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Abstract: Statistics of heat transfer in two-dimensional (2D) turbulent Rayleigh-Bénard (RB)
convection for Pr = 6, 20, 100 and 106 are investigated using the lattice Boltzmann method (LBM).
Our results reveal that the large scale circulation is gradually broken up into small scale structures
plumes with the increase of Pr, the large scale circulation disappears with increasing Pr, and a great
deal of smaller thermal plumes vertically rise and fall from the bottom to top walls. It is further
indicated that vertical motion of various plumes gradually plays main role with increasing Pr.
In addition, our analysis also shows that the thermal dissipation is distributed mainly in the position
of high temperature gradient, the thermal dissipation rate εθ already increasingly plays a dominant
position in the thermal transport, εu can have no effect with increase of Pr. The kinematic viscosity
dissipation rate and the thermal dissipation rate gradually decrease with increasing Pr. The energy
spectrum significantly decreases with the increase of Pr. A scope of linear scaling arises in the
second order velocity structure functions, the temperature structure function and mixed structure
function(temperature-velocity). The value of linear scaling and the 2nd-order velocity decrease with
increasing Pr, which is qualitatively consistent with the theoretical predictions.
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1. Introduction

Thermal convection generally occurs in natural world and industrial field. Hartmann et al.
2001 [1] argued that for weather predictions the flow of atmosphere and thermal convection flow are
not only related with smaller length scales and time scales, but also is closely greater scales for climate
forecast. Marshall et al. (1999) [2] have investigated a key enforcing mechanical properties of ocean
circulation in the ocean. Cardin and Olson (1994) [3] have studied that the enforced convection arises
in the earth outer core. In general, the effect of rotation, the changing phases, complex boundary
conditions and nonlinear dynamic can play a main role in many thermal convections. Lohse and
Xia (2010) [4] and Chilla and Schumacher (2012) [5] respectively introduced research processes for
turbulent RB convection. Turbulent RB convection is the most common phenomenon in natural
convection [6]. Scheel et al. [7] presented the direct numerical calculations in a cylinder, which mainly
focuses on the optimal scales of turbulent convective, especially, the analysis of the kinetic energy
rates and thermal dissipation rates in the whole cell [7]. Hu [8] argued that the critical Ra (Rayleigh
number) decreases for the beginning of convection, and the aspect ratio effects the critical value with
increasing density inversion parameter in RB convection. Zhang [9] have studied the topic of the
buoyancy ratio enhancing the fluid stability, and the critical Ra also gradually enhances with increasing
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value of the buoyant force ratio in thermal convection. Turbulent RB convection [10–19] has been
studied numerically, experimentally and analytically. Shishkina [15] reported that massive thermal
plumes rising in turbulent RB convection are analysed on account of 3D numerical calculations, which
indicates that the thermal boundary layers are crucial to the temperature fields and velocity fields.

In RB convection, the Ra (a measure of the buoyant force), and the Prandtl number Pr = ν/κ

(the kinematic viscosity divides the thermal diffusivity) are imporpant dimensionless numbers.
Krishnamurti [20,21] performed extensive convection experiments on mercury (Pr ∼ 0.02), air
(Pr ∼ 0.7), water (Pr ∼ 6.8), freon (Pr ∼ 7), and silicon oil (Pr ∼ 100). Busse and Whitehead [22] also
reported the jagged instability and cross-roll instability of silicon oil in experiment, which indicated
that the results of two-dimensional (2D) convection are closely similar to that of 3D convection for
large Pr convection [10,11].

This survey to investigate the bifurcation and chaos in convection with large Pr and different Pr
using a low-dimensional model containing is exploited in this paper. The main purpose of our paper
is to offer ‘reference’ cases for comparison with a host of various flows. In general, the laboratory
experiments are performed by using fluids with Pr up to 104 behave. However, a similar flow for
infinite Pr does not exist. Although a model of a plume is not investigated in the Earth’s mantle, the flow
possessing overwhelmingly large Pr is close to the mantle investigations since the mantle possesses
a Pr of 106. Our results mainly appraise the variety of physical mechanism phenomenon about the
kinematic viscosity dissipation, thermal dissipation, energy spectra, temperature spectra and the 2nd
structure function with increasing Pr at the same Ra. Our studies mainly focus on the characteristics
of the above physical mechanism phenomena with increasing Pr, the characteristics of flow and scale
properties in turbulent RB system at large Prandtl number. In addition, the Bolgiano-Obukhov-like
(BO59) scaling is used to explore the profound insight of the velocity fluctuation and the temperature
fluctuation with the increase of Pr in turbulent RB convection.

The lattice Boltzmann scheme is performed to simulate in all numerical examples. The lattice
Boltzmann method (LBM) had possessed latent advantages in previous studies to multiphase, single, heat
and mass transfer hydrodynamic problems [23–36]. The LBM is particularly propitious to attack complex
boundary conditions. It is a attractive topic that the turbulent flows are simulated by the LBM [28].
The LBM on account of Direct Numerical Simulations (DNS), Large Eddy Simulations (LES) also possess
great success in turbulence predictions [34]. In general, in turbulent RB convection, Rayleigh number
(Ra) is a very important dimensionless parameter. When Ra is less than 106, the flow state is laminar RB
convection. When Ra is between 106 and 109, the flow state is soft turbulent RB convection. However,
when Ra is greater than 109, the flow state is full turbulent RB convection.

The main structure of the paper is introduced. Firstly, a thermal lattice Boltzmann model is
introduced. Secondly, the numerical verifications are presented. Thirdly, the result analysis and
discussions are provided. Finally, some conclusions are provided.

2. Mathematical Equation of Fluid and Lattice Boltzmann Method

The discrete kinetic model is based on LBM. A double-population approach using the lattice
Boltzmann equation is proposed by Shan [35]. The lattice Boltzmann equation of computing dynamics
and the lattice Boltzmann equation of computing advection equation are described by the following
expressions, correspondingly [26,32]:

fi(xα + ciαδt, t + δt)− fi(xα, t) = −ω1

[
fi(xα, t)− f (eq)

i (xα, t)
]
+ Fi (1)

gi(xα + ciαδt, t + δt)− gi(xα, t) = −ω2

[
gi(xα, t)− g(eq)

i (xα, t)
]

(2)

where fi, gi denote the probability density functions at(x, t), ci belongs to a discrete velocity, Fi is the
mesoscopic buoyant body force, ω1 is the flow relaxation time and ω2 is the temperature relaxation
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time in the above equations, respectively. The local kinetic equilibrium f eq
i is equilibrium function for

flow, and geq
i is the equilibrium function for temperature [32].

f eq
i (xα, t) = wiρ

{
1 +

ciαuα

c2
s

+
uαuβ

2c2
s

( ciαciβ

c2
s
− δαβ

)}
(3)

geq
i (xα, t) = wiθ

{
1 +

ciαuα

c2
s

+
uαuβ

2c2
s

( ciαciβ

c2
s
− δαβ

)}
(4)

where cs is the sound speed and wi denotes the weight coefficients.

cs =
1√
3

δx
δt

, wi =


4
9 i = 0
1
9 i = 1 ∼ 4
1

36 i = 5 ∼ 8

(5)

The relation between the relaxation parameter ω1 and the kinematic viscosity ν is presented and
the relaxation is also presented between the parameter ω2 and the fluid thermal diffusivity κ.

ν = c2
s (

1
ω1
− 1

2
)δt, κ = c2

s (
1

ω2
− 1

2
)δt (6)

The mesoscopic buoyant body force with the Boussinesq approximation is formulated by the
following equation

Fi = 3wiρgθβciα (7)

in which g denotes the gravity acceleration , β denotes the coefficient of thermal expansion, and ciα
denotes the y-component of ci correspondingly.

The relations are defined as coarse-grained (in velocity space) fields of the distribution functions
for the macroscopical density, momentum, and temperature, which are given by

ρ = ∑
i

fi, ρuα = ∑
i

ficiα, θ = ∑
i

gi (8)

The Equations (1) and (2) are respectively expansed by a Chapman-Enskogm approach,
which leads to the macroscopical equations of fluid. The inertial terms are reproduced by the
streaming step on the left-hand side in the hydrodynamical equations, whereas the kinematic viscosity
coefficient and the coefficient of thermal diffusion are respectively connected to the relaxation (towards
equilibrium) properties in the right hand side.

∂tρ + ∂α(ρuα) = 0 (9)

∂t(ρuα) + ∂β(ρuαuβ) = −∂α(P) + ∂β(2ρνSαβ)− gβ∆θ (10)

∂t(θ) + uα∂α(θ) = κ∂α∂β(θ) (11)

The Ra is an important variable in the natural convection. The definition of Ra is

Ra =
β∆θgH3

νκ
(12)

in which ν is the kinematic viscosity, κ is the thermal diffusivity and β is the coefficient of isobaric
thermal expansion, ∆θ is the temperature difference between the bottom boundary and top boundary
in cavity, g is the gravity acceleration, and H is the height of cavity.
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The perturbed is given in the initial stage of simulation. Once RB convection is taken shape,
the heat transfer near wall is overwhelmingly strengthened. The Nusselt number denotes the
enhancement of the heat transfer. The expression of Nu is presented in our simulations.

Nu = 1 +
< uyθ >

(κ∆θ/H)
(13)

in which uy denotes the vertical velocity and <> is the spatial average in the whole flow domain.

3. Calculation Results and Discussions

In the present study, numerical calculations in 2D turbulent RB convection for Pr = 6, 20, 100
and 106 are carried out at Ra = 5.4× 109. The computing grid is set to 2012× 2012. The no-slip
boundary condition is performed on top boundary and on the bottom boundary. And left and right
boundary conditions are also performed by the no-slip boundary condition in all numerical calculations.
The initial dimensionless temperature in bottom boundary is 1, and the initial dimensionless
temperature of top boundary is 0, respectively. Meanwhile, a linear distribution of the dimensionless
temperature from 0 to 1 is performed between top boundary and bottom boundary.

The budget relation of instantaneous kinetic energy is used to test and verify the accuracy of the
numerical calculations.

− dP(t)
dt

=
dE(t)

dt
+ ε(t) (14)

where P(t) = −βg
∫∫

yθ(x, y, t)dxdy is the total potential energy, E(t) =
∫∫

0.5[u(x, y, t)2 +

v(x, y, t)2]dxdy denotes the total kinetic energy and ε(t) =
∫∫

ν[∂iuj(x, y, t)]2dxdy denotes the
dissipation rate of total kinetic energy. The ratio of the right-hand side to the left-hand side of
Equation (14) as a relation of the normalized time t/τ is presented in Figure 1. One can see that the
difference within only 0.6% at all times is achieved at the energy balance equation, which is indicated
that the accuracy of LBM is reliable.

Figure 1. Validation of the energy balance relation (14) for the LBM scheme.

3.1. Global Quantities of Turbulent RB Convection

In Figure 2, the temperature distribution with superimposed temperature fields at Pr = 6, 20, 100, 106

(from a to d), and Ra = 5.4× 109 is displayed for several elective coarseness types, where is the flow
characteristic of RB convection system, the blue regions denote cold fluid, and the red regions correspond
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to hot fluid. One can see that large-scale circulations are obtained in the center of the cavity at Pr = 6.
A large number of thermal plumes are predominantly rising in corners of the cavity, and the cold plumes
are falling in corners of the cavity, which can be main reason owing to a large scale circulation that is guided
along one of diagonals of the cavity. It is demonstrated that large-scale circulations of the fluid in cavity are
decomposed gradually with the increase of Pr, which is consistent with the experiment for large Pr [4].
It is also showed that vertical motion of various plumes gradually plays main role with increasing Pr.
Respectively, a large number of small-scale thermal plumes vertically rise from the bottom wall to top wall,
a large number of small-scale cold plumes vertically fall from the top boundary to the bottom boundary,
and a great number of small eddies appear at Pr = 106. The longitudinal velocity play a predominant role
in cavity with increasing Pr. It is further found that the average time of achieving steady-state increase
overwhelmingly with increasing Pr.

Figure 2. Temperature distributions with steady flow at Pr = 6, 20, 100, 106 (a–d), and Ra = 5.4× 109.

In the following section, Grossmann -Lohse theory for is used to investigate the dissipation rate
of kinetic-energy rate and the thermal dissipation rate, which is the following equations [6]

εu(t) = 〈ν[∂ui(x, y, t)]2〉V =
ν3

L4 (Nu− 1)RaPr−2 (15)

εθ(t) = 〈κ[∂θi(x, y, t)]2〉V = κ
∆2θ

L2 Nu (16)

The relations of Equations (15) and (16) are able to be derived from the Boussinesq equations [6].
The distributions of kinetic-energy dissipation rate at Pr = 6, 20, 100, 106 (from a to d), and

Ra = 5.4× 109 are shown in Figure 3. It is shown that the value of kinetic-energy dissipation rate
decreases with the increase of Pr in cavity. The kinetic-energy dissipation rate at Pr = 6 plays a major
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role around cavity. The kinetic-energy dissipation rate is occupied gradually in the interior of cavity with
increasing Pr. The kinetic-energy dissipation rate becomes gradually dispersed at Pr = 106.

The distributions of thermal dissipation rate at Pr = 6, 20, 100, 106 (from a to d) are shown
in Figure 4, respectively. One can see that the value of thermal dissipation rate also decreases with
the increase of Pr in cavity. The thermal dissipation rate at Pr = 6 plays a major role around cavity,
similarly. The thermal dissipation rate gradually expands in the interior of cavity with increasing Pr.
A large number of thermal dissipation emerge in the whole domain at Pr = 106. From a detailed
comparison of Figure 3 with Figure 4, we can see that the thermal dissipation is distributed mainly
in the position of high temperature gradient. In other word, the intense thermal dissipation events
mainly concentrate on the interfaces of hot and cold fluids and these interfaces between the hot fluid
and the cold fluid develop to complex associate structures with large intricate.

Figures 5 and 6 display the mean vertical dissipation rate profiles of kinetic-energy 〈εu〉x and the
mean vertical thermal dissipation rate profiles 〈εθ〉x for Pr = 6, 20, 100, 106, respectively, where 〈. . . 〉x
represents a horizontal average. As observed in Figures 5 and 6, the mean vertical dissipation rate
profiles of kinetic-energy and the mean vertical thermal dissipation rate profiles significantly decrease
with increasing Pr. The strong dissipation events mainly arises near the top and bottom boundary in
the turbulent range. It is further seen that the thermal dissipation rate εθ already plays a key role in the
thermal energy transport, thus εu may be neglected in virtue of inverse cascade of kinetic energy in
thermal convection.

The contrast of the temperature on the midline (y = H/2) at Pr = 6, 20, 100, 106, and
Ra = 5.4× 109 is displayed in Figure 7. Plotted in Figure 7, it is noted that the relative magnitude of
temperature difference is increased overwhelmingly with increasing Pr, and the variety of temperature
is also enhanced drastically.

Figure 3. Kinetic energy dissipation rates Pr = 6, 20, 100, 106 (a–d), and Ra = 5.4× 109.
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Figure 4. Thermal energy dissipation rates at Pr = 6, 20, 100, 106 (a–d), and Ra = 5.4× 109.

Figure 5. Mean vertical kinetic-energy dissipation rate profiles.
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Figure 6. Mean vertical thermal dissipation rate profiles.

Figure 7. Instantaneous temperature distributions with superimposed temperature fields at Pr = 6,
20, 100, 106, and Ra = 5.4× 109.

The Bolgiano-Obukhov scaling is used to judge the dissipation scale in 2D turbulence thermal
convection. The rigorous relations are obtained by assuming spatial homogeneity, within the Boussinesq
approximations equation [4].

〈εu〉V =
Nu− 1√

RaPr
(17)
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〈εθ〉V =
Nu√
RaPr

(18)

The time and volume -averaged kinetic dissipation rates versus the Rayleigh number Ra, the time
and volume-averaged thermal dissipation rates versus the Ra and Nusselt number Nu as a function of
Ra at Pr = 6, 20, 100, and 106 between numerical results and theoretical values are given in Figures 8–10.
Figure 8 represents the so-called volume and time-averaged kinetic dissipation rates versus the
Rayleigh number Ra. Figure 9 represents the thermal dissipation rates versus the Ra in the so-called
volume and time-averaged. The solid lines represent the theoretical relation as relations (17) and (18).
The dispersed points are the results of the present LBM. It is mainly demonstrated that the numerical
calculation results of the LBM are excellently consistent with the theoretical value for time-averaged
kinetic dissipation rates and thermal dissipation rates versus the Ra in Figures 8 and 9.

Figure 8. Volume and time-averaged kinetic dissipation rates versus the Rayleigh number Ra.

Figure 9. Volume and time-averaged thermal dissipation rates versus the Rayleigh number Ra.
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Figure 10. Nusselt number as a function of Rayleigh number at Pr = 6, 20, 100, and 106.

The relation of turbulent heat flux and the relation of the kinetic energy will be discussed,
respectively. Figure 10 demonstrates the Nusselt number as a relation of Rayleigh number at
Pr = 6, 20, 100, and 106. Figure 11 manifests the Reynolds number (Re) as a relation of
Rayleigh number, respectively. Nusselt is wall averaged Nusselt number in the whole computational
domain. The Grossmann-Lohse theory had offered a good insight for the of comprehension of
Nu(Ra, Pr), Re(Ra, Pr) (See Equations (19) and (20)) and even allowed multifarious predictions where
the bulk turbulence plays an important role both the holistic kinetic dissipation and the system
thermal dissipation [6].

Nu ∼ Ra0.5Pr0.5 (19)

Re ∼ Ra0.5Pr−0.5 (20)

Figure 11. Reynolds number as a function of Rayleigh number at Pr = 6, 20, 100, and 106.
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The relations (19) and (20) respectively represent the steady state regime of RB turbulence, which was
proposed for turbulent RB convection at overwhelmingly high Ra by Kraichnan, and then developed
by Grossmann and Lohse in their Pr − Ra relations [6]. The ultimate state scaling was observed
numerically [37] and experimentally [38,39], where the ultimate regime scaling is achieved when the
solid boundaries are lacked. Plotted in Figures 10 and 11, it is noted that a linear scaling can be presented
for for both Nu(Ra) and Re(Ra) for nearly four decades from Ra 106 to 1010. It is validated that the
energy spectrum significantly decreases with the increase of the Pr. Our results further demonstrate that
the numerical calculation results of the LBM are well consistent with the Grossmann-Lohse relations for
Nu(Pr, Ra) and Ra(Pr, Ra) [6] from Ra = 106 to 1010 in Figures 10 and 11.

3.2. Scaling of Energy Spectra, Fluxes and Spatial Intermittency

The scaling of energy spectra and fluxes will be discussed in the following section. For passive
scalars, the value 5/3 is in agreement with Obukhov-Corrsin scaling [6], and consistent with experimental
findings of Kolmogorov scaling along the center line of turbulent convection [9]. Temperature power
spectra have been investigated previously by some researchers [37,38].

Eu(k) ∼ ε
2
3 k−

5
3 F(ηk) (21)

and
Eθ(k) ∼ (βg)−

2
5 ε

4
5
θ k−

7
5 (22)

in which F(.) denotes a single dimensionless relation of a dimensionless argument. The kinetic
spectra and temperature spectra in central point(Nx/2,Ny/2) at time scales are showed in Figures 12
and 13, respectively. These results demonstrate that the energy spectrum is significantly decreased
by the increase of the Pr in Figure 12. For the dimensionless inertial range (0.03 < kη < 0.05),
the numerical results are consistent with Kolmogorov’s 5/3 spectrum at Pr = 6. For Pr = 20,
the numerical results well agree with Kolmogorov’s 5/3 spectrum at the dimensionless inertial range
(0.04 < kη < 0.1). For the dimensionless inertial range (0.04 < kη < 0.16), the numerical results
are consistent with Kolmogorov’s 5/3 spectrum at Pr = 100. For Pr = 106, excellent agreement
between the numerical results and Kolmogorov’s 5/3 spectrum is presented at the dimensionless
inertial range (0.06 < kη < 0.21). It is found that the dimensionless inertial range is enlarged with
increasing Pr, which is demonstrated that the energy dissipation rate scaling rises (εu ∼ ν3Re3/L4)
and the thermal dissipation rate (εθ ∼ κ∆θ2RePr/L2) increases gradually with increasing Pr. It is also
demonstrated that current results could be explained near 7/5 at low and near 5/3 at lightly higher
frequencies, respectively, agree with the collapse well on top of each other in the Bolgiano-Obukhov-like
scaling [4,6]. To investigate the spatial intermittency effects of turbulent RB convection for different
Prandtl numbers, the longitudinal velocity (See Equation (19))and the structure function of temperature
(See Equation (20))over horizontal separations are regarded. The 2nd-order structure functions of
velocity fluctuations and the 2nd-order structure functions of temperature fluctuations are hoped to
next expressions, which are the most-studied quantities in buoyancy-driven turbulence [4].

S2(r, t) ≡ 〈|δur(t)|2〉V ≡
ν2

L4 (Nu− 1)RaPr−2 (23)

It is found that tht value of linear scaling decreases with the increase of Pr.

R2(r, t) ≡ 〈|δθr(t)|2〉V ≡
42

H2 Nu (24)

in which4 denotes the difference between the top wall and the bottom wall, and H denotes height of
cavity. These relations can be easily derived from the Boussinesq equations and the corresponding
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boundary conditions [6]. Secondly, the mixed velocity-temperature structure function is expected to
following expression

M(r, t) ≡ 〈|δur(t)δθr(t)|〉V (25)

Figure 12. Kinetic energy spectra at different Pr.

Figure 13. Temperature spectra at different Pr.

Figures 14–16 demonstrate respectively the second order structure function of velocity S2(r),
structure function of temperature R2(r) and the mixed structure function (velocity-temperature) M(r)
at the whole computational domain computed at a late stage of the self-similar regime. As can be seen
from Figure 14, as the Pr increases, the 2nd-order velocity decreases, which is qualitatively consistent
with the theoretical predictions. It is validated that the 2nd-order velocity structure functions display



Entropy 2018, 20, 582 13 of 16

a series of linear scaling that extends to larger scales for different Prandtl numbers, i.e, 5 ≤ r/η ≤ 50
for Pr = 6, 1 ≤ r/η ≤ 35 for Pr = 20, 1 ≤ r/η ≤ 30 for Pr = 100 and 0.1 ≤ r/η ≤ 10 for
Pr = 106 in Figure 14. It is validated that the value of linear scaling decreases with the increase of
Pr, which may be given rise to large-scale circulation disappearing, the secondary eddies arising,
and the dissipation of energy playing a major role at Pr = 106 in cavity, respectively. Noting that as
the Pr increases, the 2nd-order velocity decreases, which is qualitatively consistent with the theoretical
predictions (See Equation (19)). It is also demonstrated that a range of linear scaling emerges in the
2nd-order structure functions of velocity fluctuations, the 2nd-order structure functions fluctuations
of temperature and the 2nd-order structure functions of mixed structure function, which may be in
virtue of the small-scale temperature structures,like the thermal spikes or plumes that possess strong
corrections. Plotted in Figures 15 and 16, the 2nd-order structure functions of temperature and the
mixed structure function are also qualitative in agreement with those observed in Figure 14.

Figure 14. 2nd-order velocity structure functions at different Pr.

Figure 15. 2nd-order temperature structure functions at different Pr.
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Figure 16. 2nd-order mixed velocity-temperature structure function at different Pr.

4. Conclusions

Numerical calculations of two-dimensional turbulent RB convection at large Prandtl number
are investigated using LBM. Our results demonstrate that the variation characteristics of physical
mechanism phenomenon about the kinematic viscosity dissipation, thermal dissipation, energy spectra,
temperature spectra and the 2nd structure function with increasing Pr at the same Ra. The main
conclusions are as follows:

Fisrtly, the large scale circulation in cavity is gradually broken up into small scale structures that
thermal plumes rise and fall from the bottom to top walls with increasing Pr, which agrees with the
visualization of the experiment. The large-scale circulations of the fluid are decomposed gradually
with the increase of Pr. It is found that the vertical motion of various plumes gradually play a main
role with increasing Pr. Especially, a large number of small-scale thermal plumes vertically rise from
the bottom wall to top wall, a large number of small-scale cold plumes vertically fall from the top
wall to the bottom wall, and a great deal of small eddies appear at Pr = 106. Secondly, the kinematic
viscosity dissipation rate and the thermal dissipation rate gradually decrease with increasing Pr,
which is qualitatively consistent with the theoretical predictions. The intense thermal dissipation
events mainly concentrate on the interfaces of hot fluid and cold fluid. The thermal dissipation rate εθ

already plays a key role in the thermal energy transport, thus εu can have no effect in virtue of inverse
cascade of kinetic energy in thermal convection. It is also demonstrated that the numerical calculation
results of the LBM are excellently consistent with the theoretical value for time-averaged kinetic and
thermal dissipation rates versus the Ra. In addition, the energy spectrum significantly decreases with
increasing Pr, which indicates that the numerical results of the LBM agree with the Grossmann-Lohse
theory for Nu(Pr, Ra) and Ra(Pr, Ra) [6] from Ra 106 to 1010. Finally, the 2nd-order velocity decreases
with increasing Pr, which is qualitatively consistent with the theoretical value. It is also found that
a scope of linear scaling appears in the second order structure functions of velocity fluctuations, the
second order structure functions of temperature fluctuations and mixed structure function, which may
be in virtue of the small-scale temperature structures, like the thermal plumes or spikes.

Due to natural parallelism of the LBM, the LBM may have potential prospects to simulate
turbulent RB convection. Even though the results of two-dimensional cases are reported in this
paper, similar scaling laws may appear (the Kolmogorov-Obukhov scenario) in 3D and it might be
crucial to modify parametric assembles in numerical simulations. Accordingly, allowed us to evaluate
the importance of the Kolmogorov-Obukhov scenario in three dimensions at large Pr. Our results



Entropy 2018, 20, 582 15 of 16

discussed in this paper provide insights into the flow dynamics of RB convection. These results will be
useful in modelling convective flows in the atmospheres and interiors of stars and planets, as well as
in the applications of engineer.
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