871 0.9576 0.6678 0.7311
4 0.9854 0.9557 0.6921 0.7546

5 0.9859 0.9510 0.6773 0.7315

1 0.9925 0.9877 0.9598 0.7015

2 0.9928 0.9877 0.9599 0.7092

L3 3 0.9930 0.9871 0.9598 0.7515
4 0.9926 0.9869 0.9578 0.7079

5 0.9930 0.9879 0.9595 0.7437

1 0.9926 0.9501 0.7869 0.6663

2 0.9913 0.9508 0.7945 0.6815

L4 3 0.9942 0.9521 0.6892 0.7902
4 0.9934 0.9510 0.7955 0.6602

5 0.9938 0.9501 0.7859 0.7211

1 0.9811 0.9475 0.7869 0.6203

2 0.9828 0.9465 0.7884 0.6141

L5 3 0.9801 0.9448 0.7990 0.6117
4 0.9819 0.9507 0.7875 0.6456

5 0.9818 0.9523 0.7887 0.6382

1 0.9965 0.9866 0.7094 0.7709

2 0.9980 0.9888 0.7340 0.7959

L6 3 0.9970 0.9877 0.7130 0.7883
4 0.9985 0.9880 0.7927 0.6727

5 0.9984 0.9881 0.7983 0.6564

The fault diagnosis results and comparison of accuracies with different methods are presented in
Table 6 and Figure 6. From Table 6, it can be viewed that the proposed VMD-PE-CQSCA-SVM method
achieved the best precision in both training and testing phases, i.e., 99.50% and 97.89%, respectively.
Specifically, it can be seen from the comparison of EMD-PE-CQSCA-SVM, EEMD-PE-CQSCA-SVM
and VMD-PE-CQSCA-SVM that the testing accuracy of the proposed method is respective
22.70% and 14.88% higher than that of the other two methods, which shows the fact that VMD,
as a non-stationary signal processing method, can promote the fault representation ability of
PE. Furthermore, the contrastive analysis among VMD-PE-PSO-SVM, VMD-PE-SCA-SVM and
VMD-PE-CQSCA-SVM shows that CQSCA-optimized SVM improved the accuracy by 0.52% and 1.57%
than PSO-optimized SVM and SCA-optimized SVM respectively, indicating the availability of the
proposed CQSCA optimizing strategy. Additionally, boxplots are employed to reveal the performance
of different diagnosis methods visually in Figure 7, from which it can be seen that the proposed
VMD-PE-CQSCA-SVM method achieves better precision and stability than other contrastive methods.
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Table 6. Fault diagnosis results with different methods.

16 of 19

Diagnosis Accuracy (%)

Methods C 8
Training Phase Testing Phase

EMD-PE-PSO-SVM 438.1992 2.5166 80.46, [—4.40,8.81]  71.80,[—6.39,7.78]
EMD-PE-SCA-SVM 864.9884 1.5184 77.57,[-2.57,3.78]  74.21,[-2.78, 3.40]
EMD-PE-CQSCA-SVM 769.6280 0.2422 76.86,[—2.22,2.74]  75.19,[-5.27,3.76]
EEMD-PE-PSO-SVM 192.4239 0.5464 89.46,[—2.67,2.45]  81.88,[—5.94,2.71]
EEMD-PE-SCA-SVM 316.7508 0.1267 89.07,[—1.93,1.20] 82.41, [—3.46, 3.87]
EEMD-PE-CQSCA-SVM 1023.7402 0.0912 88.57,[—-3.57,3.22]  83.01,[-3.31,2.83]
VMD-PE-PSO-SVM 265.3060 5.5333 99.45,[-0.57,0.16]  97.37,[—2.63,1.84]
VMD-PE-SCA-SVM 1024.0000 7.5830 99.50,[—0.93,0.48]  96.32,[—3.84, 3.15]
VMD-PE-CQSCA-SVM 90.9980 7.2720 99.50, [-0.57,0.16]  97.89, [-1.65, 1.42]

Diagnosis accuracy (%)

Training phase
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Figure 6. Comparison of all experimental results with different methods.
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Figure 7. Boxplots of diagnosis results with different methods, the x-axis tick labels correspond to:
1: EMD-PE-PSO-SVM; 2: EMD-PE-SCA-SVM; 3: EMD-PE-CQSCA-SVM; 4: EEMD-PE-PSO-SVM;
5: EEMD-PE-SCA-SVM; 6 EEMD-PE-CQSCA-SVM; 7: VMD-PE-PSO-SVM; 8: VMD-PE-SCA-SVM;

9: VMD-PE-CQSCA-SVM.
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6. Conclusions

In order to enhance the fault diagnosis precision for rotating machinery, a hybrid approach with
the fusion of entropy-based feature extraction and SVM optimized by a chaos quantum sine cosine
algorithm is proposed in this paper. Firstly, the preset parameter K of VMD is chosen using the central
frequency observation method, after which the signals collected under different states are decomposed
into series of intrinsic mode functions (IMFs). Subsequently, the permutation entropy values of all
IMFs are calculated to assemble the feature vectors of different fault samples. Finally, an optimized
SVM model based on chaotic initialization, quantum technique and SCA (CQSCA) for parameter
selection, whose availability has been ascertained with recognizing experiment, is proposed to achieve
the pattern recognition for different kind of faults. In the engineering applications, the proposed
VMD-PE-CQSCA-SVM method was successfully employed to recognize different fault samples and
compared with some other relevant methods, including EMD-PE-PSO-SVM, EMD-PE-SCA-SVM,
EMD-PE-CQSCA-SVM, EEMD-PE-PSO-SVM, EEMD-PE-SCA-SVM, EEMD-PE-CQSCA-SVM,
VMD-PE-PSO-SVM, VMD-PE-SCA-SVM. The application results indicate that the proposed method
achieves the best performance during both the training stage and testing stage in terms of the average
accuracy of ten times randomized experiments. Particularly, the test accuracy of the proposed method
is 22.70% and 14.88% higher than that of EMD-PE-CQSCA-SVM and EEMD-PE-CQSCA-SVM, and
also 0.52% and 1.57% higher than VMD-PE-PSO-SVM and VMD-PE-SCA-SVM. Furthermore, the
boxplots of different diagnosis methods show that the stability and precision of the proposed method
is superior to those of other methods. Thus, the proposed method is a reliable and effective tool for
fault diagnosis of rotating machinery.
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