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Abstract: In this paper, a novel method with cross-wavelet singular entropy (XWSE)-based feature
extractor and support vector machine (SVM) is proposed for analog circuit fault diagnosis. Primarily,
cross-wavelet transform (XWT), which possesses a good capability to restrain the environment
noise, is applied to transform the fault signal into time-frequency spectra (TFS). Then, a simple
segmentation method is utilized to decompose the TFS into several blocks. We employ the singular
value decomposition (SVD) to analysis the blocks, then Tsallis entropy of each block is obtained to
construct the original features. Subsequently, the features are imported into parametric t-distributed
stochastic neighbor embedding (t-SNE) for dimension reduction to yield the discriminative and
concise fault characteristics. Finally, the fault characteristics are entered into SVM classifier to locate
circuits’ defects that the free parameters of SVM are determined by quantum-behaved particle swarm
optimization (QPSO). Simulation results show the proposed approach is with superior diagnostic
performance than other existing methods.

Keywords: analog circuit; fault diagnosis; cross wavelet transform; Tsallis entropy;
parametric t-distributed stochastic neighbor embedding; support vector machine

1. Introduction

With the fast development of electronic science and technology, fault diagnosis and testing as
fundamental tasks in preventive maintenance of electronic systems play a vital role in reliability of the
product and promoting industrial development [1,2]. It is estimated that testing covers one third of the
cost of the product, and majority of the testing is due the testing of the analog parts of the mixed signal
circuits [3,4]. Due to continuous parameter and tolerance of analog components, and lack of test nodes,
the diagnostics approaches of analog circuits are far less advanced, comparing with well-developed
automatic fault diagnosis methodologies for digital circuits. Consequently, there is a pressing need to
explore effective fault diagnosis and testing approaches to prevent fault enlargement and guarantee
analog electronic system reliable operation.

Faults in analog circuits can be categorized into soft faults and hard faults. Soft faults result in
system performance degradation where the parameters of components only deviate from the normal
values exceeding the tolerance range. The causes for soft faults mainly include: the aging of an
electronic system, fabrication tolerance, electromagnetic interfere and effect of ambient temperature [5].
Conversely, hard faults mainly happen in short- and open- circuit, or they are caused by the larger
parameter variation of components [6]. The majority examples of hard faults involve the structural
failure in bipolar junction transistor (BJT) and metallic oxide semiconductor field effect transistor
(MOSFET) and the parameter deviation of key components in filter circuits.
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Currently, there are many diagnosis approaches aiming at the two kinds of analog circuit
faults. The vast majority of these methods are only implemented for field failure in factory
production processes. However, the implementation of component-level diagnosis is challenging [2,6].
With respect to analog circuits, it is mainly due to the complex and changing operation conditions and
external environment, such as strong electromagnetic interference, high-temperature and complicated
failure mechanisms. Therefore, it is necessary to investigate an effective diagnosis method for
component failure in analog electronic systems.

The rest of this paper is organized as follows. Section 2 contains a survey of the related work.
In Section 3, fault feature extraction based on cross-wavelet singular entropy and parametric t-SNE
is introduced. In Section 4, the algorithm and implementation procedures of the proposed PSO for
parameter selection of SVM are provided. Further, fault diagnosis test in two experimental circuits is
performed in Section 5 to verify the effectiveness of the proposed method. In Section 6, a discussion
based on Shannon, Rényi and Tsallis entropies is presented. Finally, some conclusions are drawn
in Section 7.

2. Related Works

Traditionally, analog circuit fault diagnoses are classified into two broad approaches:
Simulation After Test (SAT) and Simulation Before Test (SBT). Compared with SAT approach,
the SBT approach is more suitable for diagnostics of analog circuits as it only implements once
off-line simulation process, removing on-line computation before testing and running [7]. Among
SBT, data-driven diagnostic methods are based on the case that features of the system relatively
changed when a fault happens. They extract features from output signals, then apply pattern
recognition techniques such as neural networks (NNs) and support vector machines (SVMs) to
locate a fault [8]. Meanwhile, the data-driven techniques do not need to construct an explicit model.
Hence, the data-driven approaches have been applied to fault diagnosis in many relative works [9,10].

Technically, a data-driven approach can be divided into two phases: feature extraction and
classifier application [11–13]. Obviously, feature extraction is the vital steps. To date, increasing
numbers of feature extraction tools have been utilized in fault diagnosis, and they can be summarized
into three categories: time-domain analysis, frequency-domain analysis, and time-frequency
analysis [9,14]. Signals collected from the testing nodes of faulty circuits always carry interference
components that probably overwhelm useful information. Thus, it is difficult to effectively recognize
the defects of analog electronic systems when only considering the features of time-domain or
frequency-domain [15]. As a typical time-frequency domain analysis, wavelet transform (WT) can
reveal overlaps in time-frequency domains by decomposing the signal into a set of wavelet coefficients
that vary continually over time [10]. Nevertheless, in practice, the measured signals of analog circuits
commonly contain random noise, which may lead to misclassification. Therefore, it is necessary to take
actions to minimize the impact of random noise. Noise removal can be executed by setting a threshold
when computing wavelet coefficients [10]. However, there are some limitations: The threshold needs
to be set manually, and the calculation process is time-consuming. Recently, cross-wavelet transforms
(XWT) has been employed to handle partial discharge pulses and ECG signal [16,17]. Moreover,
XWT has an outstanding ability in extracting time-frequency characteristics of signal and restraining
noise. Consequently, XWT is applied to process the fault signals of analog circuits.

However, there are still several open issues that need to be addressed for XWT. In practical
application, XWT is limited to being imported into classifiers directly because the transformed result
is a high-dimension matrix. Therefore, it is necessary to combine XWT with other feature extraction
techniques to reduce information abundance.

As a description of disorder or randomness of matter, entropy is capable of providing rich
information about signals, which is fit for feature extraction [18–20]. Many scholars have devoted
themselves to the field of feature extraction with use of entropy techniques. Approximative maximum
entropy (Apen) has been used to diagnosis faults [9,21]. However, a bad performance could be
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obtained when processing the short data-set. Moreover, the Apen is sensitive to noise. Because sample
entropy (Samp) is insensitive to data length and immune to noise, it can be employed as an input
vector of classifiers [20,22]. However, because the Heaviside step function of sample entropy entails
discontinuity at the boundary, negative results are possible. In view of this, many scholars adopt Fuzzy
entropy (Fen) that vary smoothly and continuously to estimate data complexity [23]. Unfortunately,
the membership function in Fen is usually difficult to determine. Some achievements in fault detection
have been made using cross entropy and Rényi’s entropy [24,25], but the faulty components have not
been located. Moreover, none of these techniques are used to extract features with wavelet transform.
The utilization of wavelet Shannon entropy (Wse) in feature extraction is proposed, achieving a
desirable performance [26]. Nevertheless, the XWT manifests a non-extensive character because of
energy leakage and aliasing in the phase of wavelet operation, while Shannon entropy belongs to
extensive entropy.

Based on the above, a novel feature extraction technique based on XWT and Tsallis entropy is
proposed for fault diagnosis. Owning to its ability of regulating non-extensiveness, Tsallis entropy is
employed to construct the feature set, denoting the complexity of fault signals [27,28]. Furthermore,
to improve the efficiency of fault pattern recognition, a feasible feature reduction approach needs
be implemented. A manifold learning technique is able to unearth intrinsic information embedding
in highly dimensional datasets via mapping them into a low-dimensional space and retaining the
local neighborhood information. Parametric t-stochastic neighbor embedding (t-SNE) has a good
capability in mapping the data with high-dimension into low-dimension representation. It maintains
the conditional probability distribution of data associated with the pairwise similarity from the
high-dimension space to the feature subspace [29]. Therefore, it is utilized to extract discriminative
features between different fault patterns.

To locate the faults, a support vector machine is employed as the classifier. SVM has advantages
of high training speed and distinctive generalization ability by finding the optimal hyper-plane [30,31].
However, in practical application, it is difficult to assign the free parameter. To address this issue,
various intelligent optimization algorithms, such as genetic algorithm and simulated annealing,
have been utilized to determine hyper-parameters of SVM. Owing to high speed of converge and good
quality of computation, quantum-behaved particle swarm optimization (QPSO) is adopted to obtain
the optimal parameters [32].

3. Feature Extraction

3.1. Cross Wavelet Transform

Given a time domain signal x(t), continuous wavelet transform (CWT) can be defined as:

Wx(a, τ) = a−1/2
∫ +∞

−∞
Ψ∗(

t− τ

a
)dt (1)

where Ψ stands for mother wavelet; ∗ denotes complex conjugation; a (a > 0) and τ are usual “dilation”
and “translation” parameters.

The Morlet wavelet is a commonly used complex valued function, which can reveal the
localization property of the signal in the time-frequency domain. The Morlet wavelet function can be
described as follows:

Ψ(t) = π−1/4(e−jw0t − e−w2
0/2)e−t2/2 (2)

Assuming two time domain signals x(t) and y(t), the cross wavelet transform can be defined as
below [33,34]

Wxy(a, τ) = Wx(a, τ)Wy∗(a, τ) (3)

Accordingly, we can plot the cross-wavelet spectrum by using the magnitude Wxy(a, τ) and phase
φ = tan−1 ={Wxy(a,τ)}

<{Wxy(a,τ)} .
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Via cross wavelet analysis, we can not only estimate the degree of correlation among signals,
but also reveal the phase relationship of signals in time-frequency space.

3.2. Singular Value Decomposition (SVD)

On the basis of SVD theory [35], for any m × n matrix A can be decomposed into a m × r
column-orthogonal matrix U, an n× r orthogonal matrix V, and a r× r diagonal matrix Λ, which can
be described as below

A = UΛVT (4)

where

Λ =


λ1 0 · 0 0
0 λ2 · 0 0
· · · · ·
0 0 · λr−1 ·
0 0 · 0 λr

 (5)

and its diagonal elements λi (i = 1, 2, . . . , r) are called “singular values” of matrix A. The singular
values are all nonnegative and arranged in a descending order (i.e., λ1 ≥ λ2 ≥ · · · ≥ λr > 0).

3.3. Tsallis Entropy

For a uncertain system, the entropy is explored to estimate the uncertainty of the discrete event,
which is associated with the probability distribution. Given p = {pi} denotes the probability of the
system state i, where 0 ≤ pi ≤ 1 and ∑m

i=0 pi = 1. Thus, the Shannon entropy can be described as:

S = −
k

∑
i=1

piIn(pi) (6)

Besides, Shannon entropy has the extensive property:

S(A + B) = S(A) + S(B) (7)

Inspired by multi-fractal concepts, Tsallis entropy is investigate to describe non-extensive
system [36], which can be expressed as

Sq =
1

q− 1
(1−

k

∑
i=1

(pi)
q) (8)

where q stands for the entropic index, which leads to the non-extensive statistic and k denotes the total
number of the system states.

3.4. Definition of XWSE

For a given time domain fault signal s(t) and template signal e(t), the detail about the feature
extraction by using XWSE can be described as below:

• First, analyze the s(t) with XWT, where the “morlet” wavelet function is chosen in the process.
Then, a XWT spectrum matrix A can be obtained by using Equations (1)∼(3).

• Second, the matrix A is divided into eight blocks with the same size as follows:

A =

[
B1 B2 B3 B4

B5 B6 B7 B8

]

• Third, decompose the block Bn(n = 1, 2, . . . , 8) with SVD, and a singular-value sequence for each
block can be obtained as {λ1, λ2, . . . , λr} where r is the rank of the diagonal matrix Λ.
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• Finally, the XWSE of the block Bn is defined by

XWSEn =
1

q− 1
(1−

k

∑
i=1

(pi)
q) (n = 1, 2, . . . , 8)

where the probability pi associated with λi is defined as pi = λi/ ∑r
j=1 λj. Thus, the XWSE

features of fault signal s(t) can be expressed as [XWSE1, XWSE2, . . . , XWSE8]

3.5. Parametric t-Stochastic Neighbor Embedding (Parametric t-SNE)

Given X = [x1, x2, . . . , xn] ∈ <D×n is the high dimensional data set, where D
represents the dimension of xi (i = 1, 2, . . . , n), and n is the number of samples. Suppose
Y = [y1, y2, . . . , yn] ∈ <d×n (d < D) denotes the low-dimensional map of X. By using t-SNE,
the pairwise distance is transformed into the probabilities to measure the similarities between
data [37,38]. In the raw space, the pairwise similarities are described as

pij =
exp(−dH(xi, xj)

2)/2σ2

∑k 6=l(−dH(xk, xl)2/2σ2 (9)

where the value of σ is determined by a binary search with a fixed perplexity. Here, the perplexity
denotes the effective number of the nearest neighbors of the data xi, and the pairwise distance dH(xi, xj)

represents the Euclidean distance.
In order to solve the “Crowding Problem”, the pairwise similarities are employed to described by

the long-tailed student t-distribution.

qij =
(1 + dL(yi, yj)

2)−1

∑k 6=l(1 + dL(yk, yl)2)−1 (10)

where dL(·) stands for Euclidean distance.
Via minimizing the Kullback–Leibler divergence between two probability distributions, the cost

function E(Y) is obtained to preserve the local structural characteristics of the data.

E(Y) = ∑
i,j

pijlog(pij/qij) (11)

However, t-SNE cannot address the out-of-sample extension problem. Accordingly, the parametric
t-SNE, an extension of t-SNE technique is proposed [39]. Owing to the excellent capability of the
constructed nonlinear projection, Restricted Boltzmann Machines (RBMs) is adopted to construct a
pre-trained parametric t-SNE network. The aim is to define a superior initialization for the fine-tuning
phase. As the projection is parametric by the deep-forward network f with weight matrix W, qij can
be defined as follows:

qij =
(1+ ‖ f (xi|W)− f (xj|W) ‖2 /α)−

α+1
2

∑k 6=i(1+ ‖ f (xk|W)− f (xi|W) ‖2 /α)−
α+1

2
(12)

where α denotes the degrees of freedom of the t-distribution. Then this equation is used as the
definition of qij in Equation (10)
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4. SVM and QPSO

4.1. Support Vector Machine (SVM)

Given a training set of N data points {(xi, yi)}, where xi ∈ Rn denotes the ith data point, and the
associated yi ∈ {+1,−1} represents a class label. Then, the mathematic equation of the classifier by
using support vector too can be described as follows:

y(x) = sign(wT ϕ(x) + b) (13)

Here ϕ(·) stands for the kernel function which projects the input samples space into the higher
dimensional feature space; b denotes the bias parameter, and w represents the weight vector of the
input features.

The optimal values of w and b can be obtained by finding the solution of the following
optimization problem:

min
w,b,e

J(w, b, e) =
1
2

wTw +
C
2

N

∑
i=1

e2
i

s.t. yi(wT ϕ(xi) + b) = 1− ei, i = 1, . . . , N

(14)

where C denotes the regularization parameter which balance the trade-off between complexity and the
proportion of non-separable samples; ei stands for the positive slack term for misclassification.

To address the above problem, Lagrangian function is introduced.

L(w, b, e, a) = J(w, b, e)−
N

∑
i=1

ai{yi(wT ϕ(xi) + b)− 1 + ei} (15)

where ai stands for the Lagrangian multiplier.
Finally, the decision function of the SVM classifier for any test vector x ∈ RN can be given

as follows:

y(x) = sign(
N

∑
i=1

aiyiK(x, xi) + b) (16)

where K(x, xi) = ϕ(xi)
T ϕ(x) represents the kernel function. In this work, radial basis function

(RBF: K(x, xi) = exp(−λ ‖ xi − x ‖2)) is chosen as the kernel function of the SVM classifier.
Here, the term λ plays a important role on the distribution form of the samples in the high dimensional
feature space.

After selecting the kernel function, the regularization parameter C and the RBF parameter λ

should be determined. Thus, QPSO is utilized to find the optimal parameters of C and λ in order to
improve the classification ability of SVM.

4.2. Quantum-Behaved Particle Swarm Optimization (QPSO)

In 1995, Ederhart and Kennedy came up with the PSO algorithm to search the optimal solutions via
imitating the preying behavior of birds [40]. Nevertheless, the algorithm has some drawbacks, such as
slow convergence rate and poor search ability. From the view of quantum mechanics, Sun et al. [41]
have put forward QPSO. The probability of each particle’s next iteration position relies on the potential
field of the particle, which is defined as below:

Xi(t + 1) = P± a|nbest− Xi(t)|In(1/u) (17)

nbest =
1
N

N

∑
i=1

Pi (18)
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P = sPi + (1− s)Pg (19)

where i = 1, 2, . . . , N and N is swarm size; u and s are uniformly distributed random numbers
generated between 0 and 1; Pg is the global optimal position of all particles and Pi is the particle
i’s optimal position; Xi(t + 1) is the position of particle i in iteration t + 1; nbest is the center of all
individual optimal positions; a is a contraction expansion coefficient.

4.3. The Procedure of Parameters Optimization

This section introduces the flowchart of the QPSO algorithm-optimized support vector machine
for fault diagnosis. The flowchart is shown in Figure 1 and the main steps are described as below:

Step 1: Initialize the QPSO algorithm parameters.
Step 2: For each particle, the fitness is calculated, where the cross-validation testing accuracy is

used as the fitness function.
Step 3: Determine each particle optimal position and the global optimal position.
Step 4: Update the velocity and position of each particle in accordance with Equations (17)∼(19).
Step 5: Repeat step 2 to step 5 until reaching the stop criterion.
Step 6: Export the optimal 2-dimensional position as the parameters of the SVM.
Step 7: Exit the program.

Start

Initialize QPSO algorithm

parameters 

Calculate the fitness value 

of each particle 

Determine the local optimal 

position and the global 

optimal position

Stop

Criterion?

Determine the local optimal 

position and the global 

optimal position

Exit

Yes

No

Figure 1. The flow chart of the parameter optimization.

5. Experimental Results and Analysis

The proposed method is investigated on three popular analog circuits in this paper. For the test
circuits, each fault class is conducted 60 Monte Carlo analysis. Among these samples, 50% are used for
training and the last 50% are used for testing. All testing samples are verified by an SVM classifier,
then fault components can be located.

5.1. Example Circuits

(1) CUT 1: The first CUT (circuit under test) shown in Figure 2 is a sallen-key band-pass circuit.
In this test, the components R2, R3, C1 and C2 are chosen as fault components. The tolerances of the
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resistors and capacitors are all equal to 5%. A total of nine fault classes, including the fault-free (NF)
status of circuits, are simulated, and the corresponding fault values and labels are shown in Table 1.
In the following Tables 1–3, ↑ and ↓ refer to higher and lower than the nominal value, respectively.

R1

1kΩ
5%

R2

3kΩ
5%

R3

2kΩ
5%

R4

4kΩ
5%

R5

4kΩ
5%

C1

5nF
5%

C2

5F
5%

2

U1
4

V1

0V 10V 
0.1ms 0.2ms 

1

5

0

Output

Figure 2. Schematic of a sallen-key band-pass filter.

Table 1. Fault classes for Sallen-key bandpass filter.

Fault Code Fault Class Nominal Value Faulty Value

F0 NF - -
F1 R2↓ 3 kΩ 2.2 kΩ
F2 R2↑ 3 kΩ 3.6 kΩ
F3 R3↓ 2 kΩ 1.6 kΩ
F4 R3↑ 2 kΩ 2.4 kΩ
F5 C1↓ 5 nF 4 nF
F6 C1↑ 5 nF 6.5 nF
F7 C2↓ 5 nF 4 nF
F8 C2↑ 5 nF 6.5 nF

(2) CUT 2: The second CUT, a four-opamps filter circuit, is shown in Figure 3. Thirteen fault
classes are all shown in Table 2. The tolerances of the resistors and capacitors are also set to 5%. A pulse
signal with 10 V peak, 10 µs duration and 1ms period is considered as the input signal of the circuit.

A

B

C

D

E

F

OA

OB

OC

OD

R1

6.2kΩ
5%

R2

6.2kΩ
5%

R3

6.2kΩ
5%

R4

1.6kΩ
5%

R5

5.1kΩ
5%

R6

5.1kΩ
5%

R7

10kΩ
5%

R8

10kΩ
5%

R9

10kΩ
5%

R10

10kΩ
5%

4

6

8

C1

5nF
5%

C2

5nF
5%

2

3

5

0

0

0

1

V2

0V 10V 
10us 1ms 

0

9

0

Output

Figure 3. Schematic of a four-opamp filter circuit.
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Table 2. Fault classes for four opamp filter circuit.

Fault Code Fault Class Nominal Value Faulty Value

F0 NF - -
F1 R1↓ 6.2 kΩ 3 kΩ
F2 R1↑ 6.2 kΩ 15 kΩ
F3 R2↓ 6.2 kΩ 2 kΩ
F4 R2↑ 6.2 kΩ 18 kΩ
F5 R3↓ 6.2 kΩ 2.7 kΩ
F6 R3↑ 6.2 kΩ 12 kΩ
F7 R4↓ 6.2 kΩ 0.5 kΩ
F8 R4↑ 6.2 kΩ 2.5 kΩ
F9 C1↓ 5 nF 2.5 nF

F10 C1↑ 5 nF 10 nF
F11 C2↓ 5 nF 1.5 nF
F12 C2↑ 5 nF 15 nF

(3) CUT 3: To investigate the performance of proposed method in nonlinear circuits, a test of
the duffing chaotic circuit shown in Figure 4 is conducted in this section. In this case, an excitation
signal with the frequency of 0.155159 Hz and the amplitude of 0.7414148 V is chosen. The normal
tolerance of resistor and capacitor is also assumed as 5%. We only collected the signals at the output
node, and a 30% deviation of nominal value was considered as a fault condition. The fault modes
are listed in Table 3. In this work, the test is denoted as Case 3. After data acquisition, we obtain the
original samples set with size of 1080. The size of training samples set and testing samples set are all
equal to 540 (30 × 18).

Table 3. Fault classes for duffing chaotic circuit.

Fault Code Fault Class Fault Value

F0 - -
F1 R1↓ 7 kΩ
F2 R1↑ 13 kΩ
F3 R2↓ 7 kΩ
F4 R2↑ 13 kΩ
F5 R3↓ 7 kΩ
F6 R3↑ 13 kΩ
F7 R4↓ 14 kΩ
F8 R4↑ 26 kΩ
F9 R8↓ 7 kΩ
F10 R9↓ 0.7 MΩ
F11 R10↑ 13 kΩ
F12 C1↓ 0.7 µF
F13 C2↑ 1.3 µF
F14 R1↑R2↑ (13 kΩ) (13 kΩ)
F15 R1↓R3↓ (7 kΩ) (7 kΩ)
F16 R5↑C1↑ (7 kΩ) (1.3 µF)
F17 R6↓C2↓ (0.7 MΩ) (0.7 µF)
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Figure 4. Schematic of a duffing chaotic circuit.

5.2. The Results Analysis of Feature Extraction

First, the sampled signals of CUTs are preprocessed by using XWT to obtain time-frequency
spectra (TFS). Owing to the large quantity of fault classes, it is not feasible to list all TFS for all fault
classes. Thus, we only present the TFS of F0 and F7 in Figure 5 for CUT1, and the TFS of F0 and F7 in
Figure 6 for CUT2. In the figures, the color in the subgraph implies the power in the time-scale plane.
And, the black arrow in each sub-image indicates the phase angle. The results from Figures 5 and 6
can be concluded as follows:

(1) As shown in Figure 5, the TFSs between F0 and F7 have tiny differences. It means
that the time-frequency distribution only undergos minor changes when faults happen.
However, compared with the TFS of F0, the phase distributions in the TFS of F7 has an apparent
difference. It indicates that the XWT can fetch phase information effectively.

(2) From Figure 6, compared with the TFS of F0, the phase distribution of F9 in the whole
time-frequency plane undergoes dramatic change, and the energy accumulation block in the middle
shows a considerable variation.

Consequently, with the application of cross-wavelet transform, the energy and phase
characteristics in time-frequency domain can be extracted to analyze the work conditions of
analog circuits.

(a) (b)

Figure 5. The time-frequency spectra obtained by XWT for CUT 1 (a) F0, (b) F7.
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(a) (b)

Figure 6. The time-frequency spectra obtained by XWT for CUT 2 (a) F0, (b) F9.

After calculating singular entropies of blocks in the TFS, Tsallis entropy curves for CUTs are
drawn in Figure 7.
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(c)

Figure 7. The XWSE features distribution of (a) CUT1, (b) CUT2, (c) CUT3.

As we can see from Figure 7, the eight entropies have apparent difference for all fault modes,
although there exist overlapping in some points of different fault classes. It implies that Tsallis entropy
can provide some discriminative information for fault recognition.

Here, nine kinds of entropy techniques, including approximate entropy (Apen) [9], sampEn entropy
(Samp) [22], fuzzy entropy (Fen) [23], permutation entropy (Per) [42], fuzzy approximate entropy
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(Fapen) [43], corrected conditional entropy (Cce) [43], Tsallis entropy [28] and shannon entropy [26],
are employed to extract fault features, and these features are directly imported into SVM classifiers.
The dimension of features is varied from 1 to 16 and finally, the resultant feature set without feature
reduction are employed as the input vectors of SVM classifier. Figure 8 shows the classification
rates for CUT1 and CUT 2 varying from the first features to all features. It can be observed that the
recognition rate of Tsallis entropy increases steadily and achieves the highest accuracy in whole scale.
Hence, it can be concluded from Figure 8 that Tsallis entropy is superior to the other entropy techniques
on feature extraction.

0 2 4 6 8 10 12 14 16

Number of entropy features

30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n 

ac
cu

ra
cy

(%
)

Tse
Wse
Fen
Per
Samp
Apen
Fapen
Cce

(a)

0 2 4 6 8 10 12 14 16

Number of entropy features

30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n 

ac
cu

ra
cy

(%
)

Tse
Wse
Fen
Per
Samp
Apen
Fapen
Cce

(b)

Figure 8. The plots of classification accuracy versus the number of features for various entropy
techniques (a) CUT1, (b) CUT2.

Finally, we apply the parametric t-SNE to obtain the optimal low-dimensional representation.
It not only requires less training and processing time, but also leads to a smaller structure and better
generalization performance for the adopted SVM. The 220-600-600-2500-2 parametric t-SNE network
structure is utilized on the fault data.

The 2-D scatter plots for the whole fault classes in CUT1 and CUT2 are shown in Figure 9.
Meanwhile, the visualization of the fault data using locality preserving projection (LPP) [44] and
linear local tangent space alignment (LLTSA) [45] are reported in Figures 10 and 11. From Figure 9,
it can be concluded that the proposed algorithm can substantially improves the separability degree of
different fault classes. On the contrary, there are strong overlapping between different fault classes in
Figures 10 and 11. Therefore, it can be concluded that the optimal low-dimensional features can be
obtained by using the Parametric t-SNE.
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Figure 9. Cont.
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Figure 9. The scatter plots of two-dimensional features obtained by parametric t-SNE (a) CUT1,
(b) CUT2, (c) F4 and F6 of CUT 2, (d) F7 and F11 of CUT 2.
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Figure 10. The scatter plots of two-dimensional features obtained by LPP (a) CUT1, (b) CUT2.
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Figure 11. The scatter plots of two-dimensional features obtained by LLSTA(a) CUT1, (b) CUT2.

5.3. Classification Result by Using QPSO-SVM Model

In this study, the QPSO-based SVM is used as a classifier. After z-score normalization, the optimal
features obtained by using parametric t-SNE are imported into the classifier to locate the faults.
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Because 60 Monte-Carlo runs are implemented for each fault class, there are 540 samples for CUT 1780
samples for CUT 2, and 1080 samples for CUT3. Each samples set is divided into two subsets with the
same size. The two subsets are used as training and testing data sets, respectively. Figure 12 shows the
parameter optimization procedures of these three cases. As illustrated in the figures, the presented
optimization algorithm achieves desirable performances during the training stage with consuming
much few time. Thus, it can be concluded that the characters in different fault classes of the circuits tend
to separate obviously, and the proposed QPSO-SVM. have excellent classification ability. The optimal
solutions [C, λ] for the three CUTs are [0.01, 4.076], [0.01, 86.15] and [6.5152, 0.1595] respectively.

Subsequently, the test samples are used as the input vectors of the SVM model to recognize the
states. The classification accuracy comparisons with other current works for CUT1 and CUT2 are given
in Table 4. Additionally, the diagnosis result of the proposed method for CUT3 is shown in Figure 13.

Table 4. Recongnition performance comparision of the proposed method with other existing methods.

Works Approach Accuracy (%)
CUT 1 CUT 2

Aminian et al. [1] WT + PCA + NN 97 95
Xiao et al. [4] FrWT + KPCA + Ridgelet−NN 100 98.52
Yuan et al. [9] Entropy + Kurtosis + NN 100 99
Vasan et al. [10] WT + entropy, Kurtosis + SVM 99.70 95.69
Song et al. [46] FrFT statistical feature + SVM 98.41 95.12
Chen et al. [47] WPT + DCQGA−SVM 97.41 98.72
Proposed XWSE + Pt−SNE + QPSO-SVM 99.26 99.74

As shown in Table 4, it can be observed that our proposed method achieves a better result than
that of other listed works, with other exceptions [4,9,10]. However, the fault components in our work
have smaller parametric deviation. When fault components occur with smaller parametric deviation,
the features of different fault classes tend to overlap, which results in a lower diagnosis accuracy.
For the second CUT, the proposed method achieves the highest diagnostic accuracy. Therefore,
with the diagnosis performance of CUT1 and CUT2, it can be summed up that the proposed scheme
can effectively and accurately diagnose the soft faults in analog circuits.
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Figure 12. Best and the average fitness values versurs number of iterations for (a) CUT1, (b) CUT2,
(c) CUT3.

As shown in Figure 13, it can be observed that some diagonal elements in the confusion matrix
are close to 1. It means that the proposed algorithm has a good ability in classifying fault patterns into
its actual class. However, the proposed algorithm gets unsatisfied results when dealing with some
fault samples in F2 and F11. It implies that the proposed approach still needs to be improved further
to fulfil the task of fault diagnosis in complex nonlinear circuits.
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Figure 13. The diagnosis results of the proposed method for CUT 3.

6. Discussion

Compared with Tsallis entropy, other entropy techniques, such as Rényi and Shannon entropies
have already been applied to many diverse practical problems [48,49]. Therefore, a discussion based
on Shannon, Rényi and Tsallis entropy is described in this section.

For given two probabilities p1 and p2(p2 = 1− p1), the plots of Shannon, Rényi and Tsallis
entropies are shown in Figures 14–16. Here, the Rényi entropy is defined as Iq = 1

1−q log(∑n
i=1 pq

i ).
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As shown in the figures, with the increase of q, the statistical range of Rényi entropy and Tsallis
entropy will change, and the entropy values of the probability events will decrease correspondingly.
However, with Shannon entropy, the statistical value of the probability events remains unchanged due
to the equal weights in the entropy computation. For Tsallis entropy, the events with high probability
contribute more than lower probabilities. The Rényi entropy with higher q parameter is determined by
events with higher probabilities and the lower values of q coefficients weigh the events more equally.

For a signal containing noise components, the low energy components which can be used to
characterize may be corrupted by the background noise that is relative to the events with small
probability. In this context, Rényi and Tsallis entropies can achieve better results in extracting features
by selecting appropriate q parameter to minimize noise as compared to Shannon entropy. Furthermore,
Tsallis entropy is a much more sensitive function than Rényi entropy with respect to changes in q
value, which is conducive to determine the proper q parameter. Besides, Tsallis entropy has been
found to possess non-extensive property, which is helpful to deal with non-extensive character of XWT
transform [50]. Based on the above advantages of the Tsallis entropy, it is applied to the fault feature
extraction of analog circuits in this work.
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Figure 14. Plot of the Shannon entropy.
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Figure 15. Plots of the Rényi entropy for several values of p.
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Figure 16. Plots of the Tsallis entropy for several values of p.

7. Conclusions

In this work, a new feature extraction technique based on XWSE and parametric t-SNE is put
forward, and a PSO-SVM classifier is presented to locate faults as well. The conclusions validated by
the simulation experiments are drawn as blew.

• Via making full use of the time-frequency distribution characteristics and entropy description,
the XWSE method has a better ability to effectively extract essential features of the analyzed fault
signals, and the experimental results lead us to believe that the proposed algorithm offers great
potential in revealing the difference between different fault classes.

• For the sake of eliminating useless information, the parametric t-SNE is implemented to provide
a nonlinear projection from the input space to the reduced space for enhancing the feature
separation degree of the fault classes. The comparisons with other dimensionality reduction
methods have demonstrated its feasibility and effectiveness.

• Moreover, this work also proposes a promising means for the optimization of SVM classifier by
using QPSO, which is an bionic heuristic algorithm that shows faster and better convergence
rate than other methods. Simulation tests have been conducted to validate that the presented
QPSO-SVM model can achieve a desirable classification performance in linear circuits as well as
nonlinear circuits.

In addition to all the above achievements, several issues also need to be investigated in subsequent
studies. For instance, the method of extracting features effectively under incipient and multiple faults
conditions should be explored, the problem of integrating the advantages of other semi-supervised
dimensionality reduction methods and parametric t-SNE needs to be studied and the performance of
the proposed scheme for actual circuits fault diagnosis should be further analyzed.

Author Contributions: W.H. wrote the draft and designed the research method. Y.H. provided important
guidance. B.L. and C.Z. gave a detailed revision. All authors have read and approved the final manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under Grant
No. 51577046 and 51777050, the State Key Program of National Natural Science Foundation of China under Grant
No. 51637004, the national key research and development plan “important scientific instruments and equipment
development” Grant No. 2016YFF0102200, Equipment research project in advance Grant No. 41402040301, Natural
Science Foundation of Hunan Province under Grant No. 2017JJ2080, Basic Research Service Fee Project of Central
University under Grant No. JDK16TD01.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2018, 20, 604 18 of 20

References

1. Aminian, F.; Member, S.; Aminian, M.; Collins, H.W. Analog Fault Diagnosis of Actual Circuits Using Neural
Networks. IEEE Trans. Instrum. Meas. 2002, 51, 544–550. [CrossRef]

2. Liu, Z.; Liu, T.; Han, J.; Bu, S.; Tang, X.; Pecht, M. Signal Model-based Fault Coding for Diagnostics and
Prognostics of Analog Electronic Circuits. IEEE Trans. Ind. Electron. 2016, 46, 605–614. [CrossRef]

3. Kumar, A.; Singh, A.P. Fuzzy classifier for fault diagnosis in analog electronic circuits. ISA Trans. 2013,
52, 816–824. [CrossRef] [PubMed]

4. Xiao, Y.; Feng, L. A novel linear ridgelet network approach for analog fault diagnosis using wavelet-based
fractal analysis and kernel PCA as preprocessors. Measurement 2012, 45, 297–310. [CrossRef]

5. Liu, Z.; Jia, Z.; Vong, C.M.; Member, S.; Bu, S. Capturing High-Discriminative Fault Features for
Electronics-Rich Analog System via Deep Learning. IEEE Trans. Ind. Inf. 2017, 13, 1213–1226. [CrossRef]

6. Binu, D.; Kariyappa, B. A survey on fault diagnosis of analog circuits: Taxonomy and state of the art.
AEU Int. J. Electron. Commun. 2017, 73, 68–83. [CrossRef]

7. Catelani, M.; Fort, A. Soft fault detection and isolation in analog circuits: Some results and a comparison
between a fuzzy approach and radial basis function networks. IEEE Trans. Instrum. Meas. 2002, 51, 196–202.
[CrossRef]

8. Tian, S.; Yang, C.; Chen, F.; Liu, Z. Circle Equation-Based Fault Modeling Method for Linear Analog Circuits.
IEEE Trans. Instrum. Meas. 2014, 63, 2145–2159. [CrossRef]

9. Yuan, L.; He, Y.; Huang, J.; Sun, Y. A new neural-network-based fault diagnosis approach for analog circuits
by using kurtosis and entropy as a preprocessor. IEEE Trans. Instrum. Meas. 2010, 59, 586–595. [CrossRef]

10. Vasan, A.S.S.; Long, B.; Pecht, M. Diagnostics and Prognostics Method for Analog Electronic Circuits.
IEEE Trans. Ind. Electron. 2013, 60, 5277–5291. [CrossRef]

11. Wang, Z.; Wang, J.; Zhao, Z.; Wang, R. A Novel Method for Multi-Fault Feature Extraction of a Gearbox
under Strong Background Noise. Entropy 2018, 20, 10. [CrossRef]

12. Cui, Y.; Shi, J.; Wang, Z. Analog circuits fault diagnosis using multi-valued Fisher’ s fuzzy decision tree
(MFFDT). Int. J. Circuit Theory Appl. 2016, 44, 240–260. [CrossRef]

13. Kumar, S.; Chow, T.W.S.; Pecht, M. Approach to Fault Identification for Electronic Products Using
Mahalanobis Distance. IEEE Trans. Instrum. Meas. 2010, 59, 2055–2064. [CrossRef]

14. Kang, H.J.; Van, M. Bearing-fault diagnosis using non-local means algorithm and empirical mode
decomposition-based feature extraction and two-stage feature selection. IET Sci. Meas. Technol. 2015,
9, 671–680.

15. Roh, J.; Abraham, J.A. Subband filtering for time and frequency analysis of mixed-signal circuit testing.
IEEE Trans. Instrum. Meas. 2004, 53, 602–611. [CrossRef]

16. Dey, D.; Chatterjee, B.; Chakravorti, S.; Munshi, S. Cross-wavelet transform as a new paradigm for feature
extraction from noisy partial discharge pulses. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 157–166. [CrossRef]

17. Banerjee, S.; Member, S.; Mitra, M. Application of Cross Wavelet Transform for ECG Pattern Analysis and
Classification. IEEE Trans. Instrum. Meas. 2014, 63, 326–333. [CrossRef]

18. Gao, Y.; Villecco, F.; Li, M.; Song, W. Multi-Scale Permutation Entropy Based on Improved LMD and HMM
for Rolling Bearing Diagnosis. Entropy 2017, 19, 176. [CrossRef]

19. Yang, Q.; Wang, J. Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location.
Entropy 2015, 17, 7101–7117. [CrossRef]

20. Widodo, A.; Shim, M.C.; Caesarendra, W.; Yang, B.S. Intelligent prognostics for battery health monitoring
based on sample entropy. Expert Syst. Appl. 2011, 38, 11763–11769. [CrossRef]

21. Zhang, Z.; Duan, Z.; Long, Y.; Yuan, L. A new swarm-SVM-based fault diagnosis approach for switched
current circuit by using kurtosis and entropy as a preprocessor. Analog Integr. Circuits Signal Process. 2014,
81, 289–297. [CrossRef]

22. Han, M.; Pan, J. A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller
bearings. Measurement 2015, 76, 7–19. [CrossRef]

23. Li, Y.; Xu, M.; Zhao, H.; Huang, W. Hierarchical fuzzy entropy and improved support vector machine based
binary tree approach for rolling bearing fault diagnosis. Mech. Mach. Theory 2016, 98, 114–132. [CrossRef]

24. Li, X.; Xie, Y. Analog circuits fault detection using cross-entropy approach. J. Electron. Test. Theory Appl.
2013, 29, 115–120. [CrossRef]

http://dx.doi.org/10.1109/TIM.2002.1017726
http://dx.doi.org/10.1109/TIE.2016.2599142
http://dx.doi.org/10.1016/j.isatra.2013.06.006
http://www.ncbi.nlm.nih.gov/pubmed/23849881
http://dx.doi.org/10.1016/j.measurement.2011.11.018
http://dx.doi.org/10.1109/TII.2017.2690940
http://dx.doi.org/10.1016/j.aeue.2017.01.002
http://dx.doi.org/10.1109/19.997811
http://dx.doi.org/10.1109/TIM.2014.2307993
http://dx.doi.org/10.1109/TIM.2009.2025068
http://dx.doi.org/10.1109/TIE.2012.2224074
http://dx.doi.org/10.3390/e20010010
http://dx.doi.org/10.1002/cta.2075
http://dx.doi.org/10.1109/TIM.2009.2032884
http://dx.doi.org/10.1109/TIM.2003.820494
http://dx.doi.org/10.1109/TDEI.2010.5412014
http://dx.doi.org/10.1109/TIM.2013.2279001
http://dx.doi.org/10.3390/e19040176
http://dx.doi.org/10.3390/e17107101
http://dx.doi.org/10.1016/j.eswa.2011.03.063
http://dx.doi.org/10.1007/s10470-014-0373-2
http://dx.doi.org/10.1016/j.measurement.2015.08.019
http://dx.doi.org/10.1016/j.mechmachtheory.2015.11.010
http://dx.doi.org/10.1007/s10836-012-5344-x


Entropy 2018, 20, 604 19 of 20

25. Xie, X.; Li, X.; Bi, D.; Zhou, Q.; Xie, S.; Xie, Y. Analog Circuits Soft Fault Diagnosis Using Rényi’s Entropy.
J. Electron. Test. 2015, 31, 217–224. [CrossRef]

26. Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Fault diagnosis of ball bearings using continuous wavelet transform.
Appl. Soft Comput. J. 2011, 11, 2300–2312. [CrossRef]

27. Zhang, Y.; Wu, L. Optimal Multi-Level Thresholding Based on Maximum Tsallis Entropy via an Artificial
Bee Colony Approach. Entropy 2011, 13, 841–859. [CrossRef]

28. Dong, S.; Tang, B.; Chen, R. Bearing running state recognition based on non-extensive wavelet feature scale
entropy and support vector machine. Measurement 2013, 46, 4189–4199. [CrossRef]

29. Maaten, L.V.D. Learning a Parametric Embedding by Preserving Local Structure. J. Mach. Learn. Res. 2009,
5, 384–391.

30. Boser, E.; Vapnik, N.; Guyon, I.M.; Laboratories, T.B. A Training Algorithm Margin for Optimal Classifiers.
In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA,
27–29 July 1992; pp. 144–152.

31. Saitta, L. Support-Vector Networks. Mach. Learn. 1995, 297, 273–297.
32. Soliman, M.M.; Hassanien, A.E.; Onsi, H.M. An adaptive watermarking approach based on weighted

quantum particle swarm optimization. Neural Comput. Appl. 2016, 27, 469–481. [CrossRef]
33. Grinsted, A.; Moore, J.C.; Jevrejeva, S.; Grinsted, A.; Moore, J.C.; Application, S.J. Application of the cross

wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004,
11, 561–566. [CrossRef]

34. Ruessink, B.G.; Coco, G.; Ranasinghe, R.; Turner, I.L. A cross-wavelet study of alongshore nonuniform
nearshore sandbar behavior. In Proceedings of the 2006 IEEE International Joint Conference on Neural
Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006; pp. 4310–4317.

35. Series, H.; Algebra, L. Singular Value Decomposition and Least Squares Solutions. Numer. Math. 1970,
14, 403–420.

36. Physics, S.; November, R. Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 1988,
52, 479–487.

37. Maaten, L.V.D.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
38. Pan, M.; Jiang, J.; Kong, Q.; Shi, J.; Sheng, Q.; Zhou, T. Radar HRRP Target Recognition Based on t-SNE

Segmentation and Discriminant Deep Belief Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1609–1613.
[CrossRef]

39. Li, M.; Luo, X.; Yang, J. Extracting the nonlinear features of motor imagery EEG using parametric t-SNE.
Neurocomputing 2016, 218, 371–381. [CrossRef]

40. Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the
Sixth International Symposium on International Symposium on Micro Machine and Human Science,
Nagoya, Japan, 4–6 October 1995; pp. 39–43.

41. Sun, J. Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and
Parameter Selection. Evol. Comput. 2012, 20, 349–393. [CrossRef] [PubMed]

42. Zhao, L.Y.; Wang, L.; Yan, R.Q. Rolling Bearing Fault Diagnosis Based on Wavelet Packet Decomposition
and Multi-Scale Permutation Entropy. Entropy 2015, 17, 6447–6461. [CrossRef]

43. Pang, Q.; Liu, X.; Sun, B.; Ling, Q. Approximate Entropy Based Fault Localization and Fault Type Recognition
for Non-solidly Earthed Network. Meas. Sci. Rev. 2012, 12, 309–313. [CrossRef]

44. Su, Z.; Tang, B.; Liu, Z.; Qin, Y. Multi-fault diagnosis for rotating machinery based on orthogonal supervised
linear local tangent space alignment and least square support vector machine. Neurocomputing 2015,
157, 208–222. [CrossRef]

45. Tang, G.; Wang, X.; He, Y. A Novel Method of Fault Diagnosis for Rolling Bearing Based on Dual Tree
Complex Wavelet Packet Transform and Improved Multiscale Permutation Entropy. Math. Probl. Eng. 2016,
2016, 5432648. [CrossRef]

46. Song, P.; He, Y.; Cui, W. Statistical property feature extraction based on FRFT for fault diagnosis of analog
circuits. Analog Integr. Circuits Signal Process. 2016, 87, 427–436. [CrossRef]

47. Chen, P.; Yuan, L.; He, Y.; Luo, S. An improved SVM classifier based on double chains quantum genetic
algorithm and its application in analogue circuit diagnosis. Neurocomputing 2016, 211, 202–211. [CrossRef]

http://dx.doi.org/10.1007/s10836-015-5520-x
http://dx.doi.org/10.1016/j.asoc.2010.08.011
http://dx.doi.org/10.3390/e13040841
http://dx.doi.org/10.1016/j.measurement.2013.07.011
http://dx.doi.org/10.1007/s00521-015-1868-1
http://dx.doi.org/10.5194/npg-11-561-2004
http://dx.doi.org/10.1109/LGRS.2017.2726098
http://dx.doi.org/10.1016/j.neucom.2016.08.083
http://dx.doi.org/10.1162/EVCO_a_00049
http://www.ncbi.nlm.nih.gov/pubmed/21905841
http://dx.doi.org/10.3390/e17096447
http://dx.doi.org/10.2478/v10048-012-0043-4
http://dx.doi.org/10.1016/j.neucom.2015.01.016
http://dx.doi.org/10.1155/2016/5432648
http://dx.doi.org/10.1007/s10470-016-0721-5
http://dx.doi.org/10.1016/j.neucom.2015.12.131


Entropy 2018, 20, 604 20 of 20

48. Gajowniczek, K.; Zabkowski, T.; Orlowski, A. Comparison of decision trees with Rényi and Tsallis entropy
applied for imbalanced churn dataset. In Proceedings of the 2015 Federated Conference on Computer
Science and Information Systems, Lodz, Poland, 13–16 September 2015; pp. 39–44.

49. Chen, J.; Dou, Y.; Wang, Z.; Li, G. A novel method for PD feature extraction of power cable with Rényi
entropy. Entropy 2015, 17, 7698–7712. [CrossRef]

50. Johal, R.S.; Tirnakli, U. Tsallis versus Rényi entropic form for systems with q-exponential behaviour: The case
of dissipative map. Phys. A Stat. Mech. Appl. 2004, 331, 487–496. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e17117698
http://dx.doi.org/10.1016/j.physa.2003.09.064
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Feature Extraction
	Cross Wavelet Transform 
	Singular Value Decomposition (SVD)
	Tsallis Entropy
	Definition of XWSE
	Parametric t-Stochastic Neighbor Embedding (Parametric t-SNE)

	SVM and QPSO
	Support Vector Machine (SVM)
	 Quantum-Behaved Particle Swarm Optimization (QPSO)
	The Procedure of Parameters Optimization

	Experimental Results and Analysis
	Example Circuits
	The Results Analysis of Feature Extraction 
	Classification Result by Using QPSO-SVM Model

	Discussion
	Conclusions
	References

