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Abstract: Popcoen is a method for configurational entropy estimation of proteins based on
machine-learning. Entropy is predicted with an artificial neural network which was trained on
simulation trajectories of a large set of representative proteins. Popcoen is extremely fast compared to
other approaches based on the sampling of a multitude of microstates. Consequently, Popcoen can be
incorporated into a large class of protein software which currently neglects configurational entropy for
performance reasons. Here, we apply Popcoen to various conformations of the Cas4 protein SSO0001
of Sulfolobus solfataricus, a protein that assembles to a decamer of known toroidal shape. We provide
numerical evidence that the native state (NAT) of a SSO0001 monomer has a similar structure to the
protomers of the oligomer, where NAT of the monomer is stabilized mainly entropically. Due to its
large amount of configurational entropy, NAT has lower free energy than alternative conformations
of very low enthalpy and solvation free-energy. Hence, SSO0001 serves as an example case where
neglecting configurational entropy leads to incorrect conclusion. Our results imply that no refolding
of the subunits is required during oligomerization which suggests that configurational entropy is
employed by nature to largely enhance the rate of assembly.

Keywords: configurational entropy; entropy estimation; protein conformations; entropic stabilization;
CRISPR/Cas system; oligomerization

1. Introduction

Over the past 40 years, computer simulations have been applied very successfully to gather
insight of biological systems at the molecular level [1]. The most common computational approaches to
study particular macromolecules, such as proteins, are based on molecular dynamics and Monte Carlo
simulations [2]. Both techniques have in common that they sample a multitude of microstates of the
protein which allows accurate unraveling the molecular mechanisms at play. However, the involved
sampling is computationally very expensive which limits these approaches to studies of particular
proteins while they are unfeasible for the screening of many, say hundreds or thousands, of proteins.
A prominent example is protein design whose goal is to find an amino-acid sequence which folds
spontaneously to a target protein structure. For target structures of realistic size, there is an enormously
large number of possible sequences. Screening these candidates, or even only a reasonable subset of
them, requires software which cannot afford to sample various microstates per candidate [3].

For such screenings, a third class of protein software is employed which is grounded on the fact
that the equilibrium state of a physical system is the one of lowest free energy. A cost function Ĝ
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is defined which maps a given protein structure onto an approximation of the free energy G of the
protein folded in this conformation and surrounded by solvent. The native state of the protein is
computed by minimizing Ĝ using elaborated minimization strategies. A fundamental problem of
this approach emerges from the missing information about thermal motion. While G depends on the
spatial fluctuations and correlations of the protein atoms, this information is absent in the protein
structure. Hence, by construction, no cost function Ĝ can represent G exactly. Nevertheless, Ĝ may
approximate G to sufficient accuracy.

The exact free energy G of the protein in solvent can be decomposed to excellent approximation
into three important terms, namely the average intramolecular enthalpy Eintra, the average solvation
free-energy Gsolv, and the configurational entropy Sconf (multiplied by the negative temperature) [4].

G ≈ Eintra + Gsolv − TSconf + const. (1)

The constant does not depend on the protein conformation, and hence does not impact the
native-state selection. Eintra and Gsolv can be expressed reasonably well in terms of the protein
structure by neglecting specific fluctuation-induced effects [5]. Existing protein software usually model
these two terms within their cost functions Ĝ. In contrast, Sconf is much less accessible from the
protein structure since Sconf depends crucially on fluctuations and correlations of the protein atoms.
As a consequence, protein software based on cost-function minimization either account for Sconf only
rudimentarily [6,7] or neglect it entirely [8–13]. This, however, represents a rather crude approximation
since Sconf can have strong influence on the native-state selection of proteins [14–17].

Recently, our group developed a machine-learning approach called Popcoen for Sconf estimation
solely from the protein structure [18]. Sconf is derived by evaluating an artificial neural network for
various features measured from the protein structure (see Section 4.3). The network was trained in
a supervised manner using molecular-dynamics simulations of about 1000 representative proteins.
Entropy estimation is extremely fast compared to alternative approaches [17,19–27] since it does not
involve the sampling of microstates. Therefore, Popcoen offers a way to incorporate Sconf into protein
software without compromising their runtime. This can significantly improve the accuracy of these
software packages [18].

In this work, we employ Popcoen to study the Cas4 protein SSO0001 of Sulfolobus solfataricus.
Cas4 is one family of the CRISPR associated (Cas) proteins which are located in close proximity
to the CRISPR (clustered regularly interspaced short palindromic repeats) region in the DNA of
prokaryotes [28,29]. The CRISPR/Cas system represents an adaptive protection mechanism of
prokaryotes against viruses and other foreign genetic material. Immune response is organized in three
steps, all performed by specific Cas proteins. After the first invasion of the virus, specific viral DNA
segments are captured and inserted into the CRISPR sequence. This allows the cell to “remember” the
invader. The CRISPR sequence is transcribed and post-processed to CRISPR–RNA. In a subsequent
infection, Cas nucleases can now degrade foreign DNA identified on the basis of CRISPR–RNA [28,29].
Cas4 proteins are nucleases involved in the acquisition of new genetic information to CRISPR [30].
The structure of SSO0001 has been solved [31]. SSO0001 forms a decamer of toroidal structure into
which various cofactors (manganese ions and iron/sulfur clusters) are integrated. At the active
center (situated in the hole of the torus), double-stranded DNA can be unwound and single-stranded
DNA can be cleaved. The precise role of SSO0001 within the CRISPR/Cas system remains unknown.
Understanding CRISPR/Cas is of specific importance since it allows for controlled genome editing in
a (relatively) simple manner which offers a broad range of biotechnological applications [29].

Here, we provide numerical evidence that the native state of a SSO0001 monomer adopts the
same conformation as the protomers of the oligomer. This allows for efficient oligomerization without
refolding. The monomer is stabilized mainly by its large amount of configurational entropy while
various decoy conformations of very low enthalpy have negligible contributions to the equilibrium
state due to their low amount of Sconf. Hence, the SSO0001 monomer represents an example for which
protein software neglecting Sconf fail to identify the native state.
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2. Results

We compare the native state of SSO0001 with five decoy states. The structure of SSO0001 was
solved [31] inside a decamer of toroidal shape (pdb-code 4IC1; shown in Figure 1f). All protomers
have indistinguishable conformation within the experimental resolution (resolution = 2.35 Å, mutual
root-mean-square deviation (RMSD) in range 0.6–1.0 Å). The structure of the entirely resolved protomer
(chain D) is referred to as the native state (NAT) of a SSO0001 monomer. This nomenclature is
justified by the analysis below. Alternative conformations of the protein were obtained from the data
repository of the protein-structure prediction competition CASP10 [32]. The stability of 217 distinct
decoy structures was computed in terms of three cost-functions (Eintra, G0 and Ĝ, defined below).
Most decoys were found to represent high-energy states with negligible contribution to the equilibrium
state of the protein at ambient conditions. Five conformations were identified having low energy with
respect to at least one of the cost functions (see Section 4.1). In the following, we focus our attention to
these decoys, referred to as DEC1, DEC2, ..., DEC5.

Figure 1 illustrates the six structures. They are composed of similar secondary structure
(see Figure 1d) with one notable deviation for residues 43–51, which form a helix in NAT but
do not adopt regular secondary structure in the decoys. Albeit these similarities, all structures
are mutually very distinct with RMSDs in the range of 14–20 Å (see Figure 1e) because of their
dissimilar secondary-structure arrangement. The different tertiary structures are shown using a cartoon
representation of the protein backbone (Figure 1a,b), and can be appreciated by comparing the
associated contact maps (Figure 1c).

We computed the average intramolecular enthalpies Eintra of all structures using the prominent
protein software tool FoldX [6]. The values are reported in Table 1 in units of kcal/mol (where kBT ≈
0.6 kcal/mol at T = 300 K). The decoys DEC1, DEC2, and DEC3 have significantly lower enthalpy than
NAT (∆Eintra ≈ 6 kcal/mol = 10 kBT) while their mutual differences are of the order of kBT. Therefore,
if Eintra is used as cost function, one predicts the native state to be a mixture of DEC1, DEC2, and DEC3
with similar weights of about 0.65, 0.19, and 0.16, respectively, at room temperature. NAT would be
assigned negligible contribution to the native state (having a weight of about 10−5).

The solvation free-energies Gsolv of all structures were also computed with FoldX (see Table 1)
and the structures were ranked in terms of the cost-function G0 ≡ Eintra + Gsolv which contains all
significant contributions of G except Sconf. DEC3 has lowest G0, followed by NAT, DEC5 and DEC2.
The energy differences ∆G0 yield the weights 0.58, 0.30, 0.11, and 0.006, for these states, respectively.
Hence, G0 predicts that the native state is a mixture of various conformations including NAT. Again,
NAT is not identified as the predominant state of SSO0001.

Finally, configurational entropy Sconf was also incorporated into the cost function. For this end,
we employed Popcoen [18] which is a new method for entropy estimation based on machine-learning.
For a given input structure, Popcoen outputs the so-called partial entropy Si for each residues i
(i = 1, ..., Nres; Nres = number residues) which estimates the contribution of Sconf stemming from
residue i. From the Sis, we obtain Sconf = ∑Nres

i=1 Si up to an unimportant constant (see Section 4.3).
The values of (−T)Sconf are given in Table 1. NAT and DEC4 have substantially more configurational
entropy than all other conformations with an associated free-energy separation (−T)∆Sconf of about
7–8 kcal/mol. The total free-energy Ĝ = Eintra + Gsolv− TSconf is also listed in Table 1. NAT has lowest
Ĝ, separated by more than 7.6 kcal/mol = 12.6 kBT from the second lowest structure (DEC5). It follows
that NAT is the predominant state with an associated weight of more than 0.99999. Hence, at ambient
conditions, only NAT contributes significantly to the equilibrium state such that it is meaningful to
denote NAT as the native state of the protein.
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Figure 1. Structure characterization: (a) Cartoon representation of the six structures NAT, DEC1, DEC2, ...,
DEC5. The scaffold is colored from N-terminus to C-terminus in red to white to blue. (b) Same as
Panel (a) but rotated by 90 degrees along the shown arrow. (c) Contact maps of the structures. Colors
indicate Cα distances in the range from 0 (dark blue) to 50 Å (dark red). (d) Secondary structure of the
structures where helical, extended, and coil regions are colored in violet, red, and green, respectively.
(e) Root-mean-square deviation (RMSD) in units of Å between the conformations. (f) Oligomer of ten
SSO0001 proteins [31]. Structure obtained from PDB databank (pdb-code 4IC1).
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Table 1. Energy values in units of kcal/mol (with 1 kcal/mol ≈ 1.67 kBT at T = 300 K) of the
six conformations NAT, DEC1, DEC2, ..., DEC5. Eintra, Gsolv, and Sconf represent the average
intramolecular enthalpy, the average solvation free-energy, and the configurational entropy, respectively.
G0 = Eintra + Gsolv; Ĝ = G0 − TSconf. For better comparability, all values of each column are shifted
such that the lowest value equals zero. The numbers in brackets are the ranks of the values in each
column. FoldX [6] was employed for Eintra and Gsolv; Popcoen [18] was employed for Sconf.

Conformation Eintra Gsolv −T Sconf G0 Ĝ

NAT 6.6 [5] 1.3 [2] 0.0 [1] 0.4 [2] 0.0 [1]
DEC1 0.0 [1] 17.0 [6] 7.3 [5] 9.5 [5] 16.4 [6]
DEC2 0.8 [2] 9.5 [4] 6.6 [3] 2.8 [4] 9.0 [4]
DEC3 0.9 [3] 6.6 [3] 8.7 [6] 0.0 [1] 8.3 [3]
DEC4 5.6 [4] 14.0 [5] 0.5 [2] 12.1 [6] 12.2 [5]
DEC5 8.5 [6] 0.0 [1] 7.0 [4] 1.0 [3] 7.6 [2]

To assess why NAT is entropically stabilized with respect to DEC3 (i.e., the decoy with lowest G0),
backbone representations of both structures are shown in Figure 2. The color encodes the differences
∆Si between the partial entropies in both conformations where amino acids colored in dark red
have 1 kB more entropy in NAT than in DEC3 while ones colored in dark blue have 1 kB less entropy.
In general, NAT is significantly more loosely-packed than DEC3 (radius of gyration = 17.2 vs. 16.3 Å;
solvent-accessible surface area = 12.5k vs. 11.5k Å

2
) which allows for more configurational entropy.

In particular, the helix formed by residues 53–72 (indicated with an asterisk) is buried in DEC3
while it is largely exposed in NAT. Summing the ∆Si’s of these residues gives that this helix has
∑72

i=53 ∆Si = 6.4 kB more entropy in NAT than in DEC3, which alone accounts for 44% of the total
entropy difference between the conformations.

Figure 2. Configurational entropy differences. The entropy differences ∆Si between the native
conformation and DEC3 are represented using a color code on the scaffold of the structures. Residues
colored in dark red have 1.3 kB more entropy in NAT than in DEC3 while residues in dark blue have
1.4 kB less entropy. Pale colors show intermediate values on a linear scale. Both structures are shown
from three different perspectives (obtained via 90-degree rotation along the shown arrows). NAT
is significantly more loosely packed than DEC3 which involves a total entropy difference of 14.6 kB.
The Helix formed by residues 53–72 (indicated by an asterisk) accounts for 44% of that difference. It is
widely exposed in NAT while buried in DEC3. (For 3D visualization, see Supplementary Materials.)
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3. Discussion

We analyzed the stability of a single SSO0001 monomer in solvent. The conformation NAT was
found to have much lower free energy than all alternative conformations of the CASP dataset (with an
energy separation of at least 7.5 kcal/mol). NAT is a relatively open structure which is mainly stabilized
by its large amount of Sconf with respect to alternative conformations of much lower enthalpy.

In vitro, ten SSO0001 proteins assemble to an oligomer of toroidal structure (Figure 1f)
which is the biologically relevant conformation involved in the CRISPR/Cas mechanism [31,33].
The structures of all protomers of the compound are identical to NAT. This leads us to the
following hypothesis. After SSO0001 is translated by the ribosome, it spontaneously folds into
NAT stabilized by configurational entropy. Then, ten monomers and specific cofactors (ten manganese
ions and iron/sulfur clusters) assemble to the oligomer where the precise mechanism of assembly
requires further investigation. However, since each subunit has the correct structure already prior to
oligomerization, this process does not involve significant refolding. Refolding is usually a very slow
process and often requires the assistance of specific helper proteins (chaperones) [34]. Therefore, efficient
oligomer formation is rendered possible by the entropic stabilization of NAT for the individual subunits.

Our analysis is based on the assumption that the CASP dataset contains all low energy
conformations of SSO0001. A similar assumption is made very generally in computational studies of
proteins since no available method can guarantee that a given state has lowest free energy (given the
force field) for proteins of realistic size. However, since the dataset is composed of models derived with
a variety of methods by the large number of 61 research groups and 64 prediction servers, we believe
that the chance of having missed important alternative conformation is low.

Our analysis required the estimation of Sconf for hundreds of conformations which would involve
massive computational effort with methods for Sconf estimation based on the sampling of microstates.
On the other hand, Sconf is found to have essential impact on the native-state selection of SSO0001
such that an analysis without considering Sconf leads to incorrect conclusions. Popcoen allowed us
to compute Sconf efficiently on a single CPU during a couple of minutes. This revealed the entropic
stabilization of NAT.

4. Materials and Methods

4.1. Decoy Structures Acquisition

The decoy structures were obtained from the protein structure prediction competition CASP [32].
The participants of CASP10 submitted in total 523 models for the amino-acid sequence of SSO0001
(referred to as target T0720 within CASP). We downloaded all models and processed them in the
following way. Models for incorrect amino-acid sequence were dropped. Models with missing
side-chain information were dropped. Unfolded models (submitted by prediction servers without
human supervision) were dropped. Using hierarchical clustering, groups of very similar models
(with mutual RMSD < 5 Å) were reduced to a single representative structure chosen randomly. Hydrogens
were added using FoldX. As described below, the free-energy contributions Eintra, Gsolv, and Sconf were
computed for the setM of the remaining structures (composed by NAT and 217 models). The weights

wX(k) =
exp(−βX(k))

∑i∈M exp(−βX(i))
(2)

were derived for all structures k ∈ M and for the three cost-functions X ∈ {Eintra, G0, Ĝ}, where
β = (kBT)−1. The smallest subset U ⊂ M was identified which guaranteed that ∑k∈U wX(k) >

1− 10−7 for all three cost-functions X ∈ {Eintra, G0, Ĝ}. All structures k 6∈ U were dropped since their
contribution to the equilibrium state is negligible (for details, see Figures S1 and S2 of Supplementary
Materials). In this way, we obtained the decoys DEC1, DEC2, ... DEC5 (shown in Figure 1) from the
models denoted as T0720TS172_3, T0720TS195_5, T0720TS492_2, T0720TS172_2, and T0720TS195_4 in
the CASP dataset, respectively.
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4.2. Free-Energy Calculation

Free-energies were computed for 218 structures. Eintra and Gsolv were obtained with FoldX
(FoldX Consortium, Barcelona, Spain, Version 4) by applying the FoldX protocols RepairPDB and
Stability to the structures [35]. From the output, we identified Eintra as the sum of the FoldX
energy terms denoted as BackHbond, SideHbond, Energy_VdW, Electro, Energy_vdwclash, energy_torsion,
helixdipole, cis_bond, disulfide, Energy_Ionisation. Gsolv is the sum of the FoldX energy terms Energy_SolvP,
Energy_SolvH.

Configurational entropies Sconf were computed with Popcoen (see below). The calculation for
all 218 structures required 130 seconds on a single CPU (Intel i5-6500, Intel Corporation, Santa Clara,
CA, USA). This is very quick compared to sampling approaches for estimating Sconf. For example,
measuring Sconf from molecular-dynamics simulations is about 60,000 times slower even when
computed on much more powerful architecture (a 10 ns trajectory of SSO0001 in explicit water
requires about 10 h on a state-of-the-art graphics card (Nvidia GeForce GTX1060, Nvidia Corporation,
Santa Clara,CA, USA)).

4.3. Popcoen

Configurational entropy was estimated using the software tool Popcoen recently developed in our
group [18]. Popcoen is a machine-learning approach based on an artificial neural network which was
trained on molecular-dynamics trajectories (obtained from the MoDEL database [36]) of about 1000
representative proteins. Entropy is predicted from the protein structure in two calculation steps. First,
various structural features per amino-acid are measured from the input structure (such as residue
type, burial level, local density profile, relative and total solvent accessible surface area, average
torsion angles, local and total number of hydrogen bonds, properties of the gyration tensor, and Nres).
Second, the neural network is evaluated for the features giving an estimate for the partial entropies Si
(i = 1, ...Nres) and for

Sconf + C =
Nres

∑
i=1

Si (3)

where C is a constant for fixed amino-acid sequence which always cancels out in this work. In [18],
Popcoen’s prediction accuracy is assessed with a test set of about 100 representative proteins. It is further
shown that incorporating Popcoen into FoldX improves FoldX’s accuracy for native-state identification.

Popcoen exploits patterns of how spatial fluctuations and correlations typically occur inside
proteins. For example, amino acids on the surface of the proteins usually fluctuate stronger than in
the bulk (mainly due to the large steric constraints in the bulk); and adjacent amino acids in regular
secondary structure are typically stronger correlated than in coil regions [37,38]. During training of the
neural network in a supervised-learning fashion, such patterns were automatically extracted from the
simulation trajectories.

Popcoen relies on an approximation of entropy similar to the maximum information spanning
tree approximation [23]. Within the approximation, entropy can be decomposed into the sum of the
partial entropies (Equation (3)). The partial entropy Si of a residue i is basically defined as the sum of
the marginal entropies of all torsion angles belonging to the residue, minus all mutual informations
between pairs of these torsions which are adjacent in terms of the covalent structure. The precise
definition is given in [18]. It also accounts for mutual information between backbone torsions of
adjacent residues, and special conditions at the chain ends.

4.4. Structure Characterization

Structure visualizations were generated with VMD [39]. Secondary structure and solvent
accessible surface area were computed with the mdtraj implementation [40] of the DSSP [41] and
the Shrake–Rupley algorithm [42]. Structures were aligned with mdtraj. Hierarchical clustering was
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performed with the sciPy implementation of the unweighted pair group method with arithmetic mean
(UPGMA) [43] with a hard threshold of 5 Å as cluster separation criterion.

Supplementary Materials: Supplementary materials are available at http://www.mdpi.com/1099-4300/20/8/
580/.
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