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Abstract: Experts’ beliefs embody a present state of knowledge. It is desirable to take this knowledge
into account when making decisions. However, ranking experts based on the merit of their beliefs is
a difficult task. In this paper, we show how experts can be ranked based on their knowledge and
their level of (un)certainty. By letting experts specify their knowledge in the form of a probability
distribution, we can assess how accurately they can predict new data, and how appropriate their level
of (un)certainty is. The expert’s specified probability distribution can be seen as a prior in a Bayesian
statistical setting. We evaluate these priors by extending an existing prior-data (dis)agreement
measure, the Data Agreement Criterion, and compare this approach to using Bayes factors to assess
prior specification. We compare experts with each other and the data to evaluate their appropriateness.
Using this method, new research questions can be asked and answered, for instance: Which expert
predicts the new data best? Is there agreement between my experts and the data? Which experts’
representation is more valid or useful? Can we reach convergence between expert judgement and
data? We provided an empirical example ranking (regional) directors of a large financial institution
based on their predictions of turnover.

Keywords: Bayes; Bayes factor; decision making; expert judgement; Kullback–Leibler divergence;
prior-data (dis)agreement; ranking

1. Introduction

In the process of scientific inference, the knowledge and beliefs of experts can provide vital
information. Experts’ beliefs represent the current state of knowledge. It is desirable to be able
to include this information in analyses or decision-making processes. This can be done by using
the Bayesian statistical framework. In Bayesian statistics, there are two sources of information:
prior knowledge and data [1–3]. The prior can be composed of expert knowledge [4–6]. However,
deciding which expert yields the most appropriate information remains a critical challenge, for which
we present a solution in this paper.

To be able to consider expert knowledge in Bayesian statistics, it must be represented in the form of
a probability distribution. This can be done via a process called expert elicitation. Elicitation entails the
extraction of expert knowledge and translating this knowledge into a probabilistic representation [5].
By using a probabilistic representation, we include both knowledge and (un)certainty of experts.
However, experts are forced to use a representation system that belongs to the statistical realm.
Therefore, it is essential that the elicitation process is carefully constructed so we do not introduce
unnecessary and unjust bias.
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The expression of expert knowledge in the form of a probability distribution is not merely based
on statistical considerations. Forecasting without providing uncertainty estimates does not make sense,
for, if we were certain, we would not predict but simply conclude future events to occur as they are
inevitable. This would simply be a form of deductive logic and no discussion or disagreement based on
the facts should be possible. Here, it is relevant to make the distinction between aleatory and epistemic
uncertainty. Aleatory uncertainty is uncertainty due to randomness or chance, e.g., market volatility,
whilst epistemic uncertainty is uncertainty due to a lack of knowledge. In practice, there is a blurred
line between epistemic and aleatory uncertainty and the two can be seen as the ends on a spectrum,
but, for the sake of argument, we shall make a clear distinction between the two here. In any case,
if we can agree that, based on all the available information, there are still multiple outcomes possible,
we have a situation in which we should start making forecasts including uncertainty estimates and
probability distributions provide an excellent framework.

By collecting data and modeling the parameter of interest, we are able to gain an indication of the
appropriate amount of uncertainty and the expected parameter value based on posterior distributions
of interest in the model. In the limit, where we would not have epistemic uncertainty and all of the
relevant background characteristics could be controlled for, any remaining residual variance in the
model is the appropriate and correct amount of aleatory uncertainty. In practice, however, we do not
have the perfect model and not all epistemic uncertainty can be ruled out, that is, we have not yet
identified all relevant background characteristics. What we do have in practice are multiple experts
with divergent beliefs on the relevant background characteristics. If we can evaluate their forecasts,
including uncertainty, we can take more accurate forecasts as an indication of expertise on relevant
aspects of the data generating process and we should let these experts guide us in identifying the
relevant background characteristics. Moreover, if these knowledgeable experts can be identified and
persuaded to share their insights with each other, they can start to learn from each other, the data and
the appropriateness of assumptions underlying their forecasts. By expressing expert knowledge and
data in the same framework, a learning process can start that has the potential to reduce uncertainty.

Once expert knowledge is elicited and data is collected, it is desirable to find a measure that
naturally compares two pieces of information. The measure should assess the extent to which
information from the data and expert knowledge resemble and conflict with each other. As the expert
knowledge can be contained within a prior, it seems logical to assess the discrepancy or similarity of
such a prior with respect to the data by means of a prior-data (dis)agreement measure. A desirable
property for such a prior-data (dis)agreement measure would be to measure how one probability
distribution diverges from a second probability distribution, rather than assessing the distance between
two points estimates. The Data Agreement Criterion (DAC) [7] is based on Kullback–Leibler (KL)
divergences [8] and therefore meets this desired property. KL divergence has previously been used in
a related context to assess calibration and information scores of experts [9,10].

Prior-data (dis)agreement measures are currently used to evaluate, for example, the suitability of
certain priors in the estimation of models or to uncover potential suitability problems with design,
prior or both. Examples can be found in, for instance [11–13]. We found no previous use of prior-data
(dis)agreement measures to rank experts. However, when we have two experts, some very interesting
questions can already be answered, for instance: Which expert predicts the new data best? Is there
agreement between my experts and the data? Which expert’s representation is more valid or useful?
Can we reach convergence between expert judgement and data? Therefore, the main contribution of
this paper will be to provide an application of prior-data (dis)agreement measures to expert ranking.

Other measures that answer similar questions on different theoretical basis can be found.
For instance, Cohen’s kappa [14] could be used to assess inter-rater agreement, intraclass
correlations [15] could be used to asses rater reliability [16] and Brier scores [17] can be used to
asses discrepancy between experts’ estimated probability and actual outcomes [18]. These measures,
however, do not account for the uncertainty of the experts over their provided estimates.
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An alternative approach could be to use Bayes factors (BF) [19] based on marginal likelihoods.
One could imagine different experts’ beliefs to be competing versions of models. When the differing
views are expressed in different prior distributions, we could assess the likelihood of the data averaged
across the prior distribution, which is what a marginal likelihood is [20]. This likelihood depends on
the model structure, such as parametrization, or the set of probability distributions that is used as the
model [21]. If we keep this set of probability distributions, the model, equal across the experts and
the same data is used, the marginal likelihood provides an indication of which experts’ prior belief
gives most probability to the data, and who is thus ranked most trustworthy. The BF, being a ratio
of marginal likelihoods, could then provide us odds in favor of one expert’s beliefs over another’s.
This approach warrants further comparison, which is given in Section 2.2.

In the remainder of this paper, we present the following work. We provide a detailed description
of the DAC and explain why this measure is especially suitable to compare expert judgement and data.
As the DAC currently determines the degree of prior-data (dis)agreement of one prior, we propose a
straightforward adjustment of the statistic to allow the ranking of multiple sources of prior information,
i.e., multiple experts’ beliefs. We discuss how Bayes factors could be used to rank experts based on
their prior specifications. Finally, we provide an empirical example to show that the adapted DAC can
be used to compare and rank several experts based on their beliefs and we compare this to using Bayes
factors. In the empirical example, we rank experts from a large financial institution based on their
predictions of new data concerning turnover. The empirical study in this article received approval from
our internal Ethics Committee of the Faculty of Social and Behavioural Sciences of Utrecht University.
The letter of approval can be found in the data archive for this study along with all other code and
data, as far as contracts permit us, in order to ensure everything presented in this paper is reproducible.
The data archive can be found on the Open Science Framework (OSF) webpage for this project at
https://osf.io/u57qs.

2. Expert-Data (Dis)Agreement

Within this section, we discuss the DAC and the Bayes factor that are used to evaluate
experts’ beliefs.

2.1. Data Agreement Criterion

Within this subsection, we provide a detailed and mathematical description of the DAC before
proposing the adaptation that allows the ranking of multiple experts’ beliefs at the same time. The DAC
is based on a ratio of KL divergences; therefore, we will first describe KL divergence [8].

2.1.1. Kullback–Leibler Divergence

The KL divergence describes measurements of informative regret, or, in other words, it measures
the loss of information that occurs if the reference distribution (π1) is approximated by another
distribution (π2). This loss of information or informative regret is expressed in a numerical value
and the higher this value is, the more loss of information is present, i.e., the greater the discrepancy
between the two distributions. The KL divergence is calculated by

KL(π1||π2) =
∫

Θ
π1(θ) log

π1(θ)

π2(θ)
dθ, (1)

where Θ is the set of all accessible values for the parameter θ, that is, its parameter space, π1(θ)

denotes the reference distribution and π2(θ) denotes the distribution that approximates the reference
distribution. In Figure 1, it can be seen what KL divergences between two normal distributions
look like. The value of the KL divergence is equal to the integral over the parameter space for the
function. The greater the discrepancy between the distributions, the larger the value of the integral.
This also follows from Equation (1) because, if the two distributions are equal, then π1(θ)/π2(θ) equals

https://osf.io/u57qs
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one everywhere. As log(1) = 0, the integral, or loss of information, is equal to zero. To support
understanding of the KL divergence, we build a shiny application that provides an interactive variant
of Figure 1, which can be found via the OSF webpage at https://osf.io/u57qs.

Figure 1. KL divergences between two normal distributions. In this example, π1 is a standard normal
distribution and π2 is a normal distribution with a mean of 1 and a variance of 1. The value of the KL
divergence is equal to the integral over the parameter space for the function. The green shaded area
above the x-axis adds to the KL divergence and the green shaded area below the x-axis subtracts from
the KL divergence.

If we are able to represent both the data and the expert knowledge in a distributional form,
a discrepancy between the two can be expressed by the KL divergence between the two. As we
might have multiple experts but only one source of data, it seems natural that the data be considered
the reference distribution, which is approximated by the experts’ beliefs expressed as probability
distributions. We will see in the following, where we elaborate on the details of this prior-data
(dis)agreement measure developed by Bousquet [7], that this is indeed the case in the DAC.

2.1.2. DAC

The DAC, as mentioned before, is a ratio of two KL divergences. A KL divergence provides
an indication of the discrepancy between two distributions. KL divergence does not, however,
have a natural cut-off value or threshold that can help us decide when a certain amount of loss
of information would constitute prior-data disagreement. To be able to objectively conclude when
prior-data disagreement exists, the DAC compares the loss of information that a certain prior has with
respect to the data with the loss of information that a benchmark prior has with respect to the data.
The KL divergence between the chosen prior and the data is the numerator in the ratio whilst the KL
divergence between some benchmark prior and the data is the denominator in the ratio. A benchmark
prior, denoted by πJ(θ), should be chosen such that the posterior distribution is completely dominated
by the observed data y [22]. We denote such a posterior distribution by πJ(θ|y ) and use this as a
representation of the data.

It is necessary to expand on the choice for the benchmark prior πJ(θ) and in relation to this the
posterior distribution πJ(θ|y ). Bousquet [7] follows the reasoning Bernardo provided in discussion
with Irony and Singpurwalla [23] to see πJ(θ|y ) as a non-subjective posterior that is representative of
the situation that one’s prior knowledge was dominated by the data. In other words, πJ(θ|y ) can be
considered as a fictitious expert that is perfectly in agreement with the data, having no prior knowledge
and being informed about the observations. πJ(θ|y ) can be considered to be a reference posterior
conveying the inferential content of the data [22].

https://osf.io/u57qs
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If πJ(θ|y ) is taken to be a reference posterior, this would implicitly support the choice of πJ(θ)

such that it is a reference prior as originally developed by Bernardo [22], further developed by Berger
and Bernardo, e.g., [24], described in Bernardo and Smith [25] and more formally worked out in Berger,
Bernardo and Sun [26]. Reference priors are not the only possible choice for priors that convey in
some sense minimal information or affect the information of the likelihood as weakly as possible [27].
An extensive overview can be found in Kass and Wasserman [28] and some notable options are
Jeffrey’s priors [29,30] and maximum entropy priors [31] to which the reference priors reduce in
specific cases [25].

One notable problem for using reference priors as a choice for πJ(θ) is that they often are improper
priors [32] and KL divergences and thus the DAC are not well defined when one of the distributions is
improper. An adaptation of the DAC could be used, however a choice for a more convenient prior that
is proper and leads to a posterior πJ(θ|y ) closely resembling a reference posterior seems reasonable [7].

Now taking πJ(θ|y ) as the reference posterior, πJ(θ) as the benchmark prior and the data y,
the DAC for a chosen (expert) prior, denoted by π(θ), can be expressed by

DAC =
KL[πJ(.

∣∣y)∣∣∣∣π]
KL[πJ(.|y)||πJ]

, (2)

following the notation of Bousquet.
The benchmark, being an uninformative prior, should by definition not be conflicting with the data

and therefore serves as a good reference point to determine if a certain amount of loss of information
can be considered to be relevant. If a prior conflicts less with the data than the benchmark does,
we should consider the prior to be in prior-data agreement. If a prior conflicts more with the data than
the benchmark prior does, we do consider the prior to be in prior-data disagreement. Hence, if the
DAC > 1, we conclude prior-data disagreement because the KL divergence of the prior is larger than
the KL divergence of the benchmark prior; otherwise, we conclude prior-data agreement.

To illustrate the calculation of the DAC, we provide a numerical example together with a visual
representation that can be found in Figure 2. Consider the case in which πJ (θ|y) is the is the N(0, 1)
density, π(θ) is the N(0.5, 1) density and πJ(θ) is the N(0, 900) density. The DAC is then calculated by
taking the ratio of the following two KL divergences, Figure 2A; KL[πJ(.

∣∣y)∣∣∣∣π] = 0.125 and Figure 2B;
KL[πJ(.

∣∣y)∣∣∣∣πJ] = 2.902 , such that DAC = 0.125/2.902 = 0.043. The DAC < 1, thus we conclude
prior-data agreement, and π(θ) is a better approximation of πJ(θ

∣∣y) than.

Figure 2. Calculating the DAC. In this example, πJ(θ|y ) is a standard normal distribution, π(θ) is a
normal distribution with a mean of 0.5 and a variance of 1 and πJ(θ) is a normal distribution with a
mean of 0 and a variance of 900. The DAC < 1, thus prior-data agreement is concluded.
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2.1.3. Extension to Multiple Experts

The DAC, as described in the section above, determines the degree of prior-data (dis)agreement
for a single prior that is to be evaluated. However, when we have multiple experts that each hold
their own beliefs and we express each of these in the form of a probability distribution, we can ask
some interesting questions. In Figure 3, we see some examples of situations that we could encounter.
In Figure 3A, we see a situation in which experts differ in their predictions and their (un)certainty.
The question that arises from the situation in Figure 3A is which of these predictions best approximates
the information that the data provides us? Figure 3B shows a scenario in which the experts are
predicting similar to each other but all differ with respect to the data. The question that arises from the
situation in Figure 3B is which of the two is correct, the data or the experts?

Figure 3. Scenarios in which there are multiple experts and one source of data. (A) shows experts
differing in prediction and (un)certainty, all (dis)agreeing to a certain extent with the data; (B) shows
a scenario in which all experts disagree with the data, which results in the question of which of the
sources of information is correct.

To be able to answer these types of questions, we need to extend the DAC to incorporate multiple
experts’ priors, which are to be evaluated against the same posterior distribution, reflecting the data,
and the same benchmark prior. The DAC thus needs to become a vector of length D resulting in

DACd =
KL[πJ(.

∣∣y)∣∣∣∣πd]

KL[πJ(.|y)||πJ]
, (3)

where the subscript d denotes the different input for D experts so DACd = DAC1, . . . , DACD and
πd(θ) = π1(θ), . . . ,πD(θ). This extension of the KL divergence in which not one but a vector of models
are entered to be compared with the preferred model is straightforward and has previously been
described in the context of the Akaike Information Criterion (AIC) [33,34].
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2.1.4. Influence of the Benchmark

The choice for a specific benchmark can influence the results of the DACd. Bousquet [7] suggests
that, in applied studies, the availability of a convenient or intuitive prior for the benchmark seems
reasonable. However, it is important to realize that the choice for a benchmark prior does influence the
results of the analysis in the sense that the cut-off value for determining prior-data disagreement will
shift as the KL divergence between πJ(θ

∣∣y) and πJ(θ) changes. However, as long as the benchmark
prior is an uninformative prior in the sense that the posterior distribution is dominated by the data,
πJ(θ

∣∣y) will remain largely unchanged. This ensures that the DACd has the good property that when
multiple experts are compared their ranking does not change dependent on which uninformative
benchmark is chosen. This follows from the stability of πJ(θ|y ), which ensures that the KL divergences
between πJ(θ

∣∣y) and πd(θ) are stable. Different choices for πJ(θ) do change the KL divergence in the
denominator and therefore shift the prior-data disagreement boundary.

Concerning the benchmark, it is useful to note that the benchmark need not be restricted to
an uninformative prior, but using an informative prior changes the interpretation and behavior of
the DAC. When πJ(θ) is informative, πJ(θ

∣∣y) is sensitive to the specification of πJ(θ) and the KL
divergence between πJ(θ

∣∣y) and πd(θ) need no longer be stable, potentially influencing the ranking of
the experts. To show the above described behavior visually, we present the results of a simulation study
in Figure 4. We show four different conditions, that is, four different choices for benchmark priors, to
illustrate the change in behavior for the DACd. In all four situations, we use the same data, y, which is
a sample of 100 from a standard normal distribution with a sample mean y. πd(θ) is the N

(
µ0, σ2

0
)

density and we show the DACd values for µ0 = y− 4, . . . , y + 4 and σ0 = 0.1, . . . , 3. The four panels
show different conditions for the benchmarks such that, in Figure 4A, it is the N(0, 10, 000) density, in
Figure 4B, the N(0, 1) density, in Figure 4C, the U(−50, 50) density and in Figure 4D the N(5, 0.5)
density. It can be seen that, for the two uninformative priors in Figure 4A,C, the behavior of the
DACd is stable. We would expect to draw the same conclusions and rank experts in the same way
independent of the choice of either benchmark. However, when we specify an informative benchmark
such as in Figure 4B,D, we see that both the behavior of the DACd and the determination of prior-data
(dis)agreement shift. In Figure 4B, an informative and accurate benchmark leads almost invariably to
concluding prior-data disagreement for πd(θ). In Figure 4D, the informative but inaccurate benchmark
leads us to conclude prior-data disagreement only if πd(θ) is in the wrong location and has a very
small variance.

The simulation study presented in Figure 4 shows that the choice for a certain benchmark can
influence your results, so, even if a convenient or intuitive prior seems reasonable, it should be carefully
chosen. Researchers should be aware that their ranking is stable as long as an uninformative prior is
chosen, but it might not be if the benchmark prior contains information.

2.2. Comparison to Ranking by the Bayes Factor

In order to develop a good understanding of the behavior of the DAC for expert ranking, this
section will provide a comparison to expert ranking using Bayes factors, that is, by ranking experts on
the marginal likelihood resulting from their prior. First, we provide a mathematical description of the
Bayes Factor (BF), which is a ratio of marginal likelihoods. Then, the influence of the benchmark prior
will be discussed, followed by a comparison of expert ranking via Bayes Factors to expert ranking
through the DAC.
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Figure 4. The effect on the behavior of the DACd for different choices for benchmark priors. All panels
use the same data (N = 100) from a standard normal distribution and the same variations for πd(θ)

which are the normal distribution for which the parameters for the mean and standard deviation are
given on the x-axis and y-axis of the panels. In (A), the benchmark is the N(0, 10, 000) density; in (B),
the N(0, 1) density; in (C), the U(−50, 50) density and in (D), the N(5, 0.5) density.

2.2.1. Marginal Likelihood

For a model M and observed data y, denote the likelihood f (y|θ) and prior π(θ) such that the
posterior distribution

π(θ|y ) = f (y|θ)π(θ)∫
Θ f (y|θ)π(θ)dθ

. (4)

The denominator on the right-hand side of Equation (4) is the marginal likelihood m(y), sometimes
called the evidence. The marginal likelihood can be thought of as the probability of the data averaged
over the prior distribution [20]. As the probability of the data is dependent on the model, which is the
set of probability distributions that is used [21], the marginal likelihood is influenced by the choice
of model M, the data y and the prior π(θ). If we have d experts and we keep M and y equal across
experts, the only difference in md(y) arises from the different specified priors πd(θ). We could thus
differentiate between experts by assessing the probability of the data averaged across their specified
prior beliefs.

2.2.2. Bayes Factor

The BF can be used to compare the marginal likelihoods for the different experts, md(y), such that,
for example,

BF1d =
m1(y)
md(y)

(5)
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provides the odds in favor of some model M1, versus model Md, the model that has the prior provided
by expert d. As the set of probability distributions that is used and the data y are the same between
experts, this essentially provides the odds in favor of the prior π1(θ) versus prior πd(θ). Similarly,
experts could be compared directly. It is well known that the BF is sensitive to the specification
of different priors via the marginal likelihoods that are used [19–21,35]. Liu and Aitkin [20] note
that this is not necessarily undesirable. Moreover, in our case, this property is essential in allowing
the evaluation of the relative merit of the experts’ beliefs that are specified in the form of prior
probability distributions.

2.2.3. Benchmark Model

The BF allows us to compare the odds in favor of one expert over another but neither the
individual marginal likelihoods based on expert priors nor the ratios provide us with an assessment of
the inherent appropriateness of the prior in terms of (dis)agreement between the prior and the data.
As with the DAC, we could imagine taking a benchmark prior πJ(θ) that serves as a reference point
such that the marginal likelihood is mJ(y). If we take

BFJd =
mJ(y)
md(y)

(6)

and if BFJd < 1, we would favor the model using the expert prior and conclude agreement with the
data and, if BFJd > 1, we would favor the model using the benchmark prior and conclude disagreement
with the data.

However, we run into the same issue as with the KL divergences because the marginal likelihood
is ill-defined if improper priors are used [19–21]. Thus, again, reference priors [22] are not suitable
for use in this context. Raftery suggests using a reference set of proper priors [36] and both Kass and
Raftery [19] and Liu and Aitkin [20] suggest conducting a sensitivity analysis in any case. To keep
the comparison between the BFJd and the DACd straightforward, we will use the same benchmark
prior πJ(θ) in both situations. As both BFJd and DACd are sensitive to the choice for πJ(θ), a sensitivity
analysis will be included in the empirical part of this paper. Note that this sensitivity is most evident
when using these tools as a prior-data conflict criterion, as the expert rankings will generally remain
unchanged for different uninformative benchmark priors.

2.3. DAC Versus BF

Burnham and Anderson state that the BF is analogous to the information-theoretic evidence
ratio [34], for instance, the DAC. If we directly compare two experts with a BF, we would obtain
odds favoring one expert over another and if we compare the KL divergences between two experts,
we could state that one expert has a certain amount of times the loss of information in relation to
another. Despite the analogy, they are also inherently different. This is most clearly seen when we
compare the alternative form of the DAC from Bousquet [7], which is given in our case by

DACJ
2,d =

mJ(y)
md(y)

exp
{

KL
[
πJ( ·|y)

∣∣∣∣∣∣πd( ·|y)
]}

= BFJd exp
{

KL
[
πJ( ·|y)

∣∣∣∣∣∣πd( ·|y)
]}

.

Therefore, the difference between the DAC and BF can clearly be seen to be the fact that the DAC
has an additional term which multiplies the BF by exp

{
KL
[
πJ( ·|y)

∣∣∣∣πd( ·|y)
]}

, the KL divergence
between the reference posterior and the posterior from expert d. This additional term is desirable, as it
penalizes experts who are overly certain more harshly than the BF would.

To illustrate this, consider the following limiting case. Imagine an expert who believes that they
are infinitely certain about the future. This expert should then specify their prior in the form of a
Dirac delta function δθ0(θ), also called the degenerate distribution on the real line, which has density
zero everywhere for θ except for θ0 where it has infinite density [37]. Moreover, the delta function
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actually integrates to one and in that sense is a proper prior which can also be viewed as an infinitely
narrow Gaussian δ(θ− θ0) = lim

σ→0
N(θ|θ0, σ2) [38]. Now, if an expert states their prior belief in the

form of a delta function and θ0 coincides with a region of θ where the likelihood f (y|θ) > 0, both the
marginal likelihood and KL

[
πJ( ·|y)

∣∣∣∣δθ0(·)
]

will become infinite. The meaning could, however,
not differ any more. The marginal likelihood suggests that this expert is the best possible expert,
whilst the KL divergence suggests that there is no worse expert. Although this scenario is quite extreme,
van de Schoot, Griffioen and Winter [39] did encounter such an expert in their elicitation endeavors.

3. Empirical Example

To show that the DACd can be used to evaluate and rank several experts based on their beliefs,
we conducted an empirical study. The team that participated consisted of 11 experts, 10 regional
directors and one director. All were eligible to be included in the study. Seven experts were randomly
invited to participate in the research; if any of the selected experts did not want to participate, they were
classified as not selected in the research. In this way, we avoided the possibility of group pressure to
participate. In the end, four out of the seven selected experts participated in an elicitation. The experts
(D = 4) provided forecasts concerning average turnover per professional in the first quarter of the year
2016. The (regional) directors are considered experts in knowledge concerning market opportunities,
market dynamics and estimating the capabilities of the professionals to seize opportunities. Based on
these skills, we expected that they could predict the average turnover per professional in the entire
country in the first quarter of 2016. All information related to the empirical study can be found on the
OSF webpage for this paper at https://osf.io/u57qs.

3.1. Elicitation Procedure

To get the experts to express their beliefs in the form of a probability distribution, we make
use of the Five-Step Method [40]. To encapsulate the beliefs of the expert, the Five-Step Method
actively separates two elements of the knowledge of the expert: tacit knowledge of the expert and their
(un)certainty. In step one, a location parameter is elicited from the expert. This location parameter
captures the tacit knowledge of the expert. To verify that the representation of the beliefs is accurate,
step two is the incorporation of feedback implemented through the use of elicitation software. Experts
can accept the representation of their beliefs or adjust their input. In step three, the (un)certainty of the
experts is obtained and represented in the form of a scale and shape parameter. Step four is to provide
feedback using elicitation software to verify the accurate representation of the expert’s (un)certainty,
which they can either accept or they can adjust their input until the representation is in accordance
with their beliefs. The fifth step is to use the elicited expert’s beliefs, in this case to determine their
DAC score.

The experts first performed a practice elicitation for their own sales team before moving on to the
whole country. The practice run enabled them to acquaint themselves with the elicitation procedure
and software we used. The elicited distributions were restricted to be skewed normal distributions such
that πd(θ) are SN

(
µ0,σ2

0,γ0
)

densities where subscript d denotes expert d = 1, . . . , D, µ0 denotes the
prior mean, σ2

0 denotes the prior variance and γ0 denotes the prior skewness. The shape parameter γ0 is
based on a general method for the transformation of symmetric distributions into skewed distributions
as described by Equation (1) in Fernandez and Steel [41]. Table 1 provides an overview of the elicited
distributions for the four experts in this empirical study. The distributions are based upon transformed
data to avoid revealing business-sensitive information.

https://osf.io/u57qs
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Table 1. The values of the hyper parameters of πd(θ) for the empirical study.

µ0 σ0 γ0

Expert 1 2.15 0.09 0.78
Expert 2 2.16 0.07 0.82
Expert 3 1.97 0.11 0.82
Expert 4 2.35 0.11 0.94

3.2. Ranking the Experts

The predictions of the experts concerned the average turnover per professional (N = 104).
The benchmark is the U(0, 5) density. A uniform distribution was chosen for the normal model
in line with the prior used by Bousquet [7] in his Example 1 concerning a normal model. The lower
bound of 0 arises out of the natural constraint that negative turnover will not occur, the upper bound of
5 was considered as a value that could not be attained, yet this number is to some extent arbitrary and a
sensitivity analysis was conducted to investigate the impact of the choice for πJ(θ). With regard to the
desired minimal influence of πJ(θ) on πJ(θ|y ), in our case, the reference posterior can be analytically
calculated (see Yang and Berger [32]). The KL divergence for approximating the reference posterior
with πJ(θ|y ) was 0.00016, which we considered to be negligible.

We obtained the posterior distribution πJ(θ|y ) using the rjags R-package [42], such that
πJ(θ|y ) is the N

(
µ1,σ2

1
)

density where µ1 denotes the posterior mean and σ2
1 denotes the posterior

variance. We used four chains of 25,000 samples after a burn-in period of 1000 samples per
chain. Visual inspection and Gelman–Rubin diagnostics [43] did not point towards problems with
convergence of the chains and inspection of the autocorrelation plots showed no issues concerning
autocorrelation. To compute the marginal likelihoods and BF, we used the R-Package rstan [44]
with four chains of 1000 samples after burn-in to obtain the posterior distributions and we used the
bridgesampling R-package [45] to obtain the marginal likelihoods and BF. For more details, see the data
archive on the OSF webpage. Table 2 displays KL divergences, DACd scores and ranking, marginal
likelihoods and BFJd scores and ranking. Figure 5 visually presents all relevant distributions concerning
the empirical study. Figure 6 panels A through E visually present all KL divergences from Table 2.
Table 3 presents the results for the sensitivity analysis for different choices for πJ (θ) an and Table 4
allows for a comparison between experts without reference to any benchmark πJ(θ).

Table 2. KL divergences, DACd scores and ranking, marginal likelihoods and BFJd scores and ranking,
for the experts’ priors and the benchmark prior. Note that marginal likelihoods are reported and not
the log marginal likelihoods.

KL Divergence DACd DACd Ranking md(y) & mJ(y) BFJd BFJd Ranking

Expert 1 1.43 0.56 2 5.57 × 10−68 0.21 3
Expert 2 2.86 1.12 3 6.82 × 10−68 0.17 2
Expert 3 5.76 2.26 4 2.19 × 10−69 5.31 4
Expert 4 0.19 0.07 1 1.72 × 10−67 0.07 1

Benchmark 2.55 - - 1.16 × 10−68 - -

Table 3. Sensitivity analysis for different choices for πJ(θ). Densities are given in the columns. The KL
divergences and marginal likelihood mJ(y) are presented in the rows. md(y) do not change and are
not reported.

U(0,5) U(−10,10) N(0,102) N(0,103) N(0,104)

KL[πJ(.
∣∣y)∣∣∣∣π1] 1.43 1.42 1.37 1.42 1.42

KL[πJ(.
∣∣y)∣∣∣∣π2] 2.86 2.84 2.75 2.85 2.85

KL[πJ(.
∣∣y)∣∣∣∣π3] 5.76 5.75 5.67 5.76 5.77

KL[πJ(.
∣∣y)∣∣∣∣π4] 0.19 0.19 0.20 0.19 0.19

KL[πJ(.
∣∣y)∣∣∣∣πJ] 2.55 3.93 4.18 6.46 8.76

mJ(y) 1.16 × 10−68 2.91 × 10−69 5.65 × 10−69 2.26 × 10−69 7.33 × 10−70
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Figure 5. Visual presentation of all relevant distributions for the empirical study; πd(θ), πJ(θ) and
πJ(θ

∣∣y) .

Table 4. Comparison between experts based on KL divergences and marginal likelihoods. We report
BF in favor of the row over the column and KL ratios for loss of information of the row over loss of
information of the column.

Expert 1 Expert 2 Expert 3 Expert 4

KL Ratio BF KL Ratio BF KL Ratio BF KL Ratio BF

Expert 1 1 1 0.50 0.82 0.25 25.42 7.63 0.32
Expert 2 2.00 1.22 1 1 0.50 31.13 15.23 0.40
Expert 3 4.03 0.04 2.02 0.03 1 1 30.75 0.01
Expert 4 0.13 3.09 0.07 2.52 0.03 78.54 1 1

The results of Table 2 show that expert four provided the best prediction out of the experts, when
using both the DACd and the BFJd. Experts one and two provided similar predictions concerning
their tacit knowledge; they expected almost the same value for the location parameter; however,
expert one was less certain about this prediction (see Table 1). As the prediction of the location was
not entirely correct, the increased uncertainty of expert one means that this expert provided more
plausibility to the regions of the parameter space that were also supported by the data. Here we
see the difference between DACd and the BFJd arise as discussed in Section 2.3. Overconfidence is
penalized more severely by the DACd and as such the conclusion on which expert would be preferred
changes between experts one and two depending on which measure you use. When we look at the
DACd, in the case when πJ(θ) is the U(0, 5) density, the additional penalization of the overconfidence
even causes a different conclusion between experts one and two, namely, expert one is in prior-data
agreement and expert two is in prior-data disagreement. For the BFJd both are concluded to be in
agreement with the data. Expert three provided a prediction that, to a large extent, did not support
the same parameter space as the data. In fact, expert three provides a lot of support for regions of the
parameter space that the data did not support. The discrepancy between expert three and the data was
of such proportions that, besides expert two, we also concluded a prior-data disagreement to exist
for expert three. If we had no information beforehand, except knowing the region within which the
average turnover per professional could fall, we would have lost less information than by considering
the predictions of experts two and three. The BFJd differs from the DACd in the sense that when πJ(θ)

is the U(0, 5) density, the benchmark only outperforms expert 3.
From the sensitivity analyses of Table 3 we can find that the reference posterior remains quite

stable and therefore the KL divergences for the experts do not change substantially; however, the
changing KL divergence for the benchmark would shift the prior-data disagreement boundary. When
πJ(θ) was the N

(
0, 103) or N

(
0, 104) density, expert three would no longer be in prior-data conflict,
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whilst prior-data disagreement for expert two was only concluded if πJ(θ) was the U(0, 5) density.
For the BF changing the benchmark also shifts the prior-data (dis)agreement boundary arbitrarily.
In this case our decisions on prior-data (dis)agreement would only change for the N(0, 104) prior,
where expert 4 would no longer be in prior-data disagreement. The sensitivity analysis showed that
decisions on prior-data (dis)agreement might not be entirely reliable, whilst the ranking of experts
remained stable.

Figure 6. All KL divergences for πd(θ) (A–D) and πJ(θ) (E) with πJ(θ
∣∣y) as the distribution that is to

be approximated. (A) is for expert one; (B) for expert two; (C) for expert three and (D) for expert four.

Table 4 shows the results when we only compare experts on their KL divergences and their
marginal likelihoods and we omit the benchmarks. We see the difference between the BF and the KL
divergence ratios when we compare experts one and two. The differences arise from the more severe
penalization of overconfidence by KL divergences compared to BF, as discussed in Section 2.3. Using
KL divergence ratios we concluded that expert two had twice the amount of loss of information, whilst
the BF even favors expert two over expert one with odds of 1.22.

The results of the empirical study show a slight difference in the conclusions with regard to the
ranking of the experts depending on which measure we used, DACd or BFJd. Both measures select
the same expert as being the best. If decisions should be made concerning average turnover per
professional, decision makers would be wise to consult expert four, as this expert seemed to have the
best knowledge of the underlying factors driving these results.

4. Discussion

In this paper, we use both the BF and the DAC to rank experts’ beliefs when they are specified
in the probabilistic form of prior distributions. When comparing the BF and the DAC, the limiting
case example of Section 2.3 springs to mind. In the introduction, we stated that forecasting without
specifying uncertainty would not make sense to us and, in that light, we would prefer to use a measure
that would classify doing so as undesirable behavior and punish this extreme case. An example of this
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behavior can be seen in the empirical example where while using the BF we would favor expert two
over expert one, however whilst using KL divergences, we would favor expert one over expert two.

The sensitivity analysis in the empirical example, however, also highlighted some undesirable
characteristics of the DAC for our context, namely the sensitivity to different choices for πJ(θ). In the
context of ranking experts, it can make sense to drop the association between πJ(θ) and πJ(θ|y).
πJ(θ|y) can remain a reference posterior and as such represent the characteristics of y. πJ(θ) can
either be omitted or be specified such that it is meaningful. If πJ(θ) is omitted, we do not have a
reference point for (dis)agreement; however, if arbitrarily chosen benchmarks shift this reference point,
it hardly has any meaning. Without a benchmark, experts can still be compared with each other
in terms of ratios of loss of information, as presented in Table 4. However, if πJ (θ) is meaningful,
one could imagine, for instance, a gold standard that is used in a forecasting situation; we can assess
experts’ beliefs in relation to this meaningful benchmark and see if they outperform this benchmark.
If the association between πJ(θ) and πJ(θ|y) is dropped, we can specify informative benchmarks
without the adverse effects of changing πJ(θ|y) and thereby the divergences between πJ(θ|y) and
πd(θ). Moreover, specifying informative benchmarks requires elaboration of the rationale behind
the choice, thus enhancing trust in the conclusions if a sensitivity analysis shows different priors
representing similar information that leads us to the same conclusions.

One of the reasons for the sensitivity of the DAC to different choices for πJ(θ) can be seen by
comparing the KL divergences of expert one and two of the empirical example. As a referee pointed
out to us, KL divergences are tail sensitive and this can be seen in this comparison. Expert one is a little
more uncertain and as such the tail of π1(θ) overlaps somewhat more with πJ(θ|y) than the tails of
π2(θ). This leads to half the loss of information. One could deem this tail sensitivity to be undesirable
and, with differently shaped prior distributions, this problem might become more pronounced. If it is
deemed undesirable, one could favor using the BF, which actually favors expert two with odds of 1.22
over expert 1. Alternatively, an interesting area for future research could be to investigate the use of
alternative divergence measures. A good starting point for finding alternative measures can be found
in the Encyclopedia of Distances by Deza and Deza [46].

In the current paper, we followed Bousquet [7] and used KL divergences and this raises two
important methodological issues; see Burnham and Anderson [34] for an elaborated discussion.
First, the reference model should be known. Second, the parameters should be known for the model
that is evaluated, i.e., the formalized expert prior. The issues make the KL divergence a measure that,
according to some, for instance Burnham and Anderson [34], cannot be used for real world problems
and previously led to the development of the AIC [33], which uses the relative expected KL divergence.
The AIC deals with the two issues by taking the reference model as a constant in comparing multiple
models and using the maximum likelihood estimates for the parameters of the models to be evaluated,
introducing a penalty term for the bias that this induces.

We conclude that we can use the KL divergence in the context of the DACd and with the following
reasoning. We define πJ(θ

∣∣y) to be the reference distribution as it reflects a fictional expert that
is completely informed by the data and thus it is known. In the case of the empirical example,
the data is even the true state of affairs, i.e., the actual realizations of the turnover for each professional.
Concerning the parameter for the models to be evaluated, πd(θ) should reflect the exact beliefs of
the experts. We use the Five-Step Method [40] which incorporates feedback at each stage of the
elicitation, ensuring that experts confirm that their beliefs are accurately represented by the location,
shape and scale parameters. We acknowledge that whether the parameters represent exactly an expert’s
beliefs cannot be known, but we feel confident that the procedure we use at least aims to obtain very
accurate representations. As experts can continue to adapt their input until they are satisfied with the
representation of their beliefs, this should overcome problems with the second issue.

While we use πJ(θ
∣∣y) , and thus know the reference distribution, and we firmly believe that

we properly represent the experts’ beliefs, it seems highly implausible that a DAC score of 0 can be
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attained. It is unlikely that, in predicting future events, one estimates precisely the optimal location
and exactly the optimal amount of uncertainty.

Although a priori specification of optimal uncertainty is unlikely, we are able to gain an indication
of the appropriate amount of uncertainty a posteriori. πJ(θ

∣∣y) provides an excellent indication of the
appropriate uncertainty. Given that one had no knowledge beforehand and is rationally guided by the
data, following probabilistic reasoning, one arrives at the posterior belief represented by πJ(θ

∣∣y) [7,23].
The posterior described the range of values that would have been plausible given this information.
This indication is, however, conditional on the fact that the data provide an accurate representation of
the state of affairs.

Given that we can attain information on the expected value for the parameter of interest,
the appropriate amount of uncertainty and the quality of the approximation by each expert, we can start
a learning process. By sharing the reasons behind the choices they made, experts can learn from one
another as evidence shows which reasoning leads to the most accurate predictions. The data can inform
the experts so that they can adjust their estimates and uncertainty. Through this evaluation, expertise
can increase and in the long run convergence should be reached between both different experts’
predictions and between the experts and the data. When this convergence is reached, this indicates
that at least part of the epistemic uncertainty is eliminated and we have a better understanding of the
data generating processes and are better able to make an informed decision. Note that, if we wish
to incorporate the relevant factors that are identified by the experts, these should be included in the
model so that part of the posterior uncertainty about our parameter can be explained. The explained
variance can be seen as a reduction of the epistemic uncertainty or learning effect.

In the empirical example, we can already see some opportunities for learning. For example, expert
three misestimated the location of the parameter, which indicates, at least to some extent, faulty or
missing tacit knowledge. By starting a dialogue with the other experts, he or she could learn why
they all estimated the average turnover per professional to be higher. Expert one and two had almost
identical predictions concerning the location, but expert one expressed more uncertainty. Perhaps
this indicated more acknowledgement of epistemic uncertainty; a dialogue could shed more light on
the differences in choices of expert one and two. Our empirical example contains just four experts,
but the methods used are easily scalable to include more experts, with only additional elicitation efforts
required. Including more experts can result in more opportunities for learning.

Concerning the appropriateness of the ranking that is obtained using the DACd, we have the
following to add. One could argue that perhaps the sample entails extreme data. However, even if this
is true, the experts should have considered the data to be plausible, for it did occur. Thus, if an expert
exhibits large KL divergence with πJ(θ

∣∣y) , this expert simply did not expect that these data were
likely or plausible. By incorporating (un)certainty in the evaluation, the DACd, or KL divergences if a
benchmark is omitted, produces the required behavior to fairly compare experts’ beliefs. Given that it
is appropriate to take uncertainty into account, a prior can be over-specific such that it does not adhere
to the principles underlying the data generating mechanism. KL divergences reward the specification
of an appropriate amount of uncertainty and penalize overconfidence.

To conclude this discussion, we state recommendations for researchers facing similar problems:

• Use DACd instead of BF.
• Specify πJ(θ

∣∣y) such that it serves as a reference posterior and drop the association between
πJ(θ

∣∣y) and πJ(θ).
• Consider whether a meaningful benchmark can be determined. If not, only use KL[πJ(.

∣∣y)∣∣∣∣πd]

and compare experts with each other and not with a benchmark.
• Carrying out a sensitivity analysis is always recommendable, even more so if benchmarks are used.
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