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Abstract: The present work is concerned with the study of a generalized Langevin equation and its
link to the physical theories of statistical mechanics and scale relativity. It is demonstrated that the
form of the coefficients of the Langevin equation depends critically on the assumption of continuity
of the reconstructed trajectory. This in turn demands for the fluctuations of the diffusion term to be
discontinuous in time. This paper further investigates the connection between the scale-relativistic
and stochastic mechanics approaches, respectively, with the study of the Burgers equation, which
in this case appears as a stochastic geodesic equation for the drift. By further demanding time
reversibility of the drift, the Langevin equation can also describe equivalent quantum-mechanical
systems in a path-wise manner. The resulting statistical description obeys the Fokker–Planck
equation of the probability density of the differential system, which can be readily estimated from
simulations of the random paths. Based on the Fokker–Planck formalism, a new derivation of the
transient probability densities is presented. Finally, stochastic simulations are compared to the
theoretical results.
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1. Introduction

The Langevin equation was introduced in order to describe the motion of a test particle subjected
to a fluctuating force and a viscous drag [1]. Its formulation was later generalized to encompass also
other types of systems. The Langevin equation is also fundamental for the stochastic interpretation
of Quantum Mechanics (QM) [2] and it also appears, in the form of a geodesic equation, in the scale
relativity theory (SR) developed by Nottale [3]. The equation represents a substantial theoretical
innovation because it was in fact the first stochastic differential equation. The formal theory of
stochastic differential equations was developed much later by the works of Itô and Stratonovich
(see, for example, [4] for introduction).

In contrast to the picture of diffusion as an uncorrelated random walk, the theory of dynamical
systems makes it possible to treat diffusion as a deterministic dynamical process. There the Langevin
dynamics can be also driven by chaotic but deterministic processes [5–7]. Emergence of diffusive
behavior and Markovian evolution was also addressed by Gillespie [8]. The recent study of
Tyran-Kaminska demonstrates that simple diffusion processes can emerge as weak limits of piecewise
continuous processes constructed within a totally deterministic framework [7]. This is a finding which
lends credence to the widely used techniques of Monte Carlo simulations using pseudo-random
number generators.
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A different way of looking at the Langevin equation is to specify a fractal driving process instead of
the stochastic Wiener process. Examples can be given by the studies of deterministic diffusion, where
generalized Takagi functions appear [9,10]. Using this approach, both fractal and linear behaviours of
the diffusion coefficients can be demonstrated. Together, the studies mentioned so far demonstrate a
fundamental interplay between emergent stochasticity, chaotic dynamics and fractality, which governs
transport phenomena.

The term generalized Langevin equation is typically used in the physics literature to describe
the system’s memory effects conveyed by non-Markovian color noises [11]. The present paper
will generalize the Langevin equation in a different way. The Markovian character of the driving
signal will be preserved, but the signal will be assumed to have some properties, leading to fractal
behaviour—notably a suitably dense set of points where its Hölder exponent is fractional. Furthermore,
the linearity restriction of drift term will be relaxed and instead the drift will be assumed to be a
smooth function of position and time.

Interpretations of quantum mechanics are drawing a reemerging attention in the light of the
centennial anniversary of David Bohm. Part of the present work was presented as a poster at the
Emergent Quantum Mechanics 2017 conference in London. Results of the present work have been
derived using the machinery of stochastic mechanics. On the other hand, the paper does not make
strong foundational claims; instead, it is concerned with some questions about the mathematical
foundations of the scale relativity theory, its link to stochastic mechanics and the theory of the Burgers
equation. To the author’s knowledge, such a link to the Burgers equation was not recognized before.

The Burgers equation was initially formulated by Bateman while modeling the weakly viscous
liquid motion [12]. It can be derived from the full Navier–Stokes equations under some simplifying
assumptions. It was later studied extensively by Burgers as a cartoon model of turbulence [13].
Presently, the number of applications of the Burgers equation is very diverse. It has been used to
model physical systems, such as surface perturbations, acoustic waves, electromagnetic waves, density
waves, or traffic (see, for example, [14]). The stochastic representation of the Burgers equation can
be traced back to the seminal works of Busnello et al. [15,16]. Later, Constantin and Iyer derived a
probabilistic representation of the deterministic three-dimensional Navier–Stokes equations [17,18].
The result presented here complements the findings of these authors as incompressibility, and hence
the harmonicity of the drift, in the Burgers equation is not required.

The paper starts by briefly presenting stochastic mechanics and scale relativity. Section 2
demonstrates a general result about stochastic representations of Hölder-continuous signals leading
to the Langevin equation. Section 3 introduces Nelson’s characterization of a stochastic process.
Section 4 introduces the complex representation of the drift in stochastic mechanics and scale
relativity. Section 5 establishes the connection with the Burgers equation. Based on the Fokker–Planck
formalism, a new derivation of the transient probability densities is presented. Section 6 discusses the
Burgers equation as a geodesic-type of equation. The Cole–Hopf transformations are discussed as
solution techniques for the Burgers equation in Section 7. Moreover, it is demonstrated how complex
Cole–Hopf transformations map the complex Burgers equation, derived in a variational setting, to
the free Schroedinger equation. Finally, in Section 8, numerical simulations are compared with the
theoretical results.

1.1. Stochastic Mechanics (SM)

In the 1930s, certain similarities between the equations of classical statistical mechanics and the
Schrödinger equation were discovered. These findings led to the stochastic interpretation of quantum
mechanics. In stochastic mechanics, quantum phenomena are described in terms of diffusions instead
of wave functions. The main equation of motion is in fact the Langevin equation. The formal equations
of stochastic mechanics were formulated at first by Fényes [19] and Weizel [20] and later taken up
by Nelson [2]. Following this interpretation, the trajectories of the configuration, described by a
Markov stochastic process, are regarded as physically real. Nelson’s original formulation employed a
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stochastic version of the Newton’s law and time reversibility of the process. Interestingly, the form of
the stochastic acceleration had to be postulated.

A Lagrangian formulation of stochastic mechanics was achieved by Pavon in complex form [21].
However, the given presentation is far from intuitive. In his treatment, the stochastic Lagrangian is the
classical Lagrangian evaluated on a complex-valued velocity field in place of the real-valued classical
velocity, while the dynamics is given by a complex-valued stochastic differential equation, similar
to the treatment of Nottale. The Lagrangian problem was formulated as a constrained optimization
problem, where the dynamics acted as the constraint.

1.2. Scale Relativity Theory (SR)

The scale relativity theory extends the principle of relativity also to resolution scales [3,22,23].
The main tenet of the theory is that there is no preferred scale of description of the physical reality.
Therefore, a physical phenomenon must be described simultaneously at all admissible scales. While
this is consistent with calculus for differentiable signals, the situation changes if non-differentiable
models, such as Brownian motion or Mandelbrot’s multiplicative cascades [24], are addressed.
For these cases, the scale of observation (or resolution) is present irreducibly in the local description
of a phenomenon. This led Nottale to postulate the fractality of the underlying mathematical
variety (i.e., a pseudo-manifold) describing the observables. It should be noted that, in Nottale’s
approach, only finite differences are admissible. The scale relativistic approach results in corrections of
Hamiltonian mechanics that arise due to the non-differentiability of trajectories, which are treated as
virtual paths. Nottale introduces a complex operator that he calls the scale derivative, which acts as a
pseudo-derivative (see Section 4 for details).Using this tool, Nottale gives an informal derivation of the
Schrödinger equation from the classical Newtonian equation of dynamics, via a quantization procedure
that follows from an extension of Einstein’s relativity principle called the scale relativity principle.

2. Stochastic Representation of Trajectories

If one considers the Brownian particle as a subsystem and the surrounding particles as an
infinite dimensional thermal reservoir, the Langevin equation precisely models the situation where
the subsystem suitably interacts with the thermal reservoir. The type of the effective random force
can be identified with a Wiener process, which has continuous but non-differentiable paths almost
everywhere. Mathematical descriptions of strongly nonlinear phenomena necessitate the relaxation of
the global assumption of differentiability. In contrast, classical physics assumes global smoothness of
the signals and continuity of their first two derivatives. Therefore, non-smooth phenomena, such as
fractals slip through its conceptual net. This argument can be further elaborated as follows. Consider
the measurement of a trajectory in time x(t). Non-differentiability can occur in three scenarios:

1. divergence of the velocity, that is divergence of the difference quotient,
2. oscillatory singularity or
3. difference between forward and backward velocities.

While for scenarios (1) and (2) the velocities (i.e., derivatives) can not be defined mathematically,
scenario (3) requires dropping only the assumption of continuity of the resulting velocity. That is,
x′+(t) 6= x′−(t) at the point of non-differentiability t. A simple example of such behavior is the signal
x(t) = |t| around the origin t = 0. While scenario (2) is excluded by the scale relativity theory, scenario
(1) leads to scale dependence of the difference quotient. Examples of fractal functions, such as the
mathematical Brownian motion paths, are typically of divergent length. This at best can be viewed
as a mathematical idealization since in this case the work for moving a particle along its trajectory
must be infinite. On the other hand, non-differentiability does not need to occur “everywhere” (i.e.,
with full Lebesgue measure) on a trajectory. In this case, the trajectory can be almost everywhere
differentiable except on a certain dense set of points. Examples of these are the singular functions,
such as the Salem-de Rham’s functions [25] or the well known Cantor’s function. Singular functions
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have finite lengths, therefore the exerted displacement work is also finite. This makes them promising
candidates for conceptualization of non-smooth phenomena in physics.

The relationship between Nelson’s and Nottale’s approaches can be established in a formal way.
For clarity of the argument, we focus on the one-dimensional case. First, let’s establish the concept
of stochastic embedding of a signal. In the following, we assume that the deterministic signal
(i.e., trajectory) will be represented by an equivalence class of stochastic paths having the same
expectation as the given deterministic signal. Mathematical notation and preliminaries for the
subsequent treatment are presented in Appendix A. A possibly non-differentiable continuous trajectory
is represented by a continuous Markov stochastic process evaluated in the virtual space of paths
as follows:

Definition 1 (Markov Stochastic Embedding). Consider a bounded deterministic signal x(t) on the compact
interval T ⊆ R representing time. Define the stochastic embedding Sρ in the probability space (T⊗Ω,F , ρ),
where ρ is the probability density, as the isomorphism

Sρ : T ⊗R 7→ (T ⊗Ω,F , ρ),

Sρ : (t, x(t)) 7→ X(t, ω), X ∈ T ⊗Ω,

under the constraint
Eω X(t, ω) = x(t),

where the random variables sampled at different times t are independent and identically distributed (i. i. d.) and
F is a σ-algebra.

Note: the ω-index will be skipped from the notation wherever convenient for clarity. In addition,
Xt and X(t) will be used interchangeably. Deterministic signals are denoted by the lower case, while the
stochastic by upper case letters.

The above definition implicitly assumes that Xt ∈ L1(T ⊗Ω,F , ρ) and Eω X(t, ω) < ∞.
The name of the embedding is justified by the following Lemma:

Lemma 1. The stochastic process under the above definition has the Markov property.

Proof. By construction for fixed t, δ ∈ F

Eω Xt = x(t), Eω Xt+δ = x(t + δ).

The conditional expectation is

Eω (Xt+δ|Xt) =
∫

Ω
ξ

ρ(ξ, Xt)

ρ(Xt)
dξ,

where ξ ≡ Xt+δ is used for notational convenience. However, by independence of the variables
ρ(Xt+δ, Xt) = ρ(Xt+δ)ρ(Xt). Therefore, Eω Xt+δ = Eω (Xt+δ|Xt). Since δ can be either positive or
negative, the claim follows.

Consider the nonlinear problem, where the phase-space trajectory of a system is represented by a
Hölder function x(t) (see Appendix A, Definition A2) and t is a real-valued parameter, for example
time or curve length. Let us suppose that the continuous temporal evolution of a differential system
can be represented by a generalization of the Langevin equation of the form

dx(t) = a(x, t)dt + B(x, t)dtβ, β < 1, (1)
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where a(x, t) and B are bounded and measurable functions of the co-ordinates and furthermore a(x, t)
is continuous in both x and t. That is, for all ε, such that 0 ≤ ε ≤ dt

∆+
ε [x] (t) = x(t + ε)− x(t) = a(x, t)ε + B(x, t)εβ + O (ε) .

This can be recognized as the Hölder growth condition of order β, since a(x, t)ε is an O (ε) term.
The fractional exponent β is treated as a free parameter with value to be determined later.

The type of admissible functions coupled to the fractional exponent depends critically on the
assumption of continuity of the reconstructed trajectory. This in turn demands for the fluctuations of
the fractional term to be discontinuous. The proof technique is introduced in [26], while the argument
is similar to the one presented by Gillespie [8].

Without loss of generality, set a = 0. Let xt+ε = xt + B(xt, t) + O
(
εβ
)

and |∆εx| ≤ Kεβ. Fix the
interval [t, t + ε] and choose a partition of points P = {tk = t + ε k/N}

xtk = xtk−1 + B(xtk−1 , tk−1) (ε/N)β + O
(
(ε/N)β

)
.

Therefore, by induction

∆εx = xt+ε − xt =
1

Nβ

N−1

∑
k=0

B(xtk , tk)ε
β + O

(
N1−βεβ

)
.

If we suppose that B is continuous in x, implying also continuity in t, after taking supremum limit
on both sides

lim sup
ε→0

∆εx
εβ

= N1−βB(xt, t) = B(xt, t).

Therefore, either β = 1 (which is forbidden by hypothesis) or else B = 0 so that B(x, t) must
oscillate from point to point if β < 1. Then, let’s denote the set χβ := {B(xt, t) 6= 0}.

The argument demonstrates that so-defined set is totally disconnected in the topology of the
real line [26]. This allows for the choice of the algebra F , since we can demand that Ω ⊆ χβ has for
elements the semi-open intervals [τi, τj), τi,j ∈ χβ. Furthermore, the initial system in Equation (1) is

equivalent to the finite existence of the fractional velocity B(x, t) = υ
β
+x(τi) 6= 0, since the differential

system can be recognized as fractional Taylor series [26]. In other words, the events in the probability
space are the observations of non-vanishing values of the fractional velocity of the signal.

From now on, let Pτ ≡ P ⊆ F . Without loss of generality, suppose that O
(

N1−βεβ
)
≤ 1.

The stochastic representation xt 7→ (Xt(ω), ρ) is such that

E ∆εX
εβ
− Oε =

1
Nβ

N−1

∑
k=0

E B(Xtk , tk), ∀N.

Therefore, we demand that B(Xt, t) is F -measurable and L 2(Ω, T) as a technical condition.
By the Hölder condition, |xtk − xtk−1 | ≤ Kkεβ for some set of constants Kk. Then, by transfer,

|E B(Xtk , tk)−E B(Xtk−1 , tk−1)| ≤ Kkεβ.

Therefore, E B(Xtk , tk) exists and is bounded. By the same argument,

E (∆εX)2 ≤ Kk
kε2β.
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Then, we proceed by induction. Let Ks = supi K2
i from the above partition:

(∆εx)2 =
N−1

∑
i,j=0

∆ix∆jx =
N−1

∑
i=0

∆ix2 + 2
N−1

∑
i<j

∆ix∆jx ≤ 3Ks ε2βN1−2β.

Therefore, for the embedded variable,

E (∆εX)2 = E
N−1

∑
i,j=0

∆iX∆jX = E
N−1

∑
i=0

∆iX2 + 2E
N−1

∑
i<j

∆iX∆jX ≤ 3Ks ε2βN1−2β.

Since ∆iX∆jX are independent by Lemma 1, E∆iX∆jX = E∆iXE∆jX ≤ Ks. Therefore,
Var[∆εX] ≤ 3Ks ε2βN1−2β.

The argument can be specialized to β = 1/2 where Var[∆εX] ≤ Ks ε2β. Therefore, the variance
exists ∀N and the Central Limit Theorem holds. Since by Lemma 1 the process is Markovian, it must
follow that in limit N → ∞ the random process is Wiener.

Now suppose that a 6= 0. Then, since a(x) is continuous of bounded variation (BVC,
see Appendix A), then a.e.,

Ea(X, t) = Ea(x + Z, t) = E(a(x, t) + a′xZ + O (Z)) = a(x, t), Z = Xt − xt

and
Ea(X, t)2 = a(x, t)2 + a′x

2
σ2, σ2 = EZ2,

with σ2 existing by the previous argument. Therefore, Var[∆εX] ≤ 3Ks ε2βN1−2β − a(x, t)2ε2 ≤
3Ks ε2βN1−2β by the same argument as in the previous case. Therefore, for β = 1/2, the limit of the
random process is Wiener.

Let us denote the limit Wiener process by Wt. Using the stationarity and self-similarity of the
increments ∆+

ε Wt =
√

ε N(0, 1), where N(0, 1) is a standard Gaussian random variable. Therefore,
for β = 1/2, the velocity can be regularized to a finite value if we take the expectation. That is,

υ
β
+EWt = 0,

since ∆+
ε EWt = 0. However,

υ
β
+ E|Wt| =

∞∫
0

√
2
π

e−z2/2dz = 1 .

The estimate holds a.s. since P(Wt = 0) = 0, where P denotes probability.
Finally, there is a function b(X, t), such that b(X, t)ξ = B(X, t), ξ ∼ N(0, 1). This follows directly

from the axiom of choice, since we can always choose ξ = 1. Therefore, the last equation can be treated
as a definition of b(X, t).

In summary, the following theorem can be formulated:

Theorem 1 (Gaussian stochastic embedding). Suppose that x(t) is β-differentiable of order β = 1/2 in the
interval T = [t, t + ε] and

dx(t) = a(x, t)dt + B(x, t)dtβ

for 0 < dt ≤ ε, where a(x, t) is continuous in both x and t and B(x, t) ∈ L 2(Ω, T) is bounded but
discontinuous. Furthermore, let χβ be the set of change (Definition A6) of f [T].

Then, x(t) can be embedded in a probability space (T ⊗Ω,F , ρ), such that

1. Ω ⊆ χβ,
2. Xt has i. i. d. Gaussian increments,
3. EXt = x(t) and
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4. υ
β
+E (|Xt||Xt = x) = υ

β
+|x(t)| = |b(x, t)| hold almost sure.

Furthermore, the stochastic differential equation

dXt = a(Xt, t)dt + b(Xt, t)dWt

holds a.s. In the last equation, Wt is a standard Wiener process and

b(X, t)ξ := B(X, t), ξ ∼ N(0, 1).

Such embedding can be also called a consistent stochastic embedding. This theorem allows for
Nelson’s characterization of the Langevin diffusion process.

3. Nelson’s Characterization

The Langevin equation can describe equivalent quantum-mechanical systems in a path-wise
manner. These are the so-called conservative diffusions of Carlen [27]. The existence of so-conceived
QM particle paths was proven under certain reasonable conditions [27]. Starting from the generalized
Langevin equation, the argument can be specialized to a Wiener driving process, which can be handled
using the apparatus of Itô calculus. Consider the stochastic differential equation with continuous drift
and diffusion coefficients

dXt = a(X, t)dt + b(X, t)dWt,

where a(X, t) and b(X, t) are smooth functions of the co-ordinates and dWt are the increments of a
Wiener process dWdt ∼ N(0, dt) adapted to the past filtration Ft>0 – i.e., starting from the initial state.

Let EXt = x(t). Following Nelson [2], the forward and backward and drift, respectively diffusion
coefficients, can be identified as the averaged velocities [28]:

a = lim
dt→0

E
(

Xt+dt − Xt

dt

∣∣∣∣Xt = x
)
=

d
dt
(x− b

√
dt), (2)

|b| = lim
dt→0

E
(
|Xt+dt − Xt|√

dt

∣∣∣∣Xt = x
)
= υ1/2

+ |x|. (3)

The evolution of the density of the process can be computed from the forward
Fokker–Planck equation

∂

∂t
ρ +

∂

∂x
(aρ)− 1

2
∂2

∂x2

(
b2ρ
)
= 0, (4)

which can be recognized as a conservation law for the probability current j:

∂

∂t
ρ +

∂

∂x
j = 0, j := aρ− 1

2
∂

∂x
b2ρ.

Under the finite energy technical condition, there is a backwards process with the same
transition density

dXt = â(X, t)dt + b(X, t)dŴt,

which is adapted to the future filtration Ft<T – i.e., starting from the final state. This leads to the
anticipative (i.e., anti-Itô or anticipative) stochastic integrals. This process has Fokker–Planck equation

∂

∂t
ρ +

∂

∂x
(âρ) +

1
2

∂2

∂x2

(
b2ρ
)
= 0. (5)
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Then, it follows that the Nelson’s osmotic velocity can be defined from

a− â = b2 ∂

∂x
log b2ρ + φ(t),

where φ(t) is an arbitrary C 1 function of time as u := 1
2 (a− â) and the current velocity as

v :=
1
2
(a + â)

so that a continuity equation holds for the density

∂

∂t
ρ +

∂

∂x
vρ = 0.

Furthermore, Pavon [21] has established that the entropy production over the whole space is

H′(t) := − d
dt

∫
R

ρ log ρ dx3 = − 2
b2E uv.

Thus, for a Markov diffusion process,

E 1
b2

∫ r

s
uv dt =

1
2
(H(s)− H(r))

for a constant b.

4. The Complex Velocity Operator in SR and SM Theories

Scale relativity treats velocity only as a difference quotient. This is a necessity due to the assumed
non-differentiability of the trajectories. Non-differentiability leads to introduction of two velocity
fields—forward and backward, depending on the direction of differentiation in time. These fields
are assumed to be finite for small values of the time step dt but they diverge to infinity in the limit
dt→ 0 in a standard analysis setting. Therefore, such velocity fields can be defined only up to a finite
resolution underlying the physical phenomenon under study. The velocity fields are assumed to admit
representation of the form of a sum of a “classical part” plus a correction of a resolution-dependent
and diverging fractal part. The classical part corresponds to the absolutely continuous part of the
trajectory, while the fractal part corresponds to the singular and possibly oscillatory parts. Since, at the
level of physical description, there is no way to favor the forward rather than the backward velocity,
the description should incorporate them on equal grounds, i.e., forming a bivariate vector field R⊗R

v+ :=
∆+

dtx
dt

⊗ v+ :=
∆−dtx

dt
.

This bivariate vector field is represented by a complex-valued vector field [29] as v = V − iU ∈
R 3 with components given by U := 1

2 (v+ + v−) , V := 1
2 (v+ − v−) , where V is interpreted as the

“classical” velocity and U is a new quasi-velocity quantity (i.e., the osmotic velocity in the terminology
of Nelson). Under these assumptions, Nottale introduces a complexified material derivative, which is
a pseudo-differential operator acting on scalar functions as

DF = ∂tF + (v · ∇) F− iσ2∇2F,

where σ is a constant, quantifying the effect of changing the resolution scale.
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Stochastic mechanics allows for a similar treatment of the complex of forward and backward
diffusions. The drift, resp. diffusion coefficients can be further embedded in a complex space as
proposed by Pavon [21]:

a ⊗ â 7→ V := v− iu,

Xt+dt ⊗ Xt−dt 7→ dX =
1
2
(Xt+dt + Xt−dt)− i

1
2
(Xt+dt − Xt−dt) ,

so that the diffusion process becomes complex. It follows that

dX = Vdt +
1− i

2
b dWt +

1 + i
2

b̂ dŴt.

In the case when b = b̂,

dX = Vdt +
1− i

2
b
(
dWt + idŴt

)
= Vdt +

e−
iπ
4
√

2
b
(
dWt + idŴt

)
.

Therefore, we can designate a new complex stochastic variable

Zt :=
dWt + idŴt√

2
.

Because of its double adaptation, Zt retains its local martingale properties: that is, EZt = 0. In this
case, notably Var Zt = 0, but E|Zt|2 = 1, so that finally,

dX = Vdt +
√
−ib dZt.

Therefore, a formal Itô differential can be introduced in exactly the same way

dF =
∂

∂t
F + dX ∂

∂x
F +

1
2

[
dX 2

] ∂2

∂x2 F (6)

with quadratic variation
[
dX 2] = −ib2dt. Therefore, in components,

dF =

(
∂

∂t
F + V ∂F

∂x
− ib2

2
∂2

∂x2 F
)

dt +
√
−ib

∂F
∂x

dZt, (7)

which generalize to

dF =

(
∂tF + (V · ∇) F− ib2

2
∇2F

)
dt +

√
−ib (dZt · ∇) F

in three dimensions [28]. It is apparent that both theories share an identical algebraical structure, while
SM can be considered as a stochastic representation of SR.

Remark 1. Conceptually, the forward process can be interpreted as a prediction, while the backward process can
be interpreted as a retrodiction.

Note that, in the complex formulation of Pavon, the real part of the driving process Zt corresponds to the
forward (i.e., adapted to the past) process, while the imaginary part corresponds to the backward (i.e., adapted
to the future) process. This is of course one of infinitely many choices, since the complex factor in the diffusion
coefficient is a root of unity and hence represents a rotation in the complex plane.
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The martingale property of the complex Wiener process conceptually means that the knowledge of the
past and future of the process do not bias the outcome at the present time (i.e., at measurement). Note that the
mapping is invertible since

Xt+dt = Re (dX ) + Im (dX ) , | Xt−dt = Re (dX )− Im (dX ) .

From these formulas, it is apparent that the real part, or respectively the imaginary part of the resulting
process do not have separate meanings, as they mix the predictive process with the retrodictive process.
To illustrate the point, suppose that F = Fr + iFi and a = ar + iai and the original process dX is transformed
as F(X ). Then, a straightforward calculation gives

Re(dF) =
(

∂Fr

∂t
+ ar

∂

∂x
Fr − ai

∂

∂x
Fi +

b2

2
∂2

∂x2 Fi

)
dt

+
b√
2

(
dWt

(
∂

∂x
Fr +

∂

∂x
Fi

)
+ dŴt

(
∂

∂x
Fr− ∂

∂x
Fi

))
, (8)

Im(dF) =
(

∂Fi
∂t

+ ar
∂

∂x
Fr + ai

∂

∂x
Fi +

b2

2
∂2

∂x2 Fr

)
dt

− b√
2

(
dWt

(
∂

∂x
Fr −

∂

∂x
Fi

)
− dŴt

(
∂

∂x
Fr +

∂

∂x
Fi

))
. (9)

5. The Real Stochastic Geodesic Equations

The appearance of the Wiener process entails the application of the fundamental Itô Lemma for
the forward (i.e., adapted to the past, plus sign) or the backward processes (i.e., adapted to the future,
minus sign), respectively. In differential notation, it reads

dF(X) = dX
∂

∂x
F±

[
dX2]

2
∂2

∂x2 F, (10)

where
[
dX2] = b2dt is the quadratic variation of the process. It can be seen that in this case the

(forward) differential operator d acts as a material derivative.
The term geodesic will be interpreted as a solution of a variational problem [30,31]. A brief

treatment is given in Appendix B. By application of Itô’s Lemma, the forward geodesic equation can
be obtained as:

∂

∂t
a + a

∂

∂x
a +

b2

2
.

∂2

∂x2 a = 0. (11)

This can be recognized as a Burgers equation with negative kinematic viscosity for the drift
field [13].

The backward geodesic equation follows from the application of the Itô’s lemma for the
anticipative process

∂

∂t
a′ + a′

∂

∂x
a′ − b2

2
∂2

∂x2 a′ = 0 (12)

This can be recognized as a Burgers equation with positive kinematic viscosity for the drift field.
The solution of the Burgers equation is well known and can be given by the convolution integrals

(Equation (44)) for the case of positive viscosity [13]. The case about the negative viscosity can not
be easily solved using Fourier transform. Therefore, a different solution technique will be pursued.
Time-varying solutions will be constructed from topological deformations of the stationary solutions.

In QM applications, b = h̄/2m. Normalization b = 1 will be assumed further in most cases to
simplify calculations.
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5.1. Path-Wise Separable Solutions

In the first instance, one can solve the geodesic equation by supposing separability. By making
the ansatz a(x, t) = f (x)g(t), we arrive at the equation:

f ′′(x)
2 f (x)

+ g(t) f ′(x) +
g′(t)
g(t)

= 0.

This has the unique solution

a(x, t) =
x + x0

t + T
. (13)

The resulting Itô equation can be formulated as

dX =
X + x0

t + T
dt + dWt.

The stochastic differential equation for the drift is therefore

da =
1

t + T
dWt,

which can be integrated exactly in Itô’s sense as

a(t) = a0 +

t∫
0

dWs

s + T
, a0 =

x0

T
. (14)

Therefore,

X(t) =
x0

T
(t + T) + (t + T)

t∫
0

dWs

T + s
, (15)

where T is the stopping time. Therefore, an exact numerical quadrature can be performed (Figure 1 )

(A) (B)
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Figure 1. Virtual trajectories of the separable process. (A) virtual trajectories; (B) empirical vs.
theoretical density. (A) exact simulation of separable process is compared with the Euler–Maruyama
algorithm. E—Exact simulation, E–M—Euler–Maruyama simulation; An offset is added to the exact
solution for appreciation. Time is given in arbitrary units; (B) the empirical transition density is
estimated from n = log2(Ns N) bins. Pearson’s correlation is given as an inset—r = 0.9976.
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The corresponding density can be obtained from the Fokker–Planck equation

∂

∂t
ρ +

∂

∂x

(
ρ x

t + T

)
− 1

2
∂2

∂x2 ρ = 0

with solution

ρ(x, t) =
1√

2π (T + t)
exp

(
x2

2(t + T)

)
. (16)

It should be noted that, under time reversion, we arrive at the same solution, which however
leads to a different Fokker–Planck equation

∂

∂t
ρ +

∂

∂x

(
ρ x

t− T

)
+

1
2

∂2

∂x2 ρ = 0

with solution

ρ(x, t) =
1√

2π (T − t)
exp

(
− x2

2(t− T)

)
,

which can be recognized as a Brownian bridge. The entropy of this density can be calculated as

H(t) =
log 2π (t− T) + 1

2
.

5.2. Stationary Drift Fields

For time-homogeneous diffusion, the geodesic equation can be brought into the form

1
2

∂

∂x

(
a2 +

∂

∂x
a
)
= 0,

which can be integrated once to give

a2 +
∂

∂x
a = −E.

The integration constant E can be identified with the energy. The resulting first order ordinary
differential equation (ODE) can be solved as

a(x) = −
√

E tan
(√

E x + c
)

, E > 0, (17)

a(x) =
1

x + c
, E = 0. (18)

The solution for E > 0 was identified by Herman [32]. By translation, invariance of the coordinates,
c = 0 is admissible. This observation will be used further for the transient solution. The link between
the two solutions can be established as follows. Note that

a(x) =
√

E cot
√

E x

is also a solution. Then,

lim
E→0

√
E cot

√
E x =

1
x

,

which is the second solution.
The expectation of the trajectory can be obtained by solving the ODE

dx
dt

= −
√

E tan
√

E x
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so that

√
E x(t) = arcsin e−Et+c, (19)
√

E x(t) = arccos e−Et+c. (20)

In accordance with so-developed theory for c = 0,

υ1/2
+ x(t = 0) = ± lim

h→0+
E

2
√

h e−Eh
√

1− e−2Eh
= ±
√

2E.

Furthermore, for E = 0,
dx
dt

= ± 1
x

so that in the same way
x(t) = c±

√
2t.

The backward geodesic equation

1
2

∂

∂x

(
a2 − ∂

∂x
a
)
= 0

by the same method leads to

a(x) = −
√

E tanh
(√

E x + c
)

, E > 0, (21)

a(x) = − 1
x + c

, E = 0. (22)

5.3. Stationary Density Solutions

The stationary density ρ(y) is a solution of the Fokker–Planck (i.e., forward Kolmogorov)
equations parametrized by E:

1
2

∂2

∂y2 ρ
(

y2 + 1
)2

= 0, E > 0, (23)

1
2

∂2

∂y2 ρ y4 = 0, E = 0. (24)

The case E > 0 leads to

∂

∂x
tan(x)ρ +

1
2

∂2

∂x2 ρ = 0 (25)

with stationary solution
ρ = cos2

√
Ex,

which can be valid on a bounded domain. The entropy of this solution in the domain
[−π/(2

√
E), π/(2

√
E)] can be calculated as

H =
π log 4

2
− π

2
.

The case E = 0 leads to

∂

∂x
ρ

x
− 1

2
∂2

∂x2 ρ = 0 (26)
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with a stationary solution
ρ = |x|,

which can be valid on a bounded domain.

5.4. Transient Drift Fields

The solution of the Burgers equation is well known and can be given by the convolution integrals
(Equation (44)) for the case of positive viscosity [13]. The case of negative viscosity emerging here is
more challenging and it will be solved by a deformation of the stationary solution, so that in limit the
stationary solution is recovered:

lim
t→∞

a(t, x) = a(x), E > 0.

The solution is sought in the form (neglecting scale factors)

a(t, x) = − sin x
cos x + f (t),

which results in a linear ODE for the unknown function f (t):

2 f ′(t) + f (t)

2 (cos x + f (t))2 sin x = 0.

By variation of the parameters, the solution for a(t, x) is given as

a(t, x) = −
√

E
sin
√

Ex

cos
√

Ex + ke−
Et
2

, (27)

where the constant E represents an energy scale and k is an arbitrary constant. We can assume
normalization, for example k = ±

√
E, such that a(t, π

2E ) = ±1. Plots are presented in Figure 2.

(A) (B)

Figure 2. Time-varying drift fields for E = 1, k = 1. (A) forward drift; (B) backward drift.

The transformed Itô drift equation for k = 1 reads

da(t, x) = −E
e−Et/2 cos

√
Ex + 1(

e−Et/2 + cos
√

Ex
)2 dWt = −

√
E

e−Et/2 cos
√

Ex + 1(
e−Et/2 + cos

√
Ex
)2 dWE t.
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It can be further noticed that rescaling in a pair of new variables x′ =
√

Ex, t′ = Et leaves
the ratio

z =
x2

t
=

x′2

t′

invariant so that z becomes a similarity variable.
Furthermore, a formal forward Kolmogorov equation can be written in the y = a(t, x) variable

with E = 1 as

∂

∂t
ρ− 1

2
∂2

∂y2

ρet
(

cos (x) + e
t
2

)2

(
e

t
2 cos (x) + 1

)4 = 0, x = ± arcsin

 e−
t
2 y
(√

(et − 1) y2 + et − 1
)

y2 + 1

 ,

however its solution is challenging due to its mixed nonlinearity and will not be attempted here.
Nevertheless, the analysis presented so far assures that asymptotically ρ can be obtained as a solution
of the stationary equation.

The backward geodesic equation leads to the following solution :

a(t, x)′ = −
√

E
sinh
√

Ex

cosh
√

Ex + ke−
Et
2

. (28)

5.5. Asymptotic Density Solutions

The forward drift itself a ≡ y (symbol changed) obeys the transformed stochastic
differential equations

E > 0 : dy =
√

E
(

y2 + 1
)

dWt =
(

y2 + 1
)

dWE t, (29)

E = 0 : dy = y2 dWt. (30)

The density ρ is a solution of the forward Kolmogorov equations parametrized by E:

∂

∂E t
ρ =

1
2

∂2

∂y2 ρ
(

y2 + 1
)2

, E 6= 0, (31)

∂

∂t
ρ =

1
2

∂2

∂y2 ρ y4, E = 0. (32)

The solutions can be obtained using the Laplace transform Ls f (t) 7→ f̂ (s). In this way, the partial
differential equation can be transformed into an ODE for the Laplace variable:

−1
2

∂2

∂y2 ρ̂y4 + ρ̂ s = ρ(0, y), (33)

−1
2

∂2

∂y2 ρ̂
(

y2 + 1
)2

+ ρ̂ s = ρ(0, y). (34)

To obtain the Green’s function, we take homogeneous initial conditions a.e. The solutions in the
time domain can be obtained by the inverse Laplace transformation:

ρ̂(s, y) =
Ae−

√
2 s
y

√
s y3

L−1
s−−→ ρ(t, y) =

A√
t y3

e
− 1

2 t y2 , (35)

ρ̂(s, y) =
e−
√

2s/E−1 arctan(y)

(y2 + 1)
3
2

L−1
s−−→ ρ(t, y) =

e−
arctan2 y−(Et)2

2E t

√
π Et

√
(y2 + 1)

3 . (36)
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In the position space, the solution can be obtained using Grisanov’s theorem [4]:

ρ(t, x) =
|x|√

t
exp

(
− x2

2 t

)
, (37)

ρ(t, x) =
| cos (

√
E x)|√

πE t
exp

(
Et
2
− x2

2t

)
. (38)

The second equation is not acceptable from a physical point of view since lim
t→∞

ρ(t, x) diverges.

In the same way for the backward drift,

E > 0 : dy =
√

E
(

y2 − 1
)

dWt =
(

y2 − 1
)

dWE t, (39)

E = 0 : dy = y2 dWt, (40)

∂

∂E t
ρ =

1
2

∂2

∂y2 ρ
(

y2 − 1
)2

, E 6= 0, (41)

with solutions

ρ(t, y) =
1

√
π Et

√
(y2 − 1)

3 exp

(
−arctanh2 y + (Et)2

2E t

)
in the drift space and in position space

ρ(t, x) =
cosh (

√
E x)√

πE t
exp

(
− x2

2t
− Et

2

)
,

respectively. This is acceptable from a physical point of view since lim
t→∞

ρ(t, x) = 0, which is a correct

asymptotic behavior.

6. The Complex Stochastic Geodesic Equations

The complexification removes the restriction of positive definiteness of the E parameter so that
the substitution t 7→ ±Et becomes admissible by an appropriate cut along the complex plane.

In a similar way, for the complex case, we have

dXt = −i
√

E tanh
√

EXt dt +
√
−i dZt,

which, under substitution, y = tanh x leads to

dy =
√
−i
√

E
(

y2 − 1
)

dZt,

By the same methods as used above, the asymptotic density for the drift variable can be
obtained as

ρ(t, y) = Re
1

√
πt (y2 − 1)

3
2

exp

(
iEt
2
− iarctanh2 y

2Et

)
.

For the resulting density in the position space, it can be calculated that

ρ(t, x) = Re
i cosh (

√
Ex)√

πEt
exp

(
iEt
2
− ix2

2t

)
. (42)
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In a similar way, for the other solution,

dX = i
√

E tan
√

EXdt +
√
−i dZt,

which under substitution y = tan
√

Ex leads to the drift equation

dy =
√
−i
√

E(1 + y2) dZt.

The drift density can be readily obtained as

ρ(t, y) =
1

√
πt (y2 + 1)

3
2

exp
(
− iEt

2
− iarctan2 y

2Et

)
.

In the position space, the density is of the form

ρ(t, x) = Re
| cos (

√
Ex)|√

πEt
exp

(
− ix2

2t
− iEt

2

)
. (43)

In either case, the densities asymptotically approach zero.

7. Real-Valued and Complex Cole–Hopf Transformations

The Burgers equation can be linearized by the Cole–Hopf transformation [33,34]. This mapping
transforms the nonlinear Burgers equation into the linear heat conduction equation in the
following way. Let

u =
∂

∂x
log a.

Substitution into Equation (11) leads to

1
2 u2

(
u

∂3u
∂x3 + 2u

∂2u
∂t∂x

− ∂u
∂x

∂2u
∂x2 − 2

∂u
∂t

∂u
∂x

)
= 0.

This can be recognized as
∂

∂x
1
u

(
∂

∂t
u +

1
2

∂2

∂x2 u
)
= 0,

which is equivalent to a solution of the equation

∂

∂t
u +

1
2

∂2

∂x2 u = 0.

It should be noted that if instead of the forward development (i.e., prediction) one takes the
backward development (i.e., retrodiction), the usual form of the Burgers equation is recovered.
This corresponds to the anticipative Wiener process, which is subject to the anticipative Itô
calculus [17,35]:

∂

∂t
â + â

∂

∂x
â− 1

2
∂2

∂x2 â = 0.

In this case, the usual general solution can be revealed

φ0(x) = exp
(

1
2ν

∫ x

0
â0(u)du

)
, (44)

â(x, t) =
∂

∂x
log

1
2
√

πνt

∫ ∞

−∞
φ0(u)e−

(x−u)2
4νt du =

∫ ∞
−∞

x−u
t φ0(u)e−

(x−u)2
4νt du∫ ∞

−∞ φ0(u)e−
(x−u)2

4νt du
, (45)
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where ν = 1/2 is the viscosity coefficient.
In the complex case, starting from the generalized Itô differential, the complex velocity

field becomes

dV =

(
∂

∂t
V + V ∂

∂x
V − ib2

2
∂2

∂x2V
)

dt +
√
−ib

∂

∂x
V dZt.

The geodesic equation reads
E dV = 0.

Therefore, by the martingale property, this is equivalent to

∂

∂t
V + V ∂

∂x
V − ib2

2
∂2

∂x2V = 0,

which can be recognized as a generalized Burgers equation with imaginary kinematic viscosity
coefficient. Applying the complex Cole–Hopf transformation as [36]

V = −i
∂

∂x
log U, −π < arg U < π

and specializing to b = 1 leads to

−
U
(

∂3

∂x3 U
)
−
(

∂
∂x U

) (
∂2

∂x2 U
)
− 2i

(
∂
∂t U

) (
∂

∂x U
)
+ 2iU

(
∂2

∂t∂x U
)

2U2 = 0,

which can be recognized as a gradient

− ∂

∂x
1
U

(
i

∂

∂t
U +

1
2

∂2

∂x2 U
)
= 0.

The last equation is equivalent to the solution of the free Schrödinger equation. On the other hand,
the diffusion part is simply

−
√

i
(

∂2

∂x2 log U
)

dZt = −
√

i
(

∂

∂x
1
U

∂

∂x
U
)

since −i
√
−i = −

√
i.

This corresponds with the arguments given in [37] that the coefficient of the stochastic noise should
be purely imaginary. Calculations can be reproduced in the computer algebra system Maxima [38].

8. Numerical Results

The different types of solutions of the stochastic geodesic equation were simulated using the
Euler–Maruyama algorithm. Simulations were performed in Matlab. An example of a simulation
script is given in Appendix C.

8.1. Exact Simulations

The exact simulations of the separable process were compared to simulations computed by the
Euler–Maruyama algorithm. Achieved correlation was 1.0 while the mean squared error was on
the order of 1× 10−8.The comparison is presented in Figure 1. The empirical transition density was
computed from Ns = 1000 simulations and correlated to the graph of Equation (16). The theoretical
density was computed from Equation (16) for stopping time T = 10. Achieved correlation was 0.9976.
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8.2. Free Diffusion

The normalized asymptotic transient density of the free particle distribution can be recognized as
the Rayleigh’s distribution (Figure 3)

R(x, t) =
|x|
2t

e−
x2
2 t .

(A) (B)
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Figure 3. Simulations of free particles virtual trajectories. (A) virtual trajectories: free particles; (B)
empirical vs. theoretical density. Simulations are based on N = 10, 000 points in Ns = 1000 simulations.
(A,B) width of potential well is 2L = 100 units. The empirical pdf is estimated from n = log2(Ns N)

bins. Pearson’s correlations are given as inset—r = 0.9883. Norming of the free particle transient results
in Rayleigh density.

8.3. Particle in a Box

The third simulated case comprised a freely diffusing particle in a square potential well of size 2L.
The approach was based on Hermann [32]. Individual trajectories were simulated according to the
fundamental equation using the scheme of Euler–Maruyama:

xn+1 = xn − 2D∆t
πn
L

tan
(

πn
L

xn − π
n + 1

2

)
+
√

2D∆t ∆Wn,

where ∆Wn ∼ N(0, 1).
Restarting boundary conditions were used for the simulations to avoid distortions of the

distribution. That is, if a simulated particle crossed the boundaries its position was reset to its
original position.

The initial particle positions were sampled from a uniform distribution between −L and L.
The theoretical density for the particle in a box case is given by

ρs(x) =
2
L

sin2
(

nπ

(
x
L
+

1
2

))
.

Results are based on N = 10000 points in Ns = 1000 simulations.
The empirical pdf is estimated from n = log(Ns N)2 bins. Pearson’s correlations are given as

insets: B – r = 0.9939, D – r = 0.9871. For both cases, the numerical precision correlates excellently with
the analytical solutions (Figure 4).
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(C) (D)

Figure 4. Simulations of particles in a box for two quantum numbers. (A) virtual trajectories: particle
in a box, n = 2; (B) empirical vs. theoretical density; (C) test particles in a box, n = 8; (D) empirical vs.
theoretical density. (A,B) width of potential well is 2L = 100 units.

9. Discussion

This work was motivated in part by the premise that inherently nonlinear phenomena need
development of novel mathematical tools for their description. The relaxation of the differentiability
assumption opens new avenues in describing physical phenomena, as demonstrated by SM
and SR, but also challenges existing mathematical methods, which are developed for smooth
signals [2,3]. While this description can be achieved also by fractional differ–integrals, or by multi-scale
approaches [39], the present work focused on a local description. The reason for this choice is that
locality provides a direct way of physical interpretation of the obtained results. In this regard,
Hölderian functions can be used as building blocks of such strongly nonlinear models, which give rise
to singular [24,40] or non-differentiable models.

The second motivation of the present work was to investigate the potential of stochastic methods
for simulations of quantum-mechanical and convection-diffusive systems. While the usual presentation
of the stochastic mechanics typically used the Schrödinger equation as a solution device and paths were
constructed from solutions of the Schrödinger equation, this is not necessary. McClendon and Rabitz
simulated several quantum systems using the differential equations of Nelson’s stochastic quantization
as a starting point [41]. In the framework of scale relativity, Herman [32] and later Al Rashid et al. [42]
simulated QM particle in a box using the Langevin equations. Later, Al-Rashid et al. [43] simulated
the quantum harmonic oscillator extending Herman’s approach. The approach presented here can
be used as an alternative to numerical solutions of the Schrödinger equation. In this scenario,
the density of the solution can be sampled from Monte Carlo simulations as demonstrated. Presented



Entropy 2018, 20, 492 21 of 27

numerical approaches can be used, for example, for simulations of nanoparticles or quantum dots,
which are mesoscopic objects and are expected to have properties intermediate between macroscopic
and quantum systems [44]. This can be of interest, for example in sedimentation studies, where
Langevin dynamics was proposed [45]. In principle, presented results can be extended towards
asynchronous simulations using the Gillespie’s algorithm [8]. This can be achieved using time steps
distributed exponentially.

Obtained results can be also discussed in view of the fluctuation-dissipation relationships.
The fluctuation-dissipation theorem relates the linear response relaxation of a system from a
non-equilibrium state to the properties of fluctuations in equilibrium. This is an exact result in
the case of the Ornstein–Uhlembeck process, where the drift term is linear. The geodesic treatment
in the present work provides a different relationship between the drift and a(x, t) and diffusivity
b(x, t). In the small perturbation regime around the equilibrium the geodesic process xeq(t) can be
approximated by an Ornstein–Uhlembeck process for the fluctuation term (ξ = δx(t)), therefore an
appropriate fluctuation-dissipation theorem can be formulated assuming that equipartition also holds.

A fact that is not fully addressed by both stochastic mechanics and scale relativity is why do
the theories work only for (box) fractal dimension 2 of the paths. While Nottale gives an heuristic
argument and claims that the prescription of a Wiener process may be generalized, he does not proceed
to rigorously develop the argument. On the other hand, the stochastic mechanics fixes from the start
the Wiener process as a driving noise. While this may look plausible in view of the traditions in the
treatment of Brownian motion, it is a choice that should be justified as nowadays anomalous types of
diffusion dynamics are also recognized and systematically investigated (overview in [46]). The answer
to this question can be given more easily by an approach inspired by Nottale and is partially given by
the argument given by Gillepsie [8]. The original argument in [8] contains an explicit assumption of
existence of the second moment of the distribution, which amounts to assuming Hölder continuity of
order 1/2 as demonstrated here in Theorem 1. The theorem also corresponds to the result established
for fractal interpolation computed via a chaos game where the limit random distribution has been
identified with the Gaussian distribution [47,48].

While in SR particle ’trajectories’ are considered to be only virtual, SM and the original formulation
of Bohm’s quantum mechanics treat them as physically real. It is noteworthy that recently Flack and
Hiley [49] demonstrated that that a Bohm ’trajectory’ is the average of an ensemble of actual individual
stochastic Feynman paths. This is in line with the treatment of the problem by the stochastic mechanics
and scale relativity and promotes the view that Bohm’s quantum mechanics is a mean field theory of
the stochastic mechanics.
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Appendix A. Notations, General Definitions and Properties of Fractional Velocity

Definition A1 (Asymptotic O notation). The notation O (xα) is interpreted as the convention that

lim
x→0

O (xα)

xα
= 0

for α > 0. The notation Ox will be interpreted to indicate a Cauchy-null sequence with no particular power
dependence of x.
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Definition A2. We say that f is of (point-wise) Hölder class H β if for a given x there exist two positive
constants C, δ ∈ R that for an arbitrary y ∈ Dom[ f ] and given |x − y| ≤ δ fulfill the inequality | f (x)−
f (y)| ≤ C|x− y|β, where | · | denotes the norm of the argument.

Definition A3. Define the parametrized difference operators acting on a function f (x) as

∆±ε [ f ] (x) := sgn(ε) ( f (x + ε)− f (x)) .

The first one we refer to as forward difference operator, the second one we refer to as backward
difference operator.

Definition A4. Define Fractional Variation operators of order 0 ≤ β ≤ 1 as

υ
β
ε± [ f ] (x) :=

∆±ε [ f ] (x)
|ε|β

. (A1)

This section follows the presentation given recently in [50].

Definition A5 (Fractional order velocity). Define the fractional velocity of fractional order β as the limit

υ
β
± f (x) := lim

ε→0

∆±ε [ f ](x)
|ε|β

, (A2)

where 0 < β ≤ 1 are real parameters and f (x) is real-valued function. A function for which at least one of
υ

β
± f (x) exists finitely will be called β-differentiable at the point x.

In the above definition, we do not require upfront equality of left and right β-velocities.
This amounts to not demanding continuity of the β-velocities in advance. Instead, continuity is
a property, which is fulfilled under certain conditions.

Definition A6. The set of points where the fractional velocity exists finitely and υ
β
± f (x) 6= 0 will be denoted

as the set of change χ
β
±( f ) :=

{
x : υ

β
± f (x) 6= 0

}
.

Since the set of change χα
+( f ) is totally disconnected [26], some of the useful properties of ordinary

derivatives, notably the continuity and the semi-group composition property, are lost.

Definition A7. β-Regularized derivative of a function is defined as:

d β±

dx
f (x) := lim

ε→0

∆±ε [ f ](x)− υ
β
+ f (x) εβ

ε
.

We will require as usual that the forward and backward regularized derivatives be equal for a uniformly
continuous function.

In this section, we assume that the functions are BVC in the neighborhood of the point of interest.
Under this assumption, we have

• Product rule

υ
β
+[ f g] (x) = υ

β
+ f (x) g(x) + υ

β
+g (x) f (x) + [ f , g]+β (x),

υ
β
−[ f g] (x) = υ

β
− f (x) g(x) + υ

β
−g (x) f (x)− [ f , g]−β (x),
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• Quotient rule

υ
β
+[ f /g] (x) =

υ
β
+ f (x) g(x)− υ

β
+g (x) f (x)− [ f , g]+β

g2(x)
,

υ
β
−[ f /g] (x) =

υ
β
− f (x) g(x)− υ

β
−g (x) f (x) + [ f , g]−β

g2(x)
,

where
[ f , g]±β (x) := lim

ε→0
υ

γ
ε± [ f ] (x) υ

β−γ
ε± [g] (x) ,

wherever [ f , g]±β (x) 6= 0.
For compositions of functions,

• f ∈ H β and g ∈ C 1

υ
β
+ f ◦ g (x) = υ

β
+ f (g)

(
g′(x)

)β ,

υ
β
− f ◦ g (x) = υ

β
− f (g)

(
g′(x)

)β ,

• f ∈ C 1 and g ∈ H β

υ
β
+ f ◦ g (x) = f ′(g) υ

β
+g (x) ,

υ
β
− f ◦ g (x) = f ′(g) υ

β
−g (x) .

Basic evaluation formula [51]:

υ
β
± f (x) =

1
β

lim
ε→0

ε1−β f ′(x± ε).

Derivative regularization [52]:
Let f (t, w) ∈ C2 be composition with w(x), a 1/q-differentiable function at x, then

d ±

dx
f (x, w) =

∂ f
∂x

+
d ±

dx
w(x) · ∂ f

∂w
± 1

q!
[wq]± · ∂q f

∂wq , (A3)

where
[wq]± =

(
υ

1/q
± w (x)

)q

is the fractal q-adic (co-)variation.

Appendix B. The Stochastic Variation Problem

The study of stochastic Lagrangian variational principles has been motivated initially by quantum
mechanics and optimal control problems. This section gives only a sketch for the treatment of the
problem. The reader is directed to [21,30,31] for more details. In the simplest form, this is the
minimization of the regularized functional assuming a constant diffusion coefficient b

Sα(t0, T) := lim
N→∞

E
(
(PN)

t=T

∑
t=t0

1
2
(∆Xk)

2

∆tk
− σ

(
α− 1

2

)
b2

∣∣∣∣∣Xk = x(αtk + (1− α)tk+1)

)

for the partition PN and σ = sign
(

α− 1
2

)
.
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Thus, suppose that α = 1. Then, the increments can be interpreted as Itô integrals so that by the
Itô isometry since finite summation and integration commute

E
(

1
2∆tk

(∆Xk)
2 − 1

2
b2
∣∣∣∣Xk = x(tk)

)
=

1
2∆tk

(∫ tk+1

tk

ads
)2

+
1

∆tk

(∫ tk+1

tk

ads
)
E
(∫ tk+1

tk

bdw
)
+

1
2∆tk

E
(∫ tk+1

tk

bdw
)2
− 1

2
b2 =

1
2∆tk

(∫ tk+1

tk

ads
)2

+
1

2∆tk

∫ tk+1

tk

b2ds− 1
2

b2 = a
∫ tk+1

tk

ads + O (∆tk) .

Therefore, Sα(t0, T) is minimal if the drift vanishes on PN . Suppose that Xt is varied by a small
smooth function λφ(t, x), where the smallness is controlled by λ, then the Itô lemma should be applied
so that E(dδXt|F ) = 0 on the difference process δXt = λφ(t, x)dt + bdWt. Therefore,

E (dφ|F ) = λdt
(

∂

∂t
φ + φ

∂

∂x
φ +

b2

2
∂2

∂x2 φ

)
= 0 (A4)

should hold. The same calculation can be performed for α = 0 if the Itô integral is replaced by the
anticipative Itô integral. In this case, σ = −1 and the integration is reversed

E
(

1
2∆tk

(∆Xk)
2 +

1
2

b2
∣∣∣∣Xk = x(tk+1)

)
=

1
2∆tk

(∫ tk

tk+1

ads
)2

+
1

∆tk

(∫ tk

tk+1

ads
)
E
(∫ tk

tk+1

bdw
)
+

1
2∆tk

E
(∫ tk

tk+1

bdw
)2

+
1
2

b2 =

1
2∆tk

(∫ tk

tk+1

ads
)2

+
1

2∆tk

∫ tk

tk+1

b2ds +
1
2

b2 = a
∫ tk+1

tk

ads + O (∆tk) .

In this case, the backward Itô formula also applies as

E (dφ|F ) = λdt
(

∂

∂t
φ + φ

∂

∂x
φ− b2

2
∂2

∂x2 φ

)
= 0. (A5)

Remark A1. The treatment of Pavon [21] uses the symmetrized functional S = S0 + S1 together with a
constraint on anti-symmetrized functional S0 − S1 in the present notation.

Appendix C. Matlab Simulation Code

Listing 1: Exact simulation Matlab code.

1 c l e a r a l l ;
2 c l o s e a l l ;
3

4 % Choose s u i t a b l y small time step
5 dt = 1/2^10;
6 s t = s q r t ( dt ) ;
7 s i g =1;
8 % Stopping time
9 T=10;

10

11 t = 0 : dt : T−dt ; % time vector
12 % Set i n i t i a l condi t ion
13 rand ( ’ s t a t e ’ , 2 0 0 ) ; % net random seed
14 nsim =1000; % number of s imulat ions
15 N =length ( t ) ;
16 % populate random vector
17 r = randn (N, nsim ) ;
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18

19 % seed i n i t i a l condi t ions
20 x0 = T∗ ( rand ( nsim , 1 ) −0.5) /2;
21

22 %% SDE
23 % Euler− Maruyama
24 %
25 y = zeros (N, nsim ) ;
26 y ( 1 , : ) = x0 ’ ;
27 f o r i = 1 :N−1
28 y ( i + 1 , : ) = y ( i , : ) + dt∗y ( i , : ) . / ( t ( i ) +T ) + s t ∗ r ( i , : ) ;
29 end
30

31 %%%%%%%%%
32 % Exact s imluat ion
33 %
34 tau=t ’+T ;
35 w= zeros (N, nsim ) ;
36 z= zeros (N, nsim ) ;
37 f o r i =1: nsim
38 z= r ( : , i ) ./ tau ;
39 w( : , i ) = tau . ∗ ( cumsum( z ) ∗ s t ) ;
40 w( : , i ) =[ x0 ( i ) ; w( 1 : end−1, i ) +x0 ( i ) ∗ tau ( 1 : end−1)/T ] ;
41 end
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