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Abstract: Uncertainty is one of the main sources of risk of geological hazards in tunnel engineering.
Uncertainty information not only affects the accuracy of evaluation results, but also affects the
reliability of decision-making schemes. Therefore, it is necessary to evaluate and control the
impact of uncertainty on risk. In this study, the problems in the existing entropy-hazard model
such as inefficient decision-making and failure of decision-making are analysed, and an improved
uncertainty evaluation and control process are proposed. Then the tolerance cost, the key factor
in the decision-making model, is also discussed. It is considered that the amount of change in
risk value (R1) can better reflect the psychological behaviour of decision-makers. Thirdly, common
multi-attribute decision-making models, such as the expected utility-entropy model, are analysed,
and then the viewpoint of different types of decision-making issues that require different decision
methods is proposed. The well-known Allais paradox is explained by the proposed methods. Finally,
the engineering application results show that the uncertainty control idea proposed here is accurate
and effective. This research indicates a direction for further research into uncertainty, and risk control,
issues affecting underground engineering works.

Keywords: uncertainty; risk control; decision-making; tunnel engineering; entropy

1. Introduction

Tunnelling is an important part of infrastructure projects that can improve connections, improve
the quality of life and promote economic development. Their benefits cannot be over-stated, and the
world is witnessing an ever-increasing need for tunnels [1,2]. Since geotechnical media are materials
that can change instantly and significantly from one point to the next [3], and tunnels are large-scale
complex systems, various uncertainties are involved throughout the whole construction period.
Therefore, risk will also accompany the entire construction cycle, which will affect all parties involved,
and even those not directly involved, in such projects [4,5]. For tunnel engineering in complex
geological areas, such as in the southwest mountainous region of China with high geo-stress, high
water pressure, and karst features, such projects face serious geological disaster risk (e.g., from water
inrush [6], collapse [7], rock burst [8], tunnel face instability [9,10], etc.) when tunnelling. When these
disasters occur, it not only causes delays in construction, economic losses, but also causes casualties [11].
Due to the widespread existence of various types of risks mentioned above, overruns and delays
are widespread in tunnel engineering [12,13]. How to deal with relevant uncertainties and control
risk within an acceptable level with reasonable time, cost and limited resources, which is not only an
important concern, but also a difficult issue in tunnel engineering and academic circles.
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The relationship between uncertainty and risk and its impact on risk analysis has been discussed
by many scholars, such as Aven [14] who proposed that using (C, U) instead of (C, P), where “C”
represents the possible consequences, p represents the probability of risk event and“U” indicates
uncertainty lead to a risk description associated with the definition of (C, U) as (C′, Q, K), where C′

denotes specified consequences; Q is a measure of uncertainty such as probability [15,16], imprecise
probability [17], or a fuzzy number [18,19]; and K can be considered to represent background
knowledge on which the specifications and assignments of C′ and Q are based [20,21]. For the new
definition of risk, it can be seen that the main contents of risk research is: (R1 = C×Q, R2 = H(K)),
where R1 = C× Q represents risk assessment value, i.e., hazard, R2 = H(K) representing entropy
was used to quantify the degree of uncertainty of background knowledge. Therefore, risk control
should also be considered mainly from the following two perspectives: (1) how to reduce the degree
of uncertainty H(K), and (2) how to reduce the hazard (); however, uncertainty and hazard are not
independent. The changes in H(K) are likely to cause changes in R1, and the dynamic relationship
between them makes risk-control more complicated. By considering these two factors, we constructed
a reasonable risk control process (Figure 1).
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Figure 1. Risk control for geological hazards in tunnel engineering.

From Figure 1, we can see that the risk control process mainly involves risk assessment and risk
decision-making. The purpose of risk assessment is to provide reliable information for decision-making
with regard to choosing reasonable risk control measures. Current research on risk control in tunnel
engineering mainly focusses on risk assessment and selection of hazard control measures. For example,
to control the risk of water inrush, various risk assessment models are proposed [22–26]; however, the
impact of uncertainty on risk control has not yet been paid sufficient attention. From Figure 1,
uncertainties will affect the reliability of assessment results and further affect the rationality of
decision-making results. In actual projects, disasters caused by the irrationality of risk control
programmes are also an important part of safety engineering. For example, due to the unreasonable
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processing of uncertainty, the risk control scheme may not match the risk, there will be risk control
failures or risk control measures may be too conservative. The former may lead to disaster, while the
latter will lead to a waste of resources, time, etc.

To improve the effectiveness of risk control, it is necessary to describe objectively the uncertainty
and reduce the impact of uncertainty on assessment and decision-making. The former has been widely
discussed, but the latter has not attracted enough attention. Dong et al. [27] and Xia et al. [28] based
on the characteristics of tunnel engineering, the latest risk theory and the advantages of entropy to
quantify uncertainty information [29], the entropy-hazard model was constructed to discuss the risk
control problem under uncertain information. The target is to assess the impact of uncertainty and
determine whether measures needed to reduce uncertainty, which represents significant progress for
risk control in tunnel engineering; however, there are still some deficiencies in the related research
results, mainly including: (1) as there are many factors that affect the uncertainty, the available
measures to reduce the uncertainty will be much, and there will be blind to decision-making by these
models; (2) control measures only considering cost may be unreasonable, as other factors such as time
and the environment may also affect decisions; and (3) the relationship between tolerance costs T′H ,
uncertainty H(K), and hazard (R1) needs further study. These deficiencies lead to poor operability of
the model in practice.

This paper focuses on the above problems and further improves the model so as to improve
the reliability and decision-making efficiency. It is organised as follows. In Section 2, we mainly
discuss and perfect the limitations in the entropy-hazard model, and propose a reasonable uncertainty
assessment and control method. Section 3 introduces an improved processing method to overcome
the limitations of existing multiple attribute decision-making methods under uncertain environments.
In Section 4, the issues of uncertainty in assessment and control of risk in Zhiziyuan tunnel is analysed
and discussed based on the improved model, and the rationality and engineering adaptability of the
model are verified. Finally, Section 5 provides our conclusions.

2. Risk Control Considering Uncertainty

Elsewhere [28], a preliminary framework has been proposed to guide the reduction of uncertainty;
however, in practical applications, we found some deficiencies as mentioned in the introduction.

(1) The Computational Efficiency of the Model

The reduction of uncertainty is indeed important for risk control, but taking into account various
factors such as cost and time, it is unrealistic to completely eliminate the uncertainty in the application.
It is our goal to control the impact of uncertainty on assessment and decision-making to within
an acceptable range. For tunnel engineering geological disaster risk, due to the variety of sources
of uncertainty, the factors affecting the uncertainty may be as many as a dozen, but we only need
to consider taking measures to reduce uncertainty in one, or several, thereof. In addition, we can
take different measures even for the same factor. Therefore, it will lead to a very large number of
alternatives, which not only increases the computational burden and difficulty of selection, but also
easily leads to situations where multiple schemes meet the requirements. We now provide further
explanation by enumerating a simple example similar to that in the literature [27].

According to the statistical analysis of historical data, the fitting formula between the occurrence
probability of incident A and the influencing factors is:

P(A) = 0.1x1 + 0.02x2
2 + 0.09x2 + 0.05x3 + 0.02x4 + 0.03x2

5 + x1x4 (1)

There are five influencing factors (x1, x2, x3, x4, x5 ∈ (0, 1)) in the above formula, the scope of risk
control measures will be very wide. It will be a challenging issue to select a reasonable control measure
quickly. The existing model is inefficient and has some blindness.

To compensate for the above deficiencies, we believe that sensitivity analysis is necessary for
all uncertain variables (influencing factors) to determine the impact of each variable on hazard (R1).



Entropy 2018, 20, 503 4 of 16

Only those variables with a larger influence will be considered. This preliminary judgment can
improve the efficiency of decision-making and reduce blindness.

(2) The Relationship between Hazard and Tolerance Cost T′H

Different combinations of uncertainties and hazards will lead to different choices for risk control.
Table 1 lists four typical combinations quoted from the literature [28].

Table 1. The combination of uncertainty and hazard.

Serial Number U R1 Serial Number U R1

1 Small Small 3 Large Large
2 Small Large 4 Large Small

For the first situation, no risk control measures will be taken, and in the second case we will choose
measures to reduce the hazard. What they have in common is that they do not need to take measures to
reduce uncertainty. We can think that their tolerable costs should be closer (T′H(1) ≈ T′H(2), not too far
apart; however, according to the calculation model (Formula (2), where emax indicates ”decision effect”,
and α is an undetermined coefficient with α > 0 [27]), the tolerable costs obtained may vary greatly
and the above phenomenon cannot be fully reflected. Similarly, for the third and fourth situations, we
are all willing to provide more resources and cost to deal with the third type of situation, because it is
not only of large uncertainty, but also hazardous.

T′H = αHmaxemax ·max(R1, R′1) (2)

In an ideal state, if the uncertainty is zero, the hazard will be a fixed value, but for tunnel
engineering, because of uncertainty, such as uncertainty of geological information and uncertainty of
disaster mechanism, the value of hazard is uncertain. Now we assume that there are events A and B,
the degrees of uncertainty are the same, that is, H(A) = H(B), and suppose that the maximum hazard
value is 100, then according to the existing uncertain information, the hazards are: R1(A) = [20, 80],
R1(B) = [70, 80], respectively. For event A, we will choose to reduce uncertainty to determine the
range of hazard values: for event B, because the range of hazard values is relatively small, it will be
more effective for risk control to take measures to reduce the hazard. Therefore, for case where the
hazard is uncertain, the tolerance cost is not related to the hazard value, but to its range, that is ∆R1.
Therefore, the following formula may be more reasonable:

T′H = αHmaxemax · ∆R1 (3)

(3) Determination of Risk Control Scheme

In the existing method, the control scheme is determined when judging whether or not it is
necessary to reduce the uncertainty. That is, the formula TH ≤ u(T′H) has played two roles, namely,
necessity judgment and scheme selection. However, in practical applications, two or more schemes
may meet the requirements. Assuming a utility tolerable cost is u(T′H) = 1800, the implementation
costs of the scheme A and B are: TH(A) = 1720, TH(B) = 1690, respectively. Then how do we choose?
If we do not consider other factors, we should choose B, which has the lower cost. We now assume
that implementation of A will take less time, and its impact on environment, such as water pollution,
will be relatively small. Under this situation, will we still insist on choosing B? Therefore, it may be
not appropriate to consider only the decision effect, other main factors should also be considered.
It will be a multi-attribute utility decision problem under uncertainty and how to choose will be
discussed below.
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Through the above analysis, it can be seen that the existing entropy-hazard model needs to be
improved when used in tunnel engineering. With regard to how to analyse, and reduce, the impact of
uncertainty on risk, we believe that the following steps are more reasonable:

Step 1: Use entropy to calculate the sensitivity of variables, and narrow the scope of alternatives
according to sensitivity, so as to improve decision-making efficiency.

The main purpose of sensitivity analysis (SA) is to estimate effects of each model input on the
model response and to identify the primary contributors to output uncertainty [30], which could
increase the understanding of the relationships between input variables and the output [31]. Then the
variables that cause significant variability in the output results should be the focus [32].

Variance-based SA [33] is the most commonly used method. In addition, there are other SA
methods, such as Kullback–Liebler divergence methods, screening methods, entropy-based SA,
etc. [34,35]. In recent years, as it could reveal complementary or additional information compared to
the most often variance-based method, entropy-based SA methods have received more attention [36].
Therefore, we try to quantify the impact of input variables on the risk of geological hazards by the
entropy-based SA.

Suppose there is a limit state function: Y = f (X), where X = {x1, x2, · · · , xn} represents random
input variables, i.e., model parameters, f (X) is the response function, Y are the output results. So the
sensitivity index formula can be as follows:

ηxi =

∣∣∣H[uy]− H[uy|xi
]
∣∣∣

H[uy]
(4)

where H[uy|xi
] indicates the degree of uncertainty of the model output without considering xi.

Step 2: The necessity of reducing uncertainty.
The object of this step is to determine the tolerable cost. If Formula (3) is taken, the tolerance

cost is different for each scheme, but for the same risk event, the tolerance cost is relatively fixed for
decision-maker, which is also consistent with decision-making habits in tunnel engineering. Therefore,
Formula (3) is further modified to get Formula (5), and the decision effect (e) is considered together
with other factors such as time, environment, etc. as influencing factors.

T′H = αHmax∆R1 (5)

Step 3: Decision-making with different attributes.
To obtain a reasonable decision-making result, not only attribute information, but also information

uncertainty, should be considered. In addition, the attitude of decision-makers to risks can also not
be ignored.

For tunnel engineering, the analysis process for such uncertainty is as follows:

3. Scheme Selection under Multi-Source Attributes

As shown in Figure 2, for the schemes that meet the tolerable cost, we need to optimise the
schemes in terms of properties such as time, environmental impact, application effect, and then choose
the most reasonable scheme. The impact of attributes on schemes can be viewed as a consequence of
risk. Since the attribute information is uncertain, according to the definition of risk, risk and uncertainty
must be considered simultaneously when decision-making. Therefore, it is a typical multi-attribute
decision-making problem under risk and uncertainty, which has aroused wide interest of scholars
from different industries. For example, in order to promote the research of managing information
uncertainty and complexity in decision-making, Antucheviciene et al. [37] initiated related special issue
research, and got the active response from scholars with different industries. Since the decision-making
issue is more and more complex in civil engineering, and the characteristics of uncertainty are very
obvious, in recent years, the study of multi-criteria decision making has been becoming more and
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more popular in civil engineering. Such as Antucheviciene et al. [38] have systematically summarised
and analysed the research status of MADM in civil engineering from the following aspects, including
the influence of uncertainty, the decision-making problem under risk, the necessity of sensitivity
analysis etc, and put forward several problems that need further study in the future. To solve the
problems of multi-attribute decision making under uncertainty, Yang et al. [39] first proposed their
expected utility-entropy (EU-E) model. Although the EU-E model has been applied in different
fields, such as a decision-making model for large consumers on a smart grid [40], rainfall threshold
analysis [41], stock selection [42], etc., few people could question the rationality of the EU-E model
itself. Fischera [43] commented on Yang’s model and pointed out its deficiencies, such as that the
impact of consequences was not considered for uncertainty analysis; however, it does not propose a
reasonable alternative framework or model, but simply thinks that the EU model is enough to solve
decision-making problems under uncertainty. Therefore, based on the existing research, we analyse the
EU-E model, and corresponding improvement measures are proposed. Yang’s EU-E model is defined
as follows:

R(a) = λHa(θ)− (1− λ)
E[u(X(a, θ))]

max{E[u(X(a, θ))], a ∈ A} (6)

where, X(a, θ) is the outcome resulting from the combination of option a and state θ (such as a can be
numbers, and θ indicates corresponding probability), u(X) is the decision-maker’s utility function;
the factor λ with 0 ≤ λ ≤ 1 expresses the weighting, or trade-off, that the decision-maker attaches to
the expected utility and entropy. Some examples have been proposed in [39,43] to prove or refute the
reliability or deficiencies of the EU-E model, but they fail to consider all possible situations. To analyse
the reliability of the EU-E model under different circumstances, based on the difference in entropy
values, the decision-making situations are divided into the following three categories (for the sake of
this analysis, we only consider the situation with two schemes a and b):

(1) The uncertainty of the consequences is equal, H(a) = H(b), then we can further divide it into
three situations.

1© H(a) = H(b), E(a) = E(b), E(a), E(b) are expected utility, and the related example is
as follows:

If scheme a is (2, 1/3; 4, 1/3; 6, 1/3), where 2, 4, 6 are numbers; 1/3 represents the corresponding
probability, and the follow-up cases are similar to a, then scheme b can be b1: (0, 1/3; 1, 1/3; 11, 1/3),
b2: (0, 1/3; 2, 1/3; 10, 1/3), b3: (0, 1/3; 3, 1/3; 9, 1/3), b4: (0, 1/3; 4, 1/3; 8, 1/3), b5: (0, 1/3; 5, 1/3;
7, 1/3), b6: (1, 1/3; 2, 1/3; 9, 1/3), b7: (1, 1/3; 3, 1/3; 8, 1/3), b8: (1, 1/3; 4, 1/3; 7, 1/3), or b9: (3, 1/3;
4, 1/3; 5, 1/3).

If Formula (6) is used to determine which scheme should be selected, we have R(a) = R(b),
the EU-E model is invalid at this time; because the value of λ reflects the decision-maker’s attitude to
risk, where 0 ≤ λ < 0.5 this indicates decision-makers are risk averse, λ = 0.5 means risk neutrality,
and 0.5 < λ ≤ 1 indicates that the decision-maker is willing to take a greater risk. So different values
of λ should be considered.

For the risk-averse, the worst consequence of scheme a is 2. Compared to schemes b1 to b8, a is
more reasonable. For schemes a and b9, b9 is obviously more reasonable. Since the order of variances
is Var(b9) < Var(a) < Var(b1~b8), a reasonable decision can be made based on variance.

For decision-makers with a risk-neutral view (λ = 0.5), since there is no obvious risk tendency,
it is difficult to make a decision between schemes a and b. No matter which is chosen, decision-makers
can give their reasons, but intuitively, we believe it is more likely to have the same decision-result as a
risk-averse manager.

Since risk seekers are willing to take higher risks for a better outcome, compared to scheme a,
schemes b1 to b8 seem more reasonable. For schemes a and b9, decision-makers are more likely to
choose a.
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Even when faced with the same risk decision event, decision-makers will make different decisions
due to differences in their attitudes.

2© H(a) = H(b) and E(a) < E(b), the related example is as follows:
If scheme a is (2, 1/3; 4, 1/3; 6, 1/3), as there are many schemes of b that could satisfy the conditions

H(a) = H(b) and E(a) < E(b), we select several representative examples, such as b1: (0, 1/3; 1, 1/3;
17, 1/3), b2: (6, 1/3; 9, 1/3; 12, 1/3), b3: (10, 1/3; 11, 1/3; 12, 1/3).

According to Function (6), R(a) > R(b), however, decision-making results must also consider the
influence of attitude to risk.

For the risk-averse, compared to b1, scheme a is a relatively ideal result, but if it is compared to b2

or b3, it would be more reasonable to choose b2 or b3. Therefore, for such problems, neither the use of
an EU-E model nor the variance can reach reasonable judgments.

For decision-makers with risk seeking behaviour, schemes b(b1, b2, b3) would be the ideal choice,
if compared to scheme a, and the EU-E model is effective.

For decision-makers who are risk-neutral (λ = 0.5), since the expected value E(a) < E(b),
scheme b is more reasonable, and the EU-E model is effective.

The EU-E model is effective in some cases, but there is no discussion of this in the literature [37].
3© For the case where H(a) = H(b) and E(a) > E(b), the analysis process and results are the

same as the second type (H(a) = H(b), E(a) < E(b)) and are not described here.
(2) The uncertainty of the consequence for scheme a is larger than b, e.g., H(a) > H(b). Then we

can further divide it into three situations.
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1© H(a) > H(b), E(a) = E(b), then R(a) > R(b), (R(a) = R(b), i f λ = 0) can be obtained based
on Function (6), the related example are as follows.

Scheme a: (2, 1/4; 4, 1/4; 6, 1/4; 8, 1/4); Scheme b: (10− x, 1/2; x, 1/2), (5 < x ≤ 10) and
H(a) = 1.39, H(b) = 0.69, E(a) = E(b) = 5, according to Function (6), assuming λ 6= 0, we have
R(a) = 1.39λ− (1− λ) > R(b) = 0.69λ− (1− λ). Now we let x = 10, 8, 6, respectively. So scheme b1:
(0, 1/2; 10, 1/2); scheme b2: (2,1/2; 8, 1/2); and scheme b3: (4, 1/2; 6, 1/2). Since different values of λ

represent different attitudes to risk of the decision-maker, it is more reasonable to analyse this case
considering these attitudes.

For the risk-averse, schemes a and b1 are offered, since scheme b1 has one-half probability with
consequence of 0, mean that they are intuitively more inclined to choose scheme a. For schemes a and
b2, the latter has a higher probability of 2 than scheme a, and for risk conservatives, the risk of choosing
a is relatively small. For schemes a and b3, the latter is more likely to take 4, and does not take the
risk of value 2, so it is more reasonable to choose scheme b3. Here, the EU-E model is invalid, but the
variances of a, b1, b2 and b3 are Var(a) = 5, Var(b1) = 25, Var(b2) = 9, and Var(b3) = 1, respectively,
so in these situations, a reasonable choice can be made based on the variance.

For decision-makers with a risk-neutral view (λ = 0.5), since they do not have a clear tendency
toward risk, it is difficult to make judgments for the above situations. Regardless of whether choosing
a, b1, b2 or b3, there are reasons for their rationality, but intuitively, the results of the choice are more
likely to be consistent with a risk-averse manager.

For decision-makers with risk seeking behaviour, decision-makers are willing to take higher risk.
So for schemes a and b1, a and b2, it will be more reasonable to choose b1 and b2. For schemes a and b3,
we are more inclined to choose scheme a.

2© H(a) > H(b), E(a) > E(b), the values of R(a) and R(b) cannot be compared directly with
Equation (6).

The first situation: R(a) = R(b), the decision result cannot be obtained based on EU-E model.
If scheme a is (2, 1/4; 4, 1/4; 6, 1/4; 8, 1/4), then scheme b can be (0, 1/2; x, 1/2), (x = 10(1− 0.7λ

1−λ ),
0 < λ < 0.5882 for x > 0, E(a) > E(b) and R(a) = R(b)). 0 < λ < 0.5882 indicates that the
decision-maker is not absolutely risk-seeking, and is more likely to be conservative or neutral.
Assuming that the decision-maker is risk neutral, λ = 1/2, then scheme b is (0, 1/2; 8.6, 1/2).
According to the variance: Var(a) = 5 < Var(b) = 18.5, we should choose a, which is consistent with
the attitude to risk of the decision-maker. For the risk-averse, scheme a is more reasonable.

The second situation: R(a) > R(b). If scheme a is (2, 1/4; 4, 1/4; 6, 1/4; 8, 1/4), then scheme b
can be (0, 1/2; x, 1/2), (0 < x < 10, x > 10(1− 0.7λ

1−λ ), 0 < λ < 1 for E(a) > E(b) and R(a) > R(b)).
When 0 < λ < 0.5882, 10(1− 0.7λ

1−λ ) > 0, then we get 10(1− 0.7λ
1−λ ) < x < 10; when 0.5882 < λ < 1,

10(1− 0.7λ
1−λ ) < 0, then we have 0 < x < 10.

For the risk-averse, such as those for whom λ = 0.1, then 9.22 < x < 10. If scheme a1 is (2, 1/4;
4, 1/4; 6, 1/4; 8, 1/4), b is (0, 1/2; 9.5, 1/2), then scheme a should be chosen. Now we let scheme a2 be
(0, 1/4; 1, 1/4; 2, 1/4; 17, 1/4), and b remains unchanged, we will be more inclined to choose scheme b.
The order of variance is Var(a1) = 5 < Var(b) = 22.56, Var(b) = 22.56 < Var(a2) = 48.5. Therefore,
for this situation, it is reasonable to make decisions based on variance.

For a risk-neutral decision-maker (λ = 0.5, 3 < x < 10), it is difficult to make a reasonable
decision. Now let scheme b be b1: (0, 1/2; 4, 1/2); b2: (0, 1/2; 5, 1/2); b3: (0, 1/2; 6, 1/2); b4: (0, 1/2;
7, 1/2); b5: (0, 1/2; 8, 1/2); b6: (0, 1/2; 9, 1/2). Comparing b1, b2 and b3 to scheme a (2, 1/4; 4, 1/4;
6, 1/4; 8, 1/4), then scheme a is more reasonable. For schemes b4 and a, it does not violate basic
decision-making behaviour if choosing a or b4. We believe that alternatives b5 and b6 are more likely to
be selected than a. Therefore, neither the expected EU-E model nor the variance are applicable. It is
rather complicated for this situation and it needs to be analysed according to the specific situation.

For a decision-maker seeking risk, such as at λ = 0.9, 0 < x < 10, if 0 < x ≤ 6, the probability
that the consequence of scheme a exceeds 6 is 50%, then the decision-makers are more inclined to
scheme a. If 6 < x < 10, decision-makers will choose scheme b to pursue higher reward.



Entropy 2018, 20, 503 9 of 16

The third situation: R(a) < R(b). We still let scheme a have (2, 1/4; 4, 1/4; 6, 1/4; 8, 1/4),
then scheme b can be (0, 1/2; x, 1/2), (0 < x < 10(1− 0.7λ

1−λ ), 0 < λ < 0.5882 for E(a) > E(b) and
R(a) < R(b)). In such a situation, it is more reasonable for decision-makers who are risk-averse
or risk-neutral.

For the risk-averse, scheme a is an ideal goal. For a risk-neutral decision-maker (λ = 0.5,
0 < x < 3), scheme a should also be chosen and, in this case, the EU-E model is effective.

3© H(a) > H(b), E(a) < E(b). Then according to Formula (6), we have R(a) > R(b). Assuming
scheme a is (2, 1/4; 4, 1/4; 6, 1/4; 8, 1/4), there will be many types of scheme b, such as (0, 1/2;
x, 1/2), (x > 10, 0 < λ < 1 for E(a) < E(b) and R(a) > R(b)). The risk attitude of decision-makers
is uncertain.

Now we let scheme b be b1: (0, 1/2; 20, 1/2), b2: (1, 1/2; 19, 1/2), b3: (2, 1/2; 18, 1/2), b4: (4, 1/2;
16, 1/2), b5: (6, 1/2; 14, 1/2), b6: (8, 1/2; 12, 1/2). If we compare b1, b2 to a, since b1 has the possibility of
consequence of zero, and b2 offers the possibility that the consequence is smaller than that of scheme a,
for the risk-averse, it is more stable to choose scheme a. However, when compared to b3 to b6, since the
minimum possible outcomes of the latter are equal to, or greater, than the possible value of scheme a,
so it is more consistent with the decision-making behaviour of a risk-averse manager to choose b3 to b6.
If we have a: (0, 1/4; 1, 1/4; 2, 1/4; 17, 1/4), b: (0, 1/2; 20, 1/2), since both schemes have the possibility
of zero consequence, that is, the worst result is the same, then in this case, for the risk-averse, they will
choose a scheme that has a larger expected utility value, that is, scheme b.

For a risk-neutral decision-maker (λ = 0.5), as decision-makers have no obvious risk tendencies,
it is difficult to judge whether to choose scheme a or b, but we can confirm that with the increasing
value of x, the probability of selecting scheme b will increase. It can be considered to be similar to a
risk-averse decision-making behaviour.

For a risk-seeking decision-maker, to pursue higher consequences, scheme b is an ideal goal.
In this case, the EU-E model is effective.

(3) The uncertainty of the consequence for a is smaller than b, e.g., H(a) < H(b). Then we can
further divide it into three situations.

1© H(a) < H(b), E(a) = E(b), then we have R(a) < R(b), (0 < λ < 1). The principle of analysis
is the same as the situation whereby H(a) > H(b), E(a) = E(b). For example, if we have scheme a:
(10 − x, 1/2; x, 1/2), scheme b: (2, 1/4; 4, 1/4; 6, 1/4; 8, 1/4), then the analysis result is the same as
that with H(a) > H(b), E(a) = E(b).

Similarly, for case H(a) < H(b), E(a) < E(b), the result is the same as that with
H(a) > H(b), E(a) > E(b). For case H(a) < H(b), E(a) > E(b), the result is the same as that with
H(a) > H(b), E(a) < E(b).

Through the above analysis, we can see that for multi-attribute decision-making issues under
an uncertain environment, it could not solve all situations by simply relying on the expected
utility-entropy model. It not only needs to consider the expected utility, uncertainty measure, variance,
etc., but more importantly, the influence of the risk attitude of the decision-maker cannot be ignored,
different risk attitudes will lead to different results. Assume that there are two schemes a and b,
the minimum value and its probability, the maximum value and its probability in each scheme
are: (amin, l), (bmin, m), (amax, p), (bmax, q), respectively. Based on the above analysis, we recommend
discriminant methods for the different types of scheme combinations in Table 2.
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Table 2. Different decision problems and their solutions.

Condition 1 Condition 2 Condition 3 Risk Attitude Suggested Methods

H(a) = H(b)

E(a) = E(b) R(a) = R(b)

Risk-averse Variance

Risk-neutral Variance

Risk-seeking If pamax > qbmax, then choose
a, otherwise choose b

E(a) < E(b)
(E(a) > E(b))

R(a) > R(b)
(R(a) < R(b))

Risk-averse If lamin > mbmin, choose a,
otherwise choose b

Risk-neutral EU-E model

Risk-seeking EU-E model

H(a) > H(b) or
(H(a) < H(b))

E(a) = E(b) R(a) > R(b)
(R(a) < R(b))

Risk-averse Variance

Risk-neutral Variance

Risk-seeking If pamax < qbmax, then choose
b, otherwise choose a

E(a) > E(b)
(E(a) < E(b))

R(a) = R(b)
Risk-averse Variance

Risk-neutral Variance

R(a) > R(b)

Risk-averse Variance

Risk-neutral
There is no uniform criterion,
the recommendation is similar

to that when risk-averse

Risk-seeking If pamax < qbmax, then choose
b, otherwise choose a

R(a) < R(b)
Risk-averse EU-E model

Risk-neutral EU-E model

E(a) < E(b)
(E(a) > E(b))

R(a) > R(b)
(R(a) < R(b))

Risk-averse If lamin > mbmin, choose a,
otherwise choose b

Risk-neutral
There is no uniform criterion,
the recommendation is similar

to that when risk-averse

Risk pursuit EU or EU-E model

The decision problem is fundamentally a subjective judgment of the decision-maker. Therefore,
subjective factors affecting a decision-maker are important. Due to external environmental factors and
their own knowledge level, the decision result is often a bounded rational entity. Decision-making
issues must take into account the risk attitudes (Table 2), different risk attitudes exert a decisive
influence on decision-making results. The EU-E model or variance-average model can only solve
some parts of the problems. By classifying decision-making problems, it is more reasonable to propose
different methods according to different situations.

The well-known Allais paradox (Table 3) has been discussed elsewhere [39] to prove the validity
of EU-E model. We will analyse the paradox based on the proposed method.

Table 3. Allais paradox.

Schemes Probability Consequence Probability Consequence Probability Consequence

a1 1 1 (million) - - - -
b1 0.01 0 0.89 1 (million) 0.1 5 (million)
a2 0.89 0 0.11 1 (million) - -
b2 0.9 0 0.1 5 (million) - -
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Problem 1: Select a1 or b1?
The entropy and expected values are: H(a1) = 10, H(b1) = 0.38, E(a1) = 10, E(b1) = 1.39,

R(a1) = −0.72(1− λ) and R(b1) = 1.38λ− 1. When 0.42 < λ ≤ 1, then R(a1) < R(b1), so the a1

should be chosen, and Yang believes the EU-E model is reasonable; however, why is it not considered
with 0 ≤ λ ≤ 0.42? Now we analyse the issue by the proposed method: as H(a1) < H(b1),
E(a1) < E(b1), according to Table 3, we know that there will be three cases: R(a1) = R(b1),
R(a1) > R(b1) or R(a1) < R(b1).

R(a1) = R(b1)⇒ λ = 0.42 , which means that decision-maker is biased towards risk
conservatism. Using Table 3, the result can be obtained based on variance. Since Var(a1) < Var(b1),
we should choose a1.

R(a1) > R(b1)⇒ λ < 0.42 , which indicates risk-aversion; the variance is the recommended
method in Table 3 and a1 is our option. R(a1) < R(b1)⇒ 0.42 < λ ≤ 1 , when λ = 0.5, it is risk neutral,
and the EU-E model is valid (Table 3). For the case of 0.5 < λ ≤ 1, decision-makers are risk-seekers,
and are willing to take corresponding risks for higher reward. In this case, decision-making based on
expected or expected utility value is more consistent with decision-making behaviour. Therefore, it is
more likely that b1 is chosen.

Many experiments have shown that a majority of subjects have a preference pattern of a1 over
b1; however, it does not prove that the EU-E model is effective, because in reality, $1 million is very
important to many people, or many people may not have $1 million in assets at all. Therefore,
when faced with the above problem, there is generally a risk-averse tendency. According to our
recommended method, the choice is a1 for those who are risk-averse. Of course, there will be a
small number of people who are risk-seeking and choose b1. The results of the above analysis are in
agreement with the results of the experiment in which many people chose a1, while a few chose b1.
This further proves the reliability of the proposed method.

Problem 2: select a2 or b2?
Similarly, we have H(a2) = 0.3465, H(b2) = 0.3251, E(a2) = 0.11, E(b2) = 0.5,

R(a2) = 0.57λ− 0.22, R(b2) = 1.33λ − 1. For any 0 ≤ λ ≤ 1, R(a2) > R(b2). For problem 2,
we must first realise that regardless of whether we choose a2 or b2, the possibility of zero consequence
is almost the same and much greater than the non-zero value. Taking into account the above factors,
decision-makers are most likely to show risk-seeking behaviour. According to Table 3, the EU-E model
is reasonable, and we should choose b2.

Based on the recommended method, we discuss the Allais paradox, and through theoretical
analysis, the results obtained by the experiment were reasonably explained.

4. Case Analysis and Discussion

4.1. Engineering Background

Complex geology will increase the difficulty of obtaining accurate geological information.
The uncertainty of geological information increases the risk on a tunnel project; therefore, it is likely to
cause geological disasters (landslides, rock bursts, water inrush, etc.) when tunnelling in such areas.
For example, southwestern China has the characteristics of abundant groundwater, karst development,
and fault fracture zones: tunnel burial depths are generally large, and so on, which causes serious
geological hazard risk [44].

The research object is the Zhiziyuan tunnel (the range of tunnel mileage is
D2K76+695~D2K90+765) on the Chengdu-Lanzhou railway (Figure 3). The Zhiziyuan tunnel
has a length of 14 km, and its maximum burial depth is 680 m. Although Yuelongmen tunnel is longer
and is buried deeper, the geological conditions around the Zhiziyuan tunnel are more complicated.
The main features are as follows: (1) Karst is developed and widely spread, resulting in serious risk of
water inrush during construction. (2) The construction method of Zhiziyuan tunnel is a combination
of single-hole and double-hole tunnelling, which is more complex than other tunnel construction
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environments and suffers greater uncertainties. (3) As the tunnel is close to villages, it is more sensitive
to water pollution and ecological damage caused by water inrush. Therefore, a reasonable risk control
scheme for water inrush is of great significance for the smooth construction of the Zhiziyuan tunnel.
We take the section of D2K81+710~D2K81+770 as an example for analysis. The section is characterized
by dolomitic limestone and broken surrounding rock. And the geophysical results show that the fault
is wide and the groundwater is rich. In addition, the height of the nearby Jushui river is higher than
the height of the tunnel in this area, the river has been cut off due to the construction of the tunnel,
and the water has entered the mountain, which has posed a major hidden danger to the tunnel. So it
has the representative significance to choose the section.
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4.2. Engineering Application and Discussion

The mechanism of water inrush accidents is complex, and the mechanism of different types
of outburst is quite different. For the karst water inrush disasters, by analysing the existing cases
of different inrush water disasters, the relationship between inrush water risk and major factors
(water pressure x1, formation lithology x2, attitude of rocks x3, topography and geomorphology x4,
bad geological conditions x5, and the depth from the underground water level x6) can be obtained
by fitting. Assuming it is P(A) = 0.01x1 + 0.04x2 + 0.0003x3 + 0.02x2

4 + 0.042
√

x5 + 0.002
√

x1x6

(based on the statistical analysis of the cases of water inrush disasters in several tunnel projects along
Chengdu-Lanzhou railway, such as Yuelongmen tunnel, Zhiziyuan tunnel, Pingan tunnel, Maoxian
tunnel and so on, the formula can be obtained), which indicates the relationship between the influence
factors and the occurrence probability of water inrush. The initial value range of each parameter is as
follows: water pressure: 6~8.5 MPa, formation lithology: 0.7~0.86, attitude of rocks: 45~50, topography
and geomorphology: 0.3~0.4, bad geological conditions: 6.5~8.3, depth below underground water
level: 0.3~0.34.

According to the risk control process constructed in Figure 2, the sensitivity analysis of each
parameter is needed, and the parameter that has the greatest impact on the evaluation result can
be determined. The probability distribution of P(A) can be calculated by Monte Carlo simulation.
The entropy is used to quantify uncertainty measures, and then sensitivity indices of each parameter
can be obtained based on entropy sensitivity analysis methods. The related calculations are as
follows. H[P(A)] = 0.034, H[P(A)|x1 ] = 0.0166, H[P(A)|x2 ] = 0.0295, H[P(A)|x3 ] = 0.0329,
H[P(A)|x4 ] = 0.0330, H[P(A)|x5 ] = 0.0243, H[P(A)|x6 ] = 0.0335. Sensitivity indices can be obtained
by using the following sensitivity formulae: η(x1) = 0.5118, η(x2) = 0.1324, η(x3) = 0.0324,
η(x4) = 0.0294, η(x5) = 0.2853, and η(x6) = 0.0147. The indicators of x1, x2, x5 have a significant
influence on the evaluation result for water inrush. Therefore, to improve the efficiency of
decision-making, relevant risk control schemes should be formulated around these three indicators.

Suppose we have the following six preliminary risk control schemes (Table 4), and then use
Equation (4) to determine which schemes meet the decision-maker’s tolerance costs. According to
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experienced experts, the occurrence of water inrush will cause a loss of 3.5× 106 RMB. The change in
risk under such conditions is ∆R1 = 20.72× 104. The uncertainty measure of inrush water occurrence
is H(A) = 0.5482. Let α = 1, and set tolerance cost T′H = 113587. According to the cost of each
scheme in Table 4, the schemes (a1, a3, a5) are in line with the requirements. Therefore, it is necessary
to determine the most reasonable scheme according to the multi-attribute decision-making method
proposed in this paper.

Table 4. Initial risk control schemes.

Schemes Expense Schemes Expense

a1(x1) 103,000 a4(x1, x5) 120,000
a2(x1) 115,000 a5(x2, x5) 98,000

a3(x1, x2) 110,000 a6(x1, x2, x5) 135,000

For the risk control scheme used here in a tunnel engineering project, attributes such as economic
cost, time cost, environmental impact, and programme execution effect are generally considered.
Therefore, we can make a comprehensive analysis based on the impact of different schemes on
attributes when executing the work, and then select the optimal scenario. According to expert opinion,
the possible impact of the above three schemes on different attributes can be obtained. Then the
benefit-type attributes and the cost-type attributes are normalised separately. The results are shown in
Table 5.

Table 5. Initial attribute information (normalised data).

Schemes
Attributes C1

(Economic Cost)
C2

(Time Cost)
C3

(Environment Impact)
C4

(Execution Effect)

a1(x1) 0.5829 (0.5, 30%; 0.75,
60%; 1, 10%)

(0.5385, 20%; 0.3846,
50%; 0.2308, 30%)

(0, 20%; 0.3429, 40%;
0.7143, 40%)

a3(x1, x2) 0 (0, 15%; 0.25,
62%; 0.5, 23%)

(0.3846, 40%; 0.1538,
50%; 0, 10%)

(0.5714, 30%; 0.7143,
50%; 1, 20%)

a5(x2, x5) 1 (0.75, 25%; 0.875,
70%; 1, 5%)

(1, 10%, 0.8462, 50%;
0.6923, 40%)

(0.2857, 28%; 0.5714,
52%; 0.8571, 20%)

The economic cost in the above table is consistent with Table 4, which gives a fixed value.
Then the uncertainty measures and expected utility of different attribute information are calculated.
The uncertainty measure and expected utility of each scheme are aggregated based on attribute weights
(ω(c1) = 0.3, ω(c2) = 0.2, ω(c3) = 0.3, ω(c4) = 0.2). The comprehensive uncertainty measure and
expected utility of each scheme are obtained (Table 6).

Table 6. Uncertainty measure and expected utility.

Schemes
Attributes C1

(Economic Cost)
C2

(Time Cost)
C3

(Environment Impact)
C4

(Execution Effect)
Aggregation

a1(x1)
Entropy 0 0.8979 1.0297 1.0549 0.6995

EU 0.5829 0.7 0.3692 0.4229 0.5102

a3(x1, x2)
Entropy 0 0.9190 0.9433 1.0297 0.6727

EU 0 0.27 0.2307 0.7286 0.2689

a5(x2, x5)
Entropy 0 0.7460 0.9433 1.0184 0.6359

EU 1 0.85 0.8 0.5485 0.8197

From Table 6: H(a1) > H(a5), E(a1) < E(a5), H(a3) > H(a5), E(a3) < E(a5). If decision-makers
are risk-seeking, according to Table 3, a5(x2, x5) is more reasonable than a1(x1) and a3(x1, x2),
so a5(x2, x5) should be chosen. However, if risk-averse, no direct judgment can be made. We then need
to analyse the advantages and disadvantages of different schemes under each attribute. For example,
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suppose that scheme a1(x1) is more reasonable than a3(x1, x2) under attribute cj, then c1j = 1, c3j = 0,
respectively. Finally, the comprehensive value of each scheme is obtained according to linear weighting
and the largest is the decision result. Based on the methods recommended in Table 3, we first compare
schemes a1(x1) and a5(x2, x5), and the results are:c11 = 0, c12 = 0, c13 = 0, c14 = 0; c51 = 1,
c52 = 1, c53 = 1, c54 = 1. Scheme a5(x2, x5) is more reasonable. Now we compare scheme a3(x1, x2)

and a5(x2, x5), and the results are: c31 = 0, c32 = 0, c33 = 0, c34 = 1; c51 = 1, c52 = 1, c53 = 1,
c54 = 0. Considering attribute weights: c(a3) = 0.2, c(a5) = 0.8, and a5(x2, x5) should be chosen.
Therefore, whether decision-makers are risk-averse, or risk-seeking, scheme a5(x2, x5) is the more
reasonable choice.

5. Conclusions

Reasonable risk control measures are an effective way in which to reduce geological disasters in
underground engineering operations. As geological uncertainty is the main feature of geotechnical
engineering, according to the latest definition of risk, it can be known that uncertainty exerts a
significant impact on risk control. Therefore, a reasonable assessment and control of uncertainty is
an important part of risk control. This paper focuses on the problem of uncertainty evaluation and
control. The main conclusions are as follows:

(1) Through case analysis, possible defects in the existing entropy-hazard decision model in
engineering application are discussed, and an improved model of uncertainty evaluation and
control is proposed.

(2) Tolerance cost T′H is an important factor used to screen plans to improve the efficiency of
decision-making. Through analysis, it is found that there are deficiencies in the existing
calculation method, and a new calculation model is proposed.

(3) The existing expected utility-entropy model is only valid under certain conditions, and there are
limitations to its application. Multiple-attribute decision making problems are classified based
on factors such as attitude to risk, uncertainty measures, expected utility, variance, etc., and
corresponding decision-making methods are proposed according to different decision types.

(4) By analysing different decision-making issues, it is found that the attitude to risk of the
decision-makers exerts an important influence on the decision-making results; attitudes to risk
will be influenced by the decision-maker’s own experience and the problem itself. Based on this
idea, the well-known Allais paradox is reasonably explained by use of the proposed methods.

(5) Taking the Zhiziyuan tunnel as a research object, the method is applied to a real engineering task.
The application results show that the proposed method is effective with regard to decision-making
about geological disaster risk control schemes, and that it can remedy the deficiencies in the
existing method.
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