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Abstract: Recently, the accuracy of voice authentication system has increased significantly due to the
successful application of the identity vector (i-vector) model. This paper proposes a new method
for i-vector extraction. In the method, a perceptual wavelet packet transform (PWPT) is designed to
convert speech utterances into wavelet entropy feature vectors, and a Convolutional Neural Network
(CNN) is designed to estimate the frame posteriors of the wavelet entropy feature vectors. In the end,
i-vector is extracted based on those frame posteriors. TIMIT and VoxCeleb speech corpus are used for
experiments and the experimental results show that the proposed method can extract appropriate
i-vector which reduces the equal error rate (EER) and improve the accuracy of voice authentication
system in clean and noisy environment.
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1. Introduction

Speaker modeling technology has been widely used in modern voice authentication for improving
accuracy. Among those speaker modeling methods (such as arrange vector, support vector machine
(SVM), Gaussian mixture model (GMM) supervector, joint factor analysis (JFA) and so on), i-vector
model has wide applicability, because it is easy to implement and gives good performance [1]. Over the
recent decades, the i-vector model has become a reliable and fast speaker modeling technology for
voice authentication in a wide range of applications such as access control and forensics [2,3].

Speech utterance contains a huge number of redundancies. Thus, for i-vector extraction, it should
be converted into feature vectors where the valuable information is emphasized and redundancies
are suppressed. Mel-frequency cepstral coefficient (MFCC) is commonly used spectral features for
speech representation. Although MFCC achieved great success in early speech representation,
its disadvantage is to use short-time Fourier transform (SFT), which has weak time-frequency resolution
and an assumption that the speech signal is stationary. Therefore, it is relatively hard to represent the
non-stationary speech segment (such as plosive phonemes) by the MFCC [4].

Wavelet increasingly becomes an alternative to Fourier transform due to its multi-scale resolution
which is suitable for analyzing non-stationary signal. Over recent years, many wavelet-based
spectral features such as wavelet-based MFCC [5], wavelet-based linear prediction cepstral coefficient
(LPCC) [4], wavelet energy [6] and wavelet entropy [7] have been proposed by researchers.
Among those wavelet-based features, wavelet entropy has some superior features. Wavelet entropy is
sensitive to singular point of signal, so it can highlight the valuable information of speech signal [8].
Moreover, it has ability to significantly reduce the size of data, which is helpful for speeding up
back-end speaker modeling and classification process [9].
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Typically, wavelet entropy feature extraction is based on wavelet transform (WT) or wavelet packet
transform (WPT). However, WT cannot provide high enough high-frequency resolution due to the fact
that WT just decomposes low-frequency part of signal. Although WPT, which performs decomposition
on both low- and high-frequency part of signal, provides richer analysis than WT, but the time
required to implement WPT will become very heavy as the increasing of the its decomposition level [4].
Currently, a case of WPT with irregular decomposition, named perceptual wavelet packet transform
(PWPT), is proposed for speech enhancement [10]. The main advantage of PWPT is that it, like WPT,
can provide rich analysis but its time cost is much lower than WPT due to the irregular decomposition.
Moreover, it simulates the human auditory system to perceive the frequency information of speech,
which is helpful for analyzing speech information and suppressing speech noise [10,11]. Therefore,
PWPT seems to be effective for extracting robust wavelet entropy feature vector.

Once a speech utterance is converted into a set of feature vectors, the i-vector can be extracted
based on those feature vectors. A key issue of i-vector extraction is how to estimate the frame
posteriors of a feature vector. For standard i-vector extraction [12], the frame posteriors are estimated
using Gaussian mixture model (GMM). However, inspired by the success of deep learning in speech
recognition, researchers trend to replay the GMM by deep model. Actually, phonetic deep neural
network (DNN) has been used instead of GMM to estimate the frame posteriors and often gives more
reliable frame posterior than GMM in several works [13–15]. Convolutional neural network (CNN) is
other type of deep model and has been proven to be better than DNN in speech recognition cases [16,17].
Thus, CNN may be a good choice to estimate reliable frame posteriors for i-vector extraction.

In this paper, many i-vector extraction methods are investigated and a new method for i-vector
extraction is proposed. The main works of this paper are summarized as follows:

(1) Design a PWPT according to the human auditory model named Greenwood scale function.
(2) Utilize the PWPT to convert speech utterance into wavelet entropy feature vectors.
(3) Design a CNN according to the phonetic DNN.
(4) Utilize the CNN to estimate frame posteriors of feature vector from i-vector extraction.

The rest of paper is organized as follows: Section 2 discusses how to extract the wavelet
entropy feature from speech utterance. Section 3 discusses the i-vector extraction method. Section 4
describes voice authentication task used for performance evaluation, and Section 5 reports the result
of experiments. Finally, a conclusion is given out in Section 6.

2. Wavelet Entropy Feature Extraction

2.1. Wavelet Packet Transform

As its name shows, wavelet entropy is based on wavelet analysis. Thus, our description starts
with the Wavelet Packet Transform (WPT).

WPT is a wavelet analysis method. It is widely used in various scientific and engineering fields
such as speech processing, image processing, security system, biomedicine and so on. In practice,
WPT is implemented by two recursive band-pass filtering processes which are defined as:

w2p
j+1(l) = ∑

k
h(k− 2l)wp

j (k)

w2p+1
j+1 (l) = ∑

k
g(k− 2l)wp

j (k)

w0
0(l) = x(l)

; p = 0, 1, 2, . . . , 2j; j = 1, 2, 3, . . . , J (1)

where x(l) is a signal to be decomposed and J is the maximum decomposition level of WPT. h(·) and
g(·) are the couple of low-pass and high-pass filters, which are constructed by a mother wavelet
and the corresponding scale function. wp

j (·) is the p-th WPT sub signal at level j. The w2p
j+1(·) is the

low-frequency of wp
j (·), and w2p+1

j+1 (·) is the high-frequency part of wp
j (·).
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WPT regularly decomposes both the low-frequency and high-frequency parts of signals, so it
provides rich time-frequency analysis as usual. However, the computational cost of WPT will become
very high due to the regular decomposition.

2.2. Perceptual Wavelet Packet Transform

Perceptual wavelet packet transform (PWPT) is a case of WPT with irregular decomposition.
The key issue for PWPT is how to design its decomposition process to adopt a given signal. For speech
signal, the PWPT is usually designed to simulate human auditory perception process [10].

This paper designs a PWPT which simulates a auditory perception model named Greenwood scale
frequency function (GSFF). This human auditory model is proposed by Greenwood in [18] and shows
that mammals perceive sound frequency on a logarithmic scale along the cochlea, which corresponds
to a non-uniform frequency resolution. The GSFF is defined by:

f (x) = A(10αx − k) (2)

where f (x) is the perceived frequency and x is the normalized cochlea position with a value of from
zero to one. k, A, α are species-dependent constants. The work in [19] shows k can be estimated as
0.88 for mammal and A, α are defined by:

A =
fmin

1− k
(3)

α = log10

(
fmax

A
+ 1
)

(4)

where the fmin and fmax are determined by auditory frequency range of a species. For human,
fmin = 20 Hz and fmax = 20 kHz.

Using human-specific GSFF, this paper gets 24 perceived frequencies whose positions are linearly
spaced along the cochlea. The useful speech frequency is from 300 Hz to 3400 Hz in phony, so only the
first 16 received frequencies are used to design the PWPT. Figure 1 shows the decomposition structure
of the PWPT.
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In the figure, the w0
0 represents a speech segment to be analyzed. The terminal nodes of the tree

represent 16 PWPT sub signals corresponding to 16 sub bands whose center frequencies approximate
the 16 perceived frequencies. Figure 2 shows comparison of PWPT, WT and WPT.
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Figure 2. Comparison of PWPT, WT and WPT.

In the figure, the PWPT can very closely approximate the human auditory perception model
compared with WT and WPT.

Usually, PWPT offers some useful properties for feature extraction. Firstly, PWPT provides high
resolution for valuable voice information and low resolution for the redundancies [20], which gives out
expectable analysis result. Secondly, the perceptual decomposition process of PWPT is very useful for
suppressing speech noise [11], so it is possible to build anti-noise spectral feature procedure based on
PWPT. Thirdly, the computational cost of PWPT is not very heavy due to the irregular decomposition.

2.3. PWPT-Based Wavelet Entropy Feature

To accurately represent the speech information, this paper converts speech utterance into wavelet
entropy feature based on the above PWPT.

At the start of the wavelet entropy feature extraction, speech utterance is processed by
a per-processing procedure which consists of three sequential stages: normalization, framing and
silence removing. Through normalization, the effect of volume is discard and utterance becomes
comparable. Assume a digital speech utterance denoted by {x[i]}(i = 1, 2, 3, . . . , I) where x[i] is the
sampling point in the speech utterance, then the normalization is defined as:

xn[i] =
x[i]−m

σ
; i = 1, 2, 3, . . . , I (5)

where xn is the normalized utterance. I < +∞ is the length of the speech utterance x, m and σ

are the mean and standard deviation of the x. In framing process, the normalized utterance xn is
divided into many short-term frames. Each frame in this paper contains 512 sampling points because
the 512 points contain enough information for feature extraction and the change in them is not too
much [21]. In silence removing stage, the silence frames (whose energies are less than a threshold) are
discard and the active frames (whose energies are greater than threshold) are remained.

After pre-processing procedure, the speech utterance is divided into a frame set which contains
N active frames. PWPT decomposes each active frame into 16 sub frames (signals), designated by
{w1, w2, . . . , w16}. To suppress ambient noise in sub frame, a de-noising process [11] is used on the
each sub frame. The de-noising process is defined as:

d[i] =

{
w[i], |w[i]| > T

0, |w[i]| ≤ T
; i = 1, 2, 3, . . . , I (6)

where I is the length of the sub frame w. d is de-noised sub frame. T is a threshold and is defined by:

T =
M(w)

C

√
2 ln(I), (7)
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where M(w) is the median absolute deviation estimation of the w. C is empirical constant and is
usually set to 0.675 for ambient noise [11].

The wavelet entropy is calculated based on the |d[i]|2. This paper calculated four commonly used
entropies which are defined as follows:

Shannon entropy:

H(d) = −
I

∑
i=1
|pi|2 log

(
|pi|2

)
,

pi =
|d[i]|2
I

∑
j=1
|d[j]|2

(8)

Non-normalized Shannon entropy:

H(d) = −
I

∑
i=1
|d[i]|2 log

(
|d[i]|2

)
(9)

Log-energy entropy:

H(d) =
I

∑
i=1

log|d[i]|2 (10)

Sure Entropy:

H(d) =
I

∑
i=1

min(|d|[i]2, ε2); ε = 2 as usual (11)

According to the above calculation, an active frame can be transformed into a feature vector
denoted by v = [H(d1), H(d2), . . . , H(d16)]

T where v is called PWE vector in this paper. Therefore,
speech utterance which contains N active frames is mapped into a set of PWE vectors denoted as:

U = {v1, v2, . . . , vN} (12)

3. i-Vector Extraction

3.1. i-Vector Definition and Extraction Framwork

In i-vector theory, feature vector vt of a speech utterance is assumed to be generated by the
following distribution:

vt ∼
L

∑
k=1

αtk N(uk + Tkω, Σk); (13)

where the N(·) is a normal distribution, and uk, Σk are its mean and covariance. Tk is a matrix and
represents a low-rank subspace called total variability subspace. αtk is the k-th frame posterior of vt

in a universal background model (UBM). L is the number of frame posteriors of the feature vector
vt and is equal to 2048 in typical i-vector extraction methods. ω is a utterance-specific standard
normal-distributed latent vector and its maximum posterior point (MAP) estimation is defined
as i-vector.

Based on the above assumption, the standard i-vector extraction framework is proposed in [12].
The framework is shown in Figure 3.
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There are two types of speech utterances. The background utterances contain thousands of speech
samples spoken by lots of persons and the target utterance comes from a given speaker and the purpose
of i-vector extraction is convert target utterance into a i-vector. In the framework, all speech utterances
are converted into spectral feature vectors. UBM is trained by the feature vectors from background
utterances and L frame posteriors of a feature vector from the target utterance are estimated based
on the trained UBM. Finally, through the i-vector training procedure described in [22], i-vector is
generated based on the frame posteriors. One i-vector corresponds to one target utterance, and the
dimension of i-vector is 300~400 as usual.

3.2. Typical i-Vector Extraction

The key issue of i-vector extraction is how to implement UBM to estimate the frame posterior.
In the standard i-vector, UBM is implemented by a Gaussian mixture model (GMM) which contains
L weighted Gaussian functions. Assume a target utterance is represented by a set of feature vectors
{v1, v2, . . . , vN}. The k-th frame posterior αtk of the feature vector vt is calculated by:

αtk =
πkGk(vt)

∑L
i=1 πiGi(vt)

(14)

where πiGi(·) is the i-th weighted Gaussian function of the GMM.
Over the last decade, GMM is the state-of-art work for the frame posterior estimation. However,

GMM just considers the inner information within feature vector and is trained in generative way,
so it cannot generate reliable frame posteriors [13]. Moreover, in standard i-vector extraction,
speech utterances are represented by MFCC feature vectors which are not very powerful for
speech representation.

The success of deep learning in speech recognition motivates researchers to use DNN to estimate
the frame posterior. Compared with GMM, DNN considers the inner information within feature
vector and context information between feature vectors together and is discriminatively trained. Thus,
it often generates more reliable frame posteriors than GMM [14]. The typical deep structure used for
posterior estimation is the phonetic DNN, which is shown in Figure 4.

This DNN contains nine full-connected layers with sigmoid activation. The input layer is a stacked
set of 11 feature vectors. If feature vector is hx1 vector, then the input layer is 11 hx1 vector. There are
seven hidden layers in the DNN, and each hidden layer contains 1024 nodes. The output layer contains
2048 nodes and each node represents a frame posterior. Like GMM, this DNN is also trained by the
feature vectors of background utterances. Assume the input layer is Vt, then the frame posterior αtk is
represented by the k-th node of output layer in the DNN.

Although this DNN can give more reliable frame posteriors than GMM, but its huge number
of parameters also improves the computational complexity and storage cost. Moreover, the speech
utterances in this i-vector extraction are also represented by MFCC feature vectors.
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3.3. i-Vector Extraction with CNN

CNN is new type of deep model proposed in few two years. Due to the convolution connection
between adjacent layers, the CNN has much smaller parameter size than DNN, which speeds up
the CNN computation process. Moreover, in recent image and speech works, CNN is often found to
outperform DNN and be noise-robust [16]. This motivates us to design a CNN to implement UBM.
The structure of the designed CNN is shown in Figure 5.

Entropy 2018, 20, x FOR PEER REVIEW  7 of 15 

 

 

Figure 4. The structure of DNN. 

This DNN contains nine full-connected layers with sigmoid activation. The input layer is a 

stacked set of 11 feature vectors. If feature vector is hx1 vector, then the input layer is 11 hx1 vector. 

There are seven hidden layers in the DNN, and each hidden layer contains 1024 nodes. The output 

layer contains 2048 nodes and each node represents a frame posterior. Like GMM, this DNN is also 

trained by the feature vectors of background utterances. Assume the input layer is 
tV , then the frame 

posterior 
tk  is represented by the k-th node of output layer in the DNN. 

Although this DNN can give more reliable frame posteriors than GMM, but its huge number of 

parameters also improves the computational complexity and storage cost. Moreover, the speech 

utterances in this i-vector extraction are also represented by MFCC feature vectors. 

3.3. i-Vector Extraction with CNN 

CNN is new type of deep model proposed in few two years. Due to the convolution connection 

between adjacent layers, the CNN has much smaller parameter size than DNN, which speeds up the 

CNN computation process. Moreover, in recent image and speech works, CNN is often found to 

outperform DNN and be noise-robust [16]. This motivates us to design a CNN to implement UBM. 

The structure of the designed CNN is shown in Figure 5. 

 

Figure 5. CNN structure. 

In the figure, green blocks show connection operators between adjacent layers, where the f, p, s 

represents the filter size, padding size and stride size, respectively. This CNN has 10 layers with 

ReLU activation. The input layer of the CNN is a 16 × 16 matrix which is formed by 16 16 × 1 feature 

vectors. There are seven hidden layers and each layer contains 16 8 × 8 feature maps. The output layer 

contains 2048 nodes and fully connects to the last hidden layer. Table 1 shows the difference between 

the CNN and DNN. 

Figure 5. CNN structure.

In the figure, green blocks show connection operators between adjacent layers, where the f, p,
s represents the filter size, padding size and stride size, respectively. This CNN has 10 layers with
ReLU activation. The input layer of the CNN is a 16 × 16 matrix which is formed by 16 16 × 1 feature
vectors. There are seven hidden layers and each layer contains 16 8 × 8 feature maps. The output layer
contains 2048 nodes and fully connects to the last hidden layer. Table 1 shows the difference between
the CNN and DNN.

Table 1. The Comparison of the DNN and CNN.

Layer
Shape Node Size Parameter Size

DNN CNN DNN CNN DNN CNN

Input Layer 256 × 1, 1 16 × 16, 1 256 256 226,144 272
Hidden Layer 1~7 1024 × 1, 1 8 × 8, 16 1024 1024 1,048,576 160

Output Layer 2048 × 1, 1 2048 × 1, 1 2048 2048 131,072 131,072
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As the table shown, the node size of the DNN and CNN are same, but the CNN has much less
parameters than the DNN.

In the proposed i-vector extraction method, the speech utterances are represented by wavelet
packet entropy (WPE) feature vectors, and the CNN is used to implement UBM. For i-vector extraction,
the CNN is trained by feature vectors of background utterances. Assume the input matrix is Vt,
then the frame posterior αtk is represented by the k-th node of output layer in the CNN. Figure 6
shows the i-vectors for two speakers. Each speaker provides 40 speech utterances and one utterance
corresponds to one i-vector extracted by the proposed method. To show those i-vectors, principle
component analysis (PCA) maps the i-vectors into 2D points. This figure shown that the extracted
i-vectors are discriminative for different individuals.
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4. Voice Authentication

In the experiments of this paper, different i-vector extraction methods with different spectral
features are used for voice authentication, and their performances are evaluated according to the
authentication results. The flow chart of the voice authentication is shown in Figure 7.
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In the voice authentication sense, there are three types of speakers: user, imposter and unknown
speaker. User is correct speaker which the voice authentication system should accept, imposter is
adverse speaker who should be rejected by the system and Unknown speaker should be verified by
the system.

A voice authentication can be divided into two phases: enrollment and evaluation. In the
enrollment phase, user provides one or more speech utterances. An i-vector extraction method
converts those speech samples into i-vectors and then those i-vector are stored in a database. In the
evaluation phase, an unknown speaker also provides one or more speech samples. The extraction
method converts these samples into i-vectors as well and then a scoring method compares the i-vectors
of unknown speaker against the i-vectors in database to produce verification score. If the score is
less than a given discrimination threshold, the unknown speaker is considered as the user and the
authentication result is acceptance; if the score is greater than the threshold, the unknown speaker is
considered as a imposter and the authentication result is rejection.

In the voice authentication, the UBM is trained beforehand and is used in both of enrollment and
evaluation phrase for i-vector extraction. To better verify the quality of different i-vector extraction
methods, the scoring method should be simple [23]. Thus, the cosine scoring (CS) [24] is used.

5. Results and Discussion

5.1. Database and Experimental Platform and Performance Standards

In this paper, the TIMIT [25] and Voxceleb [26] speech corpus are used for experiments. The TIMIT
corpus contained speech data from 630 English speakers. In TIMIT, each speaker supplied 10 speech
utterances and each utterance lasted 5 s. All speech utterances of TIMIT were recorded by microphone
in a clean lab environment and the sampling rate of all utterances is 16 KHz. The Voxceleb dataset
contained 153,516 speech utterances of 1251 English speakers. In Voxceleb, Each speakers provided
45~250 utterances in average and speech duration ranged from 4 s to 145 s. All speech utterances in
Voxceleb were recorded in the Wild at 16 Hz sampling rate. In this paper, clean speech data came from
TIMIT and noisy speech data came from Voxceleb.

Experiments in this section simulated voice authentication task and were implemented by
MATLAB 2012b (MathWorks, Natick, USA) which was carried on a computer with i5 CPU and
4 GB memory. To quantitatively analyze the performance of different i-vector extraction methods,
two performance standards were used. The first one was accuracy, which was the typical performance
standard and was defined by the sum of true rejection rate and true acceptance rate. Another one is
equal error rate (EER), which was a performance standard suggested by National Institute of Standards
and Technology (NIST). It was defined as the equal point of false rejection rate and false acceptance rate.
This standard represented the error cost of a voice authentication system, and low EER corresponds to
good performance.

5.2. Mother Wavelet Selelction

This section tested different mother wavelets to find the optimum one for the PWPT. According to
the Daubechies theory [27],the wavelets in Daubechies and Symlet families were useful because they
had the smallest support set for given number of vanish moments. In this experiment, 10 Daubechies
wavelets and 10 Symlet wavelets, which were denoted by db 1~10 and sym 1~10, were tested.
3000 speech utterances were randomly selected from the TIMIT and Voxceleb and all utterances
were decomposed by the proposed PWPT with different mother wavelets. Energy-to-Shannon entropy
ratio (ESER) was used performance standard of the above mother wavelets and was defined by:

ESER =
16

∑
n=1

En

Hn
(15)
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where En was the energy of the nth PWPT sub signal, and Hn was the Shannon entropy of the sub
signal. ESER measured the analysis ability of a mother wavelet and high ESER corresponded to
good-performance mother wavelet [28]. The experiment result was shown in Table 2.

Table 2. ESER of PWPT with different mother wavelet.

Wavelets ESERs Wavelets ESERs Wavelets ESERs Wavelets ESERs

Db 1 888.37 Db 6 896.53 Sym 1 888.35 Sym 6 908.39
Db 2 890.32 Db 7 891.69 Sym 2 890.36 Sym 7 902.44
Db 3 897.44 Db 8 890.84 Sym 3 894.93 Sym 8 898.37
Db 4 907.45 Db 9 888.21 Sym 4 899.75 Sym 9 896.35
Db 5 901.41 Db 10 884.50 Sym 5 903.82 Sym 10 891.34

In the table, the db 4 and sym 6 obtained the highest ESER. Thus, the db 4 and sym 6 were good
mother wavelets for PWPT. However, sym 6 was a complex wavelet whose imaginary transform
cost extra time, so the computational complexity of sym 6 was higher than db 4. Thus, db 4 was the
optimum mother wavelet.

5.3. Evaluation of Different Spectral Featrures

This section studied the performance of different spectral features. Four types of entropy features
such as Shannon entropy (ShE) non-normalized Shannon entropy (NE), log-energy entropy (LE) and
sure entropy (SE), and two typical spectral features such as MFCC and LPCC were tested. The proposed
CNN was used as UBM which was trained by all of speech utterances in TIMIT and Voxceleb.

The first experiment analyzed the performance of four wavelet entropies. WT, WPT and PWPT
were used for wavelet entropy feature extraction. 6300 speech utterances of 630 speakers in TIMIT
were used for this experiment. The experiment result was shown in Table 3.

Table 3. EER (%) of recognition system with different wavelet entropy features.

WT WPT PWPT

ShE 8.51 5.46 5.49
NE 8.57 5.53 5.51
LE 9.03 6.67 6.78
SE 8.91 6.23 6.27

In the Table, all of WT-based entropies obtained the highest EER, which shown that WT might
not be effective for speech feature extraction. One reason of this was the WT had low resolution
for high-frequency speech which may contains valuable detail information of signal. The ShE and
NE with WPT and PWPT obtained low EERs, which shown that the WPT- and PWPT-based ShE
and NE were good feature for speech representation. This was because the ShE and NE were more
discriminative than other entropies [29]. Although both of the two feature had good performance for
speech representation, but NE was fast to be computed compared with ShE.

The second experiment was to further analyze the performance of the WPT and PWPT in feature
extraction. In this experiment, PWPT and WPT with different decomposition levels were used to
extract NE from speech utterance. The 6300 TIMIT speech utterances were also used in this experiment.
Comparison of PWPT and WPT was shown in Figure 8.
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Figure 8. Comparison of WPT and PWPT in feature extraction. (a) EERs of WPT and PWPT. (b) Time cost
of WPT and PWPT.

In the figures, the EER curve of WPT was very close to the EER curve of PWPT. This shown that
the typical WPT and the PWPT had same analysis performance in general. However, the time cost of
WPT was much higher than the time cost of PWPT when the decomposition level was greater than 4,
which shown that PWPT was a faster tool than WPT. This was because PWPT irregularly decomposed
speech signal while the WPT performed a regular decomposition on signal.

The last experiment in section is to compare the performance of the waveket-based NEs
(PWPT-NE, WPT-NE and WT-NE) with typical MFCC and LPCC features in clean and noisy
environment. The 6300 clean speech utterances of 630 speakers in TIMIT and 25,020 noisy speech
utterances of 1251 speakers in Voxceleb were used for this experiment. The wavelet entropies were
calculated on wavelet power spectrum, and MFCC and LPCC were calculated on the Fourier power
spectrum. The experimental result was shown in Table 4.

Table 4. EER and accuracy of spectral features.

Spectral Features
EER (%) Accuracy (%)

Noisy Clean Noisy Clean

PWPT-NE 6.24 5.53 90.13 92.14
WPT-NE 7.11 5.51 89.47 92.48
WT-NE 10.27 8.43 86.39. 90.12
MFCC 11.43 9.23 83.10 89.31
LPCC 11.77 9.31 83.24 88.97

In the tale, EERs of MFCC and LPCC were higher than the EER of wavelet-NEs and their accuracies
were lower than wavelet-NE’s, which shown that the wavelet-NEs had better performance than the
MFCC or LPCC. One reason of this was the wavelet which has richer time-frequency resolution than
Fourier transform for analyzing the non-stationary speech segments. For noisy speech, all EERs were
increased and all accuracies were decreased, because the noise could lead to performance degradation.
However, PWPT-NE still got better performance than other. The reason of this was the perception
decomposition of PWPT simulated human auditory perception process to suppress the noise in speech
but other transforms could not do that.

5.4. Evaluationof Different UBMs

This experiment investigated the performance of different UBMs. GMM with 1024 mixtures, GMM
with 2048 mixtures, GMM with 3072 mixtures, DNN and CNN were compared and the PWPT-NE was
used as spectral feature. All UBMs were trained by the all speech utterances of TIMIT and Voxceleb.
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The first experiment was to compared the three UBMs in clean and noisy environment. As the
above experiment did, the 6300 clean speech utterances in TIMIT and 25,020 noisy speech utterances
in Voxceleb were used for this experiment. The experimental result was shown in Table 5.

Table 5. The comparison of three UBMs.

UBMs
EER (%) Accuracy (%)

Noisy Clean Noisy Clean

GMM (1024) 13.42 11.96 82.75 86.19
GMM (2048) 11.19 9.23 86.17 89.94
GMM (3072) 9.78 7.54 88.73 91.97

DNN 7.11 5.51 89.47 92.48
CNN 6.24 5.53 90.13 92.14

In the table, the GMMs obtained the low accuracy and high EER, which shown that the GMMs had
bad performance compared with the deep models. The reason of this had shown in [13]. Furthermore,
the DNN and CNN had same EERs and accuracies in general for clean speech, but the DNN got higher
EER and lower accuracy than CNN for noisy speech, which shown the CNN’s superiority in resisting
noise. In fact, CNN had been exported to be noise-robust in speech recognition [30].

The second experiment was to further analyze the performance of DNN and CNN. In this
experiment, the 6300 clean speech samples were used to test DNN and CNN with different hidden
layers. The experimental result was shown in Figure 9. In the Figure 9a, the accuracy curve of DNN
and CNN were very close, but, in the Figure 9b, computational speed of DNN was slower than the
CNN when they had same hidden layers. Those shown that the proposed CNN had same ability as the
typical DNN, but the speed of CNN was faster than the DNN. This was because the CNN had much
less parameters which should be computed for i-vector extraction than DNN, and activation function
of CNN was ReLU, which was simpler and faster than activation function of sigmoid used in DNN.
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5.5. Comparison of Different i-Vector Extraction Methods

This section compared six different i-vector extraction methods such as MFCC + GMM [12],
WPE + GMM, WPE + DNN, MFCC + DNN [13], MFCC + CNN and WPE + CNN. The 6300 clean and
25,020 noisy speech utterances were used for this experiment. The experimental result was shown
in Table 6.
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Table 6. The performance of i-vector extraction methods.

Strategies
EER (%) Accuracy (%)

Noisy Clean Noisy Clean

MFCC + GMM 13.02 9.15 80.74 89.59
WPE + GMM 13.17 10.97. 85.97 87.49
MFCC + DNN 10.15 5.68 85.6 91.91
WPE + DNN 8.76 6.87 90.17 92.87

MFCC + CNN 8.02 5.97 86.43 91.48.
WPE + CNN 6.24 5.53 90.13 92.14

In the table, the GMM-based methods obtained the highest EER and the lowest accuracy.
This shown that the deep-based methods had better ability to extract robust i-vector than the
GMM-based methods. The WPE + CNN obtained the lowest EER and higher accuracy, which shown
the proposed model was good at extracting appropriate i-vector for voice authentication. On the
other hand, for noisy speech, the performance of MFCC-based methods dropped rapidly, but the
performance of WPE-based methods almost had little change. The probable reason of this was that the
both of PWPT had noise-suppression ability but Fourier transform did not have.

The second experiment is to test the robustness of the typical methods and the proposed method
in noisy environment. Four types of additive Gaussian white noises (AGWN) generated by MATLAB
function were added into the 6300 clean speech utterances in TIMIT. The signal-to-noise ratio (SNR)
of noisy speech utterances were 20 dB, 10 dB, 5 dB and 0 dB, and the noisy strength of those speech
utterances were 20 dB < 10 dB < 5 dB < 0 dB. The performance standard was delta value of EER (DEER)
which was defined as:

DEER = (EERn − EER0) (16)

where EERn was the EER for noisy speech and EER0 was EER for clean speech. The experimental
result was shown in Figure 10.
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Figure 10. DEERs of the three i-vector extraction methods.

In the figure, DEERs of all methods were increased by less than 1% for 10 dB noisy speech,
which shown all of methods had ability to resist weak noise. For 0 dB noisy speech, the DEERs
of MFCC + GMM and MFCC + DNN increased more than 2.5%, but the DEER of PWE + CNN
increased less than 2%, which shown that the PWE was more robust than the other two methods in
noisy environment.
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6. Conclusions

This paper proposes a new method for i-vector extraction. In the method, a designed PWPT
simulate human auditory model to perceptively decompose speech signal into 16 sub signals, and then
wavelet entropy feature vectors are calculated on those sub signals. For i-vector extraction, a CNN is
designed to estimate the frame posteriors of the wavelet entropy feature vectors.

The speech utterances in TIMIT and Voxceleb are used as experimental data to evaluate different
methods. The experimental result shown that the proposed WPE and CNN had good performance
and the WPE + CNN method can extract robust i-vector for clean and noisy speech.

In the future, the study will focus on new speech feature and the perceptual wavelet packet
algorithm. On the one hand, the perceptual wavelet packet will be implemented by parallel algorithm
for reducing the computational expense. On the other hand, the new features, such as combination of
multiple entropies, will be tested for further improving the speech feature extraction.
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