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Abstract: In kernel methods, Nyström approximation is a popular way of calculating out-of-sample
extensions and can be further applied to large-scale data clustering and classification tasks. Given a
new data point, Nyström employs its empirical affinity vector, k, for calculation. This vector is
assumed to be a proper measurement of the similarity between the new point and the training set.
In this paper, we suggest replacing the affinity vector by its projections on the leading eigenvectors
learned from the training set, i.e., using k∗ = ∑c

i=1 kTuiui instead, where ui is the i-th eigenvector of the
training set and c is the number of eigenvectors used, which is typically equal to the number of classes
designed by users. Our work is motivated by the constraints that in kernel space, the kernel-mapped
new point should (a) also lie on the unit sphere defined by the Gaussian kernel and (b) generate
training set affinity values close to k. These two constraints define a Quadratic Optimization Over
a Sphere (QOOS) problem. In this paper, we prove that the projection on the leading eigenvectors,
rather than the original affinity vector, is the solution to the QOOS problem. The experimental
results show that the proposed replacement of k by k∗ slightly improves the performance of
the Nyström approximation. Compared with other affinity matrix modification methods, our k∗

obtains comparable or higher clustering performance in terms of accuracy and Normalized Mutual
Information (NMI).

Keywords: Nyström approximation; out-of-sample; empirical affinity; machine learning

1. Introduction

Over the last decade, clustering algorithms have played an important role in signal processing and
data mining in applications such as community detection [1,2], image segmentation [3–5], remote image
processing [6], big data network clustering [7] and subspace analysis [8]. Cluster analysis attempts to
partition data points into disjoint groups such that data points that correspond to the same label are
similar and the cross-group similarity is small.

In large-scale clustering, Nyström approximation is a common choice for approximating
the eigensystem of a large matrix. Given a training set and its eigensystem, to perform
Nyström approximation, one calculates the similarity values between the training set and the remaining
data and uses the resulting similarity matrix to approximate the eigenvectors of the remaining
data points.

A fundamental problem in Nyström approximation is the measurement of the similarity between
a training set and its remaining data points. Given a new data point and a Gaussian kernel parameter σ,
most methods employ the empirical affinity vector, k, to evaluate the links between this new point and
the training set:
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ki = exp (−‖xnew − xi‖2/2σ2) (1)

where ki is the i-th element in k, xnew denotes the new point and xi is the i-th point in the training set.
Despite its broad applications in kernel approximation, in this paper, we still focus our attention

on the construction of k. We begin our argument with the following question: Given the eigensystem
of a training set, should we evaluate the similarity by the Euclidean distance, which is isometric?
With the training set eigensystem in hand, we determine the underlying structure of the data or,
more specifically, the manifold on which the data points lie. Thus, we prefer to evaluate similarities
on the manifold, instead of using an isometric metric, such as the Euclidean distance. In this paper,
we analyse the construction of k, which comports with the learned manifold. Our goal in this paper
is to construct a new k for Nyström approximation and, consequently and ultimately, improve the
clustering performance.

Many works on the modification of k have been proposed in recent years. Sparse representation
is one of the most promising techniques in the literature. Sparse representation describes data in a
low-dimensional subspace in which data are self-expressive. Data in such a subspace can be efficiently
encoded as a linear or affine combination of other points. Sparse spectral clustering and its variants
employ various cost functions that differ in their sparsity measurement and constraints.

In this paper, we propose replacing k with its projections on the leading eigenvectors:
k∗ = ∑c

i=1 kTuiui. As our motivation, we consider the k-construction as the optimal solution that
satisfies the following: (a) its corresponding kernel space data point Xnew minimizes ‖k− XT

newX‖F,
and (b) Xnew is on the unit sphere defined by the Gaussian kernel, where X stands for the training
points in the kernel space. The cost function guarantees that the optimal k∗ is close to k and the
constraint ensures that Xnew is on the unit sphere defined by the Gaussian kernel. We illustrate our
motivation in Figure 1.

Figure 1. Given the “empirical” affinity vector k, we consider the construction of the optimal k∗ to be
the solution that satisfies the following: (a) its corresponding kernel space data point Xnew minimizes
‖k− XT

newX‖F, and (b) Xnew is on the unit sphere that is defined by the Gaussian kernel. Notice that
since X is on the unit sphere in kernel space, XT

i Xj = cos (θij) holds for any pair Xi and Xj with
corresponding angle θij. Best viewed in colour.

Our contributions include the following:

• We show that in Nyström approximation, the projections of k on the leading training set
eigenvectors are more suitable for clustering.

• The projections, entitled k∗ in this paper, are the solution to the Quadratic Optimization Over a
Sphere (QOOS) problem defined by Nyström approximation.

• Experimental results show that replacing k with k∗ generates slight improvements on clustering.
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The rest of this paper is organized as follows: Section 2 reviews related works in large-scale data
spectral clustering. Our algorithm is described in Section 3. Section 4 shows the experimental results
on several real-world datasets. We present our conclusions in Section 5.

2. Related Works

The spectral clustering problem is identical to solving for the eigenvectors of a kernel matrix
K ∈ Rn×n, which is generated to reveal similarities among data. To speed up the eigenvector solution
on K, Nyström-based methods [9] are frequently used. The basic idea of Nyström is to sample
various data points and construct the low-rank approximation to K from the sampled data points.
In addition to Nyström, in the subspace clustering community, building the affinity matrix K correctly
is a fundamental problem. The intrinsic characteristics of the dataset, such as sparsity or nearest
neighbours, are employed to modify the affinity matrix K. In this section, we categorize the related
works into two classes: (a) Nyström methods and (b) subspace clustering. Nyström is the most popular
method in approximating eigenvectors in spectral clustering. Subspace clustering, on the other hand,
is a general topic that covers spectral clustering and applies Nyström for acceleration.

2.1. Nyström

Nyström is an efficient way to generate a low-rank representation of the desired kernel matrix of
a large dataset. Without loss of generality, the columns and rows of K can be arranged according to the
selected columns and:

K =

[
KS KT

21
K21 K22

]
, E =

[
KS
K21

]
(2)

where KS is the similarity matrix among the sampled data, K21 is the similarity matrix of the remaining
data to the sample set and K22 the matrix of similarities among the remaining data.

Nyström uses an m×m matrix KS and an n×m matrix E to approximate K by:

K ≈ K̃ = EK+
S ET (3)

and approximates the leading l eigenvalues Λl and eigenvectors Vl by:

Λ̃l =
n
m

ΛS,l (4)

Ṽl =

√
m
n

EVS,l(ΛS,l)
−1 (5)

where m is the size of the sample set, K+
S represents the Moore–Penrose pseudo-inverse of KS and ΛS,l

are the leading l eigenvalues of KS with the corresponding eigenvectors VS,l .
Given the desired number of classes l, the corresponding Laplacian matrix should be of

rank l. Nie et al. [10] accounted for the rank-l constraint by minimizing a cost function, which is
composed of two parts: the first part ensures that the new affinity matrix is close to the original
one, and the second part enforces the rank-l constraint. A similar approach is proposed in [11],
where adaptive neighbours, instead of the nearest neighbours, were linked in S. Recently, Langone
and Suykens [12] represented spectral clustering in a weighted kernel PCA formulation, which is well
defined in [13]. To reduce the time cost, Zhu et al. [14] proposed Balanced k-means based Hierarchical
k-means (BKHK), which adopts a balanced binary tree, thereby reducing the training computational
complexity to O(n log(m)di), where d is the dimension of the input data and i here is the iteration
BKHK stopped. A dense similarity matrix always requires O(n2) in pairwise similarity calculations.
Luo et al. [15] estimated the sparse similarity matrix using k-means accumulative consensus, which is
locality-preserving and of low complexity. Langone et al. [16] proposed an entropy-based Incomplete
Cholesky Decomposition (ICD) method to handle the large-scale data clustering. The main idea
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in [16] is to approximate the Laplacian matrix by ICD and efficiently solve the eigensystem of the
approximated Laplacian matrix iteratively.

Most existing Nyström methods focus on a new structure in approximating eigenvectors of K,
e.g., [12] with kernel PCA and [14] of BKHK in sampling. Our proposed method, however, aims to
modify K, which is the input to Nyström approximation. Thus, we consider our method as a
pre-processing benefiting the follow-ups, such as sampling [14,17] or approximating [16].

2.2. Subspace Clustering

Another popular way to modify k is subspace clustering, in which different approaches are
proposed for evaluating similarity values among data points. The affinity matrix is constructed by
using the typical Gaussian kernel or another local-information-based method, which may not be a
good choice for subspace clustering. Therefore, several affinity matrix construction methods have been
proposed in recent years.

Sparse Subspace Clustering (SSC) [18] searches for a sparse representation matrix C as:

min ‖C‖1 s.t. Y = YC, diag(C) = 0 (6)

where Y is the data matrix. It is proven that the optimal solution C by SSC satisfies the block
diagonal property when the subspaces are independent. Despite its advantages in clustering a
dataset with a highly complex structure, SSC may suffer from the so-called “graph connectivity”
issue [19]. The l1-norm in SSC ensures not only the sparsity in inter-class affinities, but also the
inner-class similarities; in the latter case, we typically prefer a dense and well-linked similarity matrix
for clustering. Similar to SSC, different cost functions are introduced for C. Other than the sparsity cost,
i.e., the L1-norm in SSC, Least Squares Regression (LSR) [20] minimizes the Frobenius norm of the
representation matrix C:

min ‖C‖F s.t. Y = YC, diag(C) = 0 (7)

LSR tends to group highly correlated data together.
In addition to SSC and LSR, similarity by neighbourhood evaluation is a popular

K-construction approach. Locally Linear Representation (LLR) [21] seeks to solve the following
optimization problem for each data point xi:

min ‖xi − Dici‖2
2 s.t. 1Tci = 1 (8)

where ci is the coefficient of xi relative to its neighbours and Di consists of the Euclidean distances xi
to its k nearest neighbours.

3. Projections on Leading Eigenvectors as the Solution to the QOOS Problem

There is a critical issue that remains largely unresolved in the literature: given an affinity vector k
from a Gaussian-kernel-mapped new point, is there a corresponding point Xnew in the kernel space
such that XTXnew = k and ‖Xnew‖ = 1? The first equality ensures that Xnew is the corresponding
point to k and the second one ensures that Xnew is on the unit sphere specified by the Gaussian kernel.
In this section, we present our main result: the projection of k on the leading eigenvectors u, which is
calculated as k∗ = ∑c

i=1 kTuiui, is a solution to the two equalities, where c is the user-assigned number
of classes in clustering.
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3.1. Quadratic Optimization Over a Sphere Problem

Instead of focusing on the two equalities directly, we focus on the following substitute question:
given k and X, what is the optimal point X∗new that satisfies:

arg min
X∗new
‖XTX∗new − k‖2

s.t. ‖X∗new‖ = 1
(9)

Given the fixed value of k, it is natural to take this X∗new to represent the new data point in the
kernel space. Furthermore, if the cost function in Equation (9) reaches zero, then we prove the existence
of the kernel-mapped point X∗new with respect to k.

The study of the optimality of Xnew is the foundation for many applications. For example,
in recent research on explicit feature mapping, Nyström extensions were applied to obtain points
in the kernel space explicitly [12]. Then, the EFM of points can be used for further clustering or
classification, with the benefit of extremely low computational costs. A detailed analysis on Xnew

provides theoretical guarantees for those methods that employ Xnew. In addition, as discussed in
the next section, the projections of k on the leading eigenvectors, namely k∗ = ∑c

i=1 kTuiui, are good
substitutes to k in the QOOS problem.

By defining A = XXT and b = Xknew, Equation (9) can be represented as:

arg min
X∗new

(X∗new)
T A(X∗new)− 2bT(X∗new)

s.t. ‖X∗new‖ = 1
(10)

Equation (10) is a QOOS problem, which was well studied by Hager in [22]. In the coming section,
we will see that in Nyström approximation, Equation (10) follows the degenerate case of Lemma 2.2
in [22]. Then we present the closed form of X∗new.

3.2. Degenerate Case of the Gaussian Kernel

As our theoretical foundation, we review the main results in [22] in the following lemma.

Lemma 1. (Lemmas 2.1, 2.2 in [22], Lemmas 2.4 and 2.8 in [23])
Let A = ΦΛΦT be the eigendecomposition of A, where Λ is a diagonal matrix with diagonal elements
λ1 ≥ λ2 ≥, . . . ,≥ λn and Φ consists of corresponding eigenvectors φ1, φ2, . . . , φn. Define βi = bTφi,
ε1 = {i : λi = λn} and ε+ = {i : λi > λn}. Then, the vector φ = ∑n

i=1 aiφi is a solution to Equation (10) if
and only if c is chosen in the following way:

(a) Degenerate case: If βi = 0 for all i ∈ ε1 and:

∑
i∈ε+

β2
i

(λi − λn)2 ≤ 1 (11)

then ai = βi/(λi − λn) for all i ∈ ε+; ai for i ∈ ε1 are arbitrary scalars that satisfy the condition:

∑
i∈ε1

a2
i = 1− ∑

i∈ε+

β2
i

(λi − λn)2 (12)

(b) Nondegenerate case: If (a) does not hold, then ai = βi/(λi + µ) where µ > −λn is chosen so that:

n

∑
i=1

β2
i

(λi + µ)2 = 1
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We will see in this section that our problem is the degenerate case in solving Equation (10).
Suppose that we are given the n× n affinity matrix K and its eigendecomposition K = XTX = UΣUT ,
where Σ is a diagonal matrix with diagonal elements σ1 ≥ σ2 ≥ . . . ≥ σn and column vectors
u1, u2, . . . , un as the corresponding eigenvectors. Similarly, the eigensystem of XXT is XXT = ΦΛΦT ,
where λi and φi are the eigenvalues and eigenvectors, respectively. It is easy to verify that the leading
n eigenvalues of XXT and XTX are identical, namely λi = σi, i = 1, 2, . . . , n, with the corresponding
eigenvectors φi = Xui/

√
σi, i = 1, 2, . . . , n. The remaining m− n eigenvalues of XXT are all equal

to zero. Thus,

Λ = diag(λ1, λi, . . . , λm) = diag(σ1, σ2, . . . , σn︸ ︷︷ ︸
n

, 0, 0, . . . , 0︸ ︷︷ ︸
m−n

)

Φ = {φ1, φ2, . . . , φm}
= {Xu1/

√
σ1, Xu2/

√
σ2, . . . , Xun/

√
σn︸ ︷︷ ︸

n

,

φn+1, φn+2, . . . , φm︸ ︷︷ ︸
m−n

}

(13)

In many applications such as clustering, the similarity matrix K is always a rank-deficient matrix,
which indicates that the smallest eigenvalue is zero: λn = 0.

Let γi = kTXTφi or the analogue to βi in Lemma 1, ε1 = {i : λi = 0} and ε+{i : λi > 0} where
λn = 0. The degeneracy condition in [22] requires that (a) for all i ∈ ε1, γi = 0 and (b) ∑i∈ε+ γ2

i /λ2
i ≤ 1.

We show in the following theorem that if there exists X∗new that satisfies both XTX∗new = k and
‖X∗new‖ = 1, then X∗new satisfies the degeneracy condition in Lemma 1.

Theorem 1. If there exists an X∗new satisfying XTX∗new = k and ‖X∗new‖ = 1, then the QOOS problem of
Equation (9) in the Gaussian kernel Nyström approximation satisfies the degeneracy condition in [22].

Proof. For i ∈ ε1,

γi = kTXTφi = (XTX∗new)
TXTφi

= (X∗new)
TXXTφi = 0

The last equality uses that φi is an eigenvector of XXT whose corresponding eigenvalue is zero
when i ∈ ε1. Thus, (a) is satisfied.

Let θi be the angle between X∗new and φi. For i ∈ ε+,

γi
λi

=
kTXTφi

λi

=
(X∗new)

TXXTφi
λi

= (X∗new)
Tφi

= ‖X∗new‖ · ‖φi‖ · cos θi

= cos θi

where in the last equality, we use the constraint ‖X∗new‖ = 1. Therefore, ∑i∈ε+ γ2
i /λ2

i =

∑i∈ε+ (cos θi)
2 ≤ 1, where equality holds if and only if the eigenvectors in ε+ span the complete

kernel space, i.e., i ∈ ε+ = {1, 2, . . . , m}. Thus, (b) is satisfied.



Entropy 2018, 20, 519 7 of 17

3.3. Solution to the QOOS Problem

As shown in Lemma 1, the vector X∗new = ∑m
i=1 aiφi is a solution to Equation (9) if a is chosen in

the following way [22]: (a) for all λi 6= 0, or i ∈ ε+, ai = γi/λi and (b) ai for λi = 0 are arbitrary scalars
that satisfy the following condition:

∑
i∈ε1

a2
i = 1− ∑

j∈ε+

a2
j (14)

Suppose there are p non-zero eigenvalues when i = 1, 2, . . . , n,

Λ = diag(σ1, σ2, . . . , σp︸ ︷︷ ︸
p

, 0, 0, . . . , 0︸ ︷︷ ︸
n−p

, 0, 0, . . . , 0︸ ︷︷ ︸
m−n

)

Recall that ∑j∈ε+ a2
j = ∑j∈ε+ γ2

j /λ2
j . Then, for i = {p + 1, p + 2, . . . , n}, we set:

as = ai =

[
1

n− p

(
1− ∑

j∈ε+

γ2
j /λ2

j

)]1/2

(15)

or, we set all scalars ai, i ∈ {p + 1, . . . , n}, of the n− p zero eigenvalues to be equal. Then, we have:

c = {γ1/λ1, γ2/λ2, . . . , γp/λp︸ ︷︷ ︸
p

, as, as, . . . , as︸ ︷︷ ︸
n−p

, 0, 0, . . . , 0︸ ︷︷ ︸
m−n

} (16)

Finally, we obtain the solution to Equation (9) by:

X∗new =
m

∑
i=1

aiφi

=
p

∑
i=1

γiφi/λi +
n

∑
i=p+1

asφi +
m

∑
i=n+1

0 · φi

=
p

∑
i=1

γi
λi

φi + as

n

∑
i=p+1

φi

(17)

3.4. Projections of k on the Leading Eigenvectors

In this section, we present our main result that k∗ = ∑c
i=1 kTuiui is a proper affinity vector with

corresponding X∗new that satisfies Equation (9). Given the closed form of X∗new from Equation (17),
we want to obtain the affinity vector of X∗new, namely, XTX∗new, and determine whether XTX∗new = k.

Notice that:
XTΦi = XTXui/

√
λi = λ1/2

i ui (18)

and recall the definition of γi, namely, γi = kTXTΦi = kTλ1/2
i ui, where in the second equality, we use

Equation (18). Then, XTX∗new follows:

XTX∗new =
p

∑
i=1

γi
λi

XTΦi + as

n

∑
j=p+1

XTΦj

=
p

∑
i=1

kTλ−1/2
i ui · λ1/2ui + as

n

∑
j=p+1

λ1/2
j uj

=
p

∑
i=1

kTuiui

(19)

where in the last equality, we use that λj = 0 for j = p + 1, . . . , n.



Entropy 2018, 20, 519 8 of 17

Equation (19) shows that the projection of k on any non-zero eigenvector, namely,
k∗+ = ∑

p
i=1 kTuiui, is a proper affinity vector with corresponding X∗new that satisfies both ‖XTX∗new −

k∗+‖ = 0 and ‖X∗new‖2 = 1. Thus, we can replace k with k∗+ in the Nyström approximation.
In clustering tasks, we always use the leading eigenvectors to reveal the underlying structure

of the data. For an ideal clustering task, i.e., a task in which the affinity value is one of two
data points in the same class and zero for cross-class data points, there are exactly c non-zero
eigenvalues/eigenvectors, where c is the number of classes. For a general clustering task in which
affinity values are distorted, we assume that the leading c eigenvectors span the proper subspace for
clustering. Thus, instead of projecting k on all p non-zero eigenvectors as shown in Equation (19),
we use k∗ = ∑c

i=1 kTuiui in our work. We summarize our k∗-based clustering approach in Algorithm 1.

Algorithm 1 Projected Affinity Values (PAVs) for Nyström spectral clustering.
INPUT: Dataset x, Gaussian kernel parameter σ, training set size s, number of classes c
OUTPUT: Class labels of data.

Randomly select s data points from x as the training set and build the affinity matrix W of the
training set.
Eigendecomposition of W, W = ∑s

i=1 λiuiuT
i .

Calculate affinity vector k for one testing data point.
// Projections
k∗ = ∑c

i=1 kTuiui

Run NCut on W and use k∗ in the Nyström approximation to obtain the embeddings of the testing
data point.
Run k-means clustering on the embeddings of the entire dataset.

According to Algorithm 1, compared with the traditional Nyström method, we only replace the
affinity vector k with k∗ and adopt all other processes. Since both k and u are also used in Nyström,
our construction of k∗ introduces very few additional operations.

As can be seen from Algorithm 1, the time consumption of our method is very close to that
of the standard Nyström. In general, Nyström requires O(nmd + m3 + nm2) in time complexity,
where n stands for the volume of the dataset and m is the size of the training set; d here is the
dimension of the input data. In the time complexity of Nyström, the first part O(nmd) stands for the
Nyström approximation, the second O(m3) refers to the eigen-solver of processing with the training
set and the last O(nm2) comes from the final embeddings of all n data points. In our method, we take
the eigenvectors ui of K as input, and such eigenvectors ui are also required in the standard Nsytröm.
That means we require no additional time cost for our input. Given ui, we project k on ui, and such
vector projections take very limited operations.

4. Experiment

In this section, the proposed affinity projection method is verified on several real-world datasets.
All experiments were carried out in MATLAB R2016b. Our platform for running these experiments
was a workstation equipped with sixteen 2.10-GHz CPUs and eight 16-GB RAM.

4.1. Competing Methods and Evaluation Metrics

Experiments were executed on several benchmark datasets from the UCI machine
learning repository [24], MNIST-8M [25] and EMNIST Digits (training set) [26,27]. Details of the
employed datasets are shown in Table 1.
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Table 1. Summary of datasets.

Type Dataset Size Dimensions Classes Class Max./Min.

Small

Hayes 132 5 3 51/30
Iris 150 4 3 50/50

Wine 178 13 3 71/48
Liver Disorders 345 6 2 200/145

Ionosphere 351 34 2 225/126
Vowel 528 10 11 48/48

Statlog Letter 10,500 16 26 456/372

Large (embedding only) EMNIST-Digits 240,000 784 10 24,000/24,000
MNIST-8M 8,100,000 784 10 910,170/731,835

To evaluate the performance of our PAV, we compare it with four popular clustering methods on
several benchmark datasets. The competing methods are listed as follows:

• Standard Nyström (Nys), in which we use half of the data for training.
• Sparse Spectral Clustering [18] (SSC), in which we adopt the default settings in the original code.
• Local Subspace Analysis [28] (LSA), in which we set the number of neighbours as 6 and the

number of subspaces as c + 1, or the number of classes plus one.
• RANSAC for Subspace Clustering [29] (RAN), in which we use the default settings.
• Our Projected Affinity Values on all non-zero eigenvectors (PAV+), in which we project the

empirical affinity vector k onto all non-zero eigenvectors.
• Our Projected Affinity Values on c eigenvectors (PAV), in which we project k onto only c

leading eigenvectors.

The ground-truth labels of data are used as the benchmark for all algorithms for comparison.
We use the clustering accuracy [30] and Normalized Mutual Information (NMI) [31] to evaluate the
clustering results of all algorithms, although many other metrics are available [32].

Accuracy is defined as:

Accuracy =
∑n

i=1 δ(ĉi, map(ai))

n
× 100 (20)

where ĉi is the true label and ai is the derived label of the i-th data; δ(p, q) is the delta function
where δ(p, q) = 1 if p = q and δ(p, q)=0 otherwise; and map(·) is the best mapping function that
matches the true labels and the derived labels. A larger value of accuracy indicates a better clustering
performance. Accuracy is known to be improper for evaluation if data are unbalanced. Therefore,
we also show in Table 1 the ratio of class sizes the maximum vs. the minimum. As shown in Table 1,
the most unbalanced case occurs on Ionosphere with a ratio of 1.7857. Since there is not a significant
unbalanced data distribution occurring in our employed datasets, we use accuracy to evaluate the
clustering performance.

NMI is the second performance measure used in this paper. Let M and N be the random variables
represented by the clustering labels generated by two competing methods. Denote by I(M, N) the
mutual information between M and N and by H(M) the entropy of M. Then, NMI is defined as:

NMI(M, N) =
I(M, N)√

H(M)H(N)
(21)

NMI ranges from 0–1 and takes the unitary value when two clustering labels are perfectly matched.
In our experiments, we adopt Gaussian kernel ker(x, y) = exp (−‖x− y‖2/2σ2) in calculating the

affinity matrix of a dataset. Although there are several σ adaptive selection methods [33,34], in general,
the selection of a proper σ is a challenging problem. In our experiments, we set the Gaussian scale
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parameter σ as the square root of the average distance among the data. In the performance evaluation,
we compare all methods with the ground-truth labels.

4.2. Real-World Dataset Experiment

In this section, we employ the competing methods on several benchmark datasets in clustering
tasks. We run each method 100 times and report the average values in Tables 2 and 3. We also
list the average time cost in Table 4. In Table 4, we show the time cost in seconds of the standard
Nyström approximation, which serves as a benchmark method in our test. Then, we show the time
cost ratio, compared with Nyström, in Table 4, where 10× indicates a ten-times higher running
time compared with Nyström. Several results are missing due to a failure to complete clustering or
speed concerns.

Table 2. Comparisons on real-world datasets, accuracy. Nys: Nyström; SSC: Sparse Subspace
Clustering; LSA: Local Subspace Analysis; RAN: RANSAC for Subspace Clustering; PAV+:
Our Projected Affinity Values on all non-zero Eigenvectors; PAV: Our Projected Affinity Values
on c eigenvectors.

Dataset Nys SSC LSA RAN PAV+ PAV

Hayes 40.53 37.12 38.64 38.64 40.53 40.91
Iris 78.13 78.47 39.95 43.60 78.13 79.73

Wine 53.29 66.85 43.74 53.10 53.29 53.76
Liver Disorders 55.87 59.71 52.46 56.06 55.14 55.79

Ionosphere 70.03 70.66 62.96 65.35 70.01 70.16
Vowel 29.63 25.60 21.95 - 1 29.49 29.78

Statlog Letter 6.86 - - - 6.87 6.91
1 indicates missing results due to a failure to complete clustering or speed concerns.

Table 3. Comparisons on noised real-world datasets, Normalized Mutual Information (NMI).

Dataset Nys SSC LSA RAN PAV+ PAV

Hayes 0.01 0.01 0.02 0.01 0.01 0.02
Iris 0.71 0.59 0.02 0.05 0.72 0.72

Wine 0.43 0.37 0.09 0.19 0.42 0.45
Liver Disorders 0.00 0.03 0.00 0.01 0.00 0.00

Ionosphere 0.10 0.15 0.03 0.04 0.10 0.10
Vowel 0.42 0.32 0.25 - 1 0.42 0.43

Statlog Letter 0.11 - - - 0.11 0.11
1 indicates missing results due to a failure to complete clustering or speed concerns.

Table 4. Comparisons on real-world datasets, time cost in s or as a ratio.

Dataset
Time Cost (s) Time Cost (Ratio)

Nys SSC LSA RAN PAV+ PAV

Hayes 0.0093 36.0× 41.7× 65.1× 1.0× 1.0×
Iris 0.0112 20.8× 42.6× 1.1× 1.5× 1.0×

Wine 0.0123 19.9× 55.5× 69.1× 1.4× 1.0×
Liver Disorders 0.0449 13.2× 49.0× 9.0× 1.4× 1.0×

Ionosphere 0.0251 49.0× 93.6× 104.7× 1.8× 2.3×
Vowel 0.0794 25.5× 66.5× - 1 2.0× 1.0×

Statlog Letter 2.8828 - - - 1.4× 1.4×
1 indicates missing results due to a failure to complete clustering or speed concerns.

From Tables 2 and 3, we observe the following:
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(1) Nyström-based clustering methods, namely the standard Nyström, our proposed PAV+ and PAV,
show comparable or lower performances than the subspace pursuit methods (SSC, LSA and
RAN) in terms of accuracy and NMI. A set of carefully selected subspaces that are suitable for
clustering was identified in previous work and is shown in Tables 2 and 3. However, as shown in
Table 4, such advantages are always accompanied by additional time costs, which, in most cases,
makes such approaches at least one order of magnitude slower than Nyström methods.

(2) SSC outperforms the other subspace-based methods. On the Wine dataset, SSC obtains much
higher accuracy than any other method, and on Ionosphere, SSC obtains the highest NMI.
The highest performance of SSC has been verified on many clustering tasks, particularly if one
dataset can be sparsely self-represented. A sparse representation in SSC reveals the subspaces on
which the classes lie. However, if a dataset is not sparse, the self-representation matrix C, as the
substitute for the similarity matrix in spectral clustering, is more similar to a dense matrix. In this
case, SSC may show similar performance to the traditional spectral clustering methods.

(3) Projection on all non-zero eigenvectors, or PAV+, shows similar results compared with the
standard Nsytröm method. In contrast, once we project k onto the leading c eigenvectors,
the corresponding results are slightly better than both standard Nyström and PAV+. The proposed
PAV method, or using k∗ instead of k in Nyström, improves the clustering performance.

(4) The proposed method obtains a narrow margin over others in term of accuracy. Compared with
the standard Nyström, we only replace k with k∗, and such changes may be very limited if the
leading eigenvectors are well structured. However, considering the also very limited additional
time burden introduced by ours, a slight improvement over the standard one is still a promising
solution to Nyström.

(5) Nyström-based methods run much faster than subspace-pursuit methods perform. Among the
three Nyström methods, the proposed PAV incurs limited additional time cost and, in return,
obtains higher accuracy and NMI. Compared with SSC, the proposed PAV achieves comparable
and occasionally superior performance with a running time that is at least one order of
magnitude shorter. SSC needs to solve the sparse representation matrix C of data, or equivalently
solving the L1 optimization of input data. Such optimization is known to be time consuming.
LCA requires additional local sampling that takes time to build a sparse connection matrix.
RAN repeatedly samples a small subset of points, and such loops require a long running time.
In contrast, the standard Nyström randomly samples the training data points and solves the
eigenvectors of the small training set, a process with low computational burden. Our proposed
method requires similar time consumption as that of Nyström, as discussed in Section 3.4.
Thus, the time costs of Nyström and ours are much lower than those of SSC, LSA and RAN.

Our main contribution is to replace k with k∗. In this test, we calculate the relative difference
between k and k∗, namely, diff = ‖k− k∗‖/‖k‖, on each dataset. The relative differences for all seven
datasets are shown in Figure 2. In addition, we subtract the accuracy of standard Nyström from that of
our proposed method and show the results in Figure 2.

By projecting k onto leading eigenvectors, the relative affinity difference between k and k∗ ranges
from 0.87% on Statlog Letter to 10.99% on Liver Disorders. In return, our k∗ improves the accuracy
values on six of the seven datasets. The proposed method obtains an average improvement of 0.21
over all datasets, and the average difference is 4.4%. Our method improves accuracy even with a slight
change of k. For example, on the Iris dataset, our k∗ differs by only 2.89% from k, but the accuracy
improvement is 0.54.
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Figure 2. Accuracy subtraction and corresponding relative affinity difference. We subtract the accuracy
value of the standard Nyström from that of our proposed method and then calculate the corresponding
relative affinity difference, namely, ‖k− k∗‖/‖k‖. Our replacement of k by k∗ constitutes a maximum
relative difference of 10.99% and a minimum of 0.87% among the seven datasets.

4.3. Various Values of Gaussian Scale Parameter σ

In the Gaussian kernel, σ is a key parameter for clustering. The selection of σ is a difficult problem
and always demands careful consideration. In this experiment, we test the performance of our method
with various values of σ. We set σ = σ0 × 2[−2,...,2], where σ0 is the square root of the average distance
among the data as used in previous experiments. We show in Figure 3 the clustering performances
for different values of σ. Similar to our previous experiments, we subtract the performance value,
i.e., accuracy or NMI, of Nyström from that of our method and show the results in Figure 3. On the
Iris dataset with σ = σ0 × 2−2, the proposed method obtains improvements of 4.06 for accuracy
and 0.065 for NMI; both values are much higher than their counterparts. For a better visualization,
the corresponding bars are truncated.
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Figure 3. Clustering performances for various values of σ. For each value of σ, we subtract the Accuracy
and NMI of standard Nyström from those of our method on all seven testing datasets. (a) Accuracy;
(b) NMI.

In Figure 3, the proposed k∗ achieves the largest improvements in accuracy of 4.06 and NMI of
0.065 on Iris with σ = σ0 × 2−2. In the worst case, our method decreases accuracy by 0.43 on Liver
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Disorders and NMI by 0.004 on Iris. Our method shows average improvements of 0.45 in accuracy
and 0.003 in NMI.

As σ changes, the structure of K may also change accordingly, and so of its eigenvectors.
We assume that the leading eigenvectors of K and the spanned eigenspace that our k∗ projected to
are more robust than the original K. Such robustness ensures a stable clustering even with an improper
σ defined by users.

4.4. Various Training Set Sizes

In this experiment, we test both standard Nyström and our method with various training set sizes.
We set the training set sizes for the six small datasets, namely, Hayes, Iris, Wine, Liver Disorders,
Ionosphere and Vowel, with s = [0.1, 0.2, . . . , 0.5]× data size. On Statlog Letter, we set the training set
size as s = [0.02, 0.04, . . . , 0.1, 0.2, 0.3]× data size. We run each method 10 times and show the average
performances in Figures 4 and 5.
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Figure 4. Clustering performance with various training set sizes, accuracy. (a) Hayes; (b) Iris; (c) Wine;
(d) Liver Disorders; (e) Ionosphere; (f) Vowel; (g) Statlog Letter.
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Figure 5. Clustering performance with various training set sizes, NMI. (a) Hayes; (b) Iris; (c) Wine;
(d) Liver Disorders; (e) Ionosphere; (f) Vowel; (g) Statlog Letter.

According to Figures 4 and 5, for most training set sizes, the proposed PAV performs slightly
better than the standard Nyström. For example, on Statlog Letter, the average accuracy among all
seven training sizes is 6.88 for Nyström and 6.99 for our method. The average NMI values of Nyström
and our PAV are 0.1093 and 0.11, respectively, on Statlog Letter.

In Figures 4 and 5, there are roughly two types on clustering results with respect to the training size:
(a) better performance with more training data and (b) fairly unchanged. It is expected in general
that more training points will improve the clustering results, as shown in Figure 4a. If one dataset
has a clear structure suitable for clustering, then the potential improvement from increasing training
points is limited since a small training set, in this case, is already sufficient enough for a good partition.
Thus, clustering performances of increasing training points are fairly unchanged in Figure 4c–f.

4.5. Large-Scale Embedding

In this experiment, we test the embedding performances of our method on two large-scale
datasets. We evaluate our method on EMNIST-Digits and MNIST-8M. MNIST-8M contains
8.1 M data points, which are constructed by the elastic deformation of the original MNIST
training set. To facilitate visualization, we only employ Digits 0, 1, 2 and 9, which yields a subset
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of approximately 3.3 M data points. We limit our test to 0, 1, 2 and 9 on EMNIST-Digits for the
same reason. Figure 6 shows our embedding results on the first two dimensions with s = 1200.
Digits in the embedding space are well structured. In this test, we use two GeForce GTX TITAN Black
GPUs with 6 GB memory for acceleration. The running time of MNIST-8M is 25.68 s and 9.84 s for
EMNIST-Digits.

(a) (b)

Figure 6. Embeddings for Digits 0, 1, 2 and 9 of MNIST-8M on the leading two dimensions.
(a) EMNIST-Digits and (b) MNIST-8M.

5. Conclusions

In the Nyström approximation on the Gaussian kernel, we suggest replacing the commonly-used
affinity vector k with its projections on the leading eigenvectors that are learnt on the training set.
Our work is motivated by the constraints that the new data points in the kernel space (a) have a
close affinity value specified by k and (b) are on the unit sphere, as required by the Gaussian kernel.
This optimization process is identical to the quadratic optimization over a sphere problem, and we
prove in this paper that the Nyström approximation on the Gaussian kernel corresponds to the
degeneracy case in the QOOS problem. Then, we show that, k∗ = ∑c

i=1 kTuiui has a corresponding
Xnew that optimizes the QOOS problem. Thus, we suggest replacing k with k∗ in Nyström-based
clustering. The experimental results on several real-world datasets verify the advantages of our
proposed method over several popular methods.
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