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Abstract: With the popularity of the Internet, the transmission of images has become more frequent.
It is of great significance to study efficient and secure image encryption algorithms. Based on
traditional Logistic maps and consideration of delay, we propose a new one-dimensional (1D) delay
and linearly coupled Logistic chaotic map (DLCL) in this paper. Time delay is a common phenomenon
in various complex systems in nature, and it will greatly change the dynamic characteristics of the
system. The map is analyzed in terms of trajectory, Lyapunov exponent (LE) and Permutation entropy
(PE). The results show that this map has wide chaotic range, better ergodicity and larger maximum
LE in comparison with some existing chaotic maps. A new method of color image encryption is
put forward based on DLCL. In proposed encryption algorithm, after various analysis, it has good
encryption performance, and the key used for scrambling is related to the original image. It is
illustrated by simulation results that the ciphered images have good pseudo randomness through our
method. The proposed encryption algorithm has large key space and can effectively resist differential
attack and chosen plaintext attack.

Keywords: chaos; image encryption; delay and linearly coupled Logistic chaotic map

1. Introduction

With the development of rapid application of computer and internet technology, considerable
attention has been paid to the secure transmission of multimedia video information such as texts,
images and videos [1]. Therefore, it is becoming more and more important to study an image encryption
algorithm with good performance [2–5]. Chaotic systems are very important systems in nonlinear
dynamics. Because of their sensitive dependence on initial conditions and initial values, they are often
used in image encryption systems [6–8].

Chaos systems generally have one-dimensional and high-dimensional (HD) [9]. However, most of
the traditional one-dimensional discrete chaotic maps have the disadvantages of relatively narrow
chaos parameter range and small Lyapunov exponents [10]. Therefore, how to design a chaos map
with a large Lyapunov exponent, a wide range of chaotic parameters, and the design of efficient and
secure image encryption algorithms are currently the focus of research.

The 1D chaotic map usually contains only one variable and a few parameters so that the structure is
simple. It is easy to predict [11] the initial conditions and initial values of the mapping, resulting in an
image encryption algorithm that is insecure and vulnerable to attack. For example, the encryption
algorithms proved to be insecure, which is based on the Logistic map [6,12]. However, although the
HD chaotic system has many variables and parameters, the structure is often too complicated and
the encryption efficiency is not high. Hua et al. [8] put forward a two-dimensional Sine Logistic
modulation map (2D-SLMM) model. In addition, Liu et al. [7] also proposed a system based on
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two-dimensional sine and an iterative chaotic map with infinite collapse modulation map (2D-SIMM).
They all have relatively complex maps in encryption algorithms [13,14]. Their performance evaluation
of maps is not ideal, including the fact that the phase diagram and Lyapunov exponent spectrum,
complex performance analysis and the implementation of their hardware are relatively complicated.
Therefore, a chaotic map with a relatively simple structure and excellent performance is proposed,
which can greatly improve the performance of the encryption algorithm, and can make the hardware
application relatively simple and inexpensive [15–18].

In this study, we proposed a novel one-dimensional delay and linearly coupled Logistic chaotic
map. It has a relatively simple structure and large enough key space. In the encryption scrambling
process of the algorithm, an improvement is proposed over the classical encryption scrambling and
diffusion method. In the diffusion process, an improved diffusion strategy is adopted to perform
exclusive OR (XOR) operations with the current pixel value not only with the encryption value and
diffusion sequence of the previous pixel, but also with the encrypted value of the pixel above the current
pixel. The diffusion effect and a good encryption effect are achieved, and the encryption efficiency of
the algorithm is improved. In Section 2, we introduced DLCL and analyzed its performance by
comparing it with chaotic maps in some other algorithms [7,8,13,14]. We proposed a color image
encryption algorithm based on DLCL in Section 3, and we analyzed some of the performance of image
encryption algorithms in Section 4. Finally, we provide conclusions in Section 5.

2. Delay Linear Coupling Logistics Map

2.1. DLCL Model

The structure of delay linear coupling is defined by:

Xn+1 = F(Xn + aXn+1) mod1, (1)

where a is system parameters, and a ∈ (0, 1), When function F(x) is set as the Logistic map, then the
DLCL is obtained as:

Xn+1 = u(Xn + aXn+1)(1− (Xn + Xn+1)), (2)

where u ∈ (0, 4) is used to enhance its nonlinearity and randomness.
Compared to the 2D-SIMM, 2D-SLMM, the parameter-varying Baker map (PVBM) [13] and

the 2D Logistic-adjusted-Sine map (2D-LASM) [14], the structure of DLCL is relatively simple and
significantly improves the speed of iteration.

2.2. Performance Evaluation of DLCL

2.2.1. Trajectory

Figure 1 shows the trajectories of DLCL, 2D-SLMM, 2D-SIMM, PVBM and 2D-LASM. For DLCL,
2D-SLMM,2D-SIMM, 2D-LASM, they have the same initial values (0.3, 0.4). We can see that the
trajectory of the DLCL is distributed in the region [0, 1]× [0, 1] from the graph, and, compared with
the other three in the same size area, we can see that DLCL has a relatively larger area than 2D-SLMM
and 2D-SIMM and DLCL has a more even distribution than 2D-LASM. For DLCL and PVBM, the
trajectories of DLCL and PVBM are distributed in the region [0, 1]. This means that DLCL has excellent
spatial ergodicity property.
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Figure 1. The trajectories of Delay Linear Coupling Logistics (DLCL), two-dimensional Sine
Logistic modulation map (2D-SLMM), two-dimensional sine and an iterative chaotic map with
infinite collapse modulation map (2D-SIMM), parameter-varying Baker map (PVBM). (a) DLCL;
(b) 2D-SLMM; (c) 2D-SIMM; (d) 2D-Logistic-adjusted-Sine map (LASM), parameter µ = 0.9, initial
value (x0, y0) = (0.3, 0.4); (e) DLCL, initial value (x0, x1) = (0.6, 0.2), α = 0.8, µ = 3.99; (f) PVBM, initial
value (x0, y0)= (0.2341, 0.0938).

2.2.2. Analysis of Lyapunov Exponent

The sensitive dependence of initial values and initial conditions is the most important feature of
chaotic systems. The LE is used to quantitatively characterize the chaotic system, which characterizes
the average exponential rate of convergence or divergence between adjacent orbits in a phase space.
For discrete systems, the system is in a chaotic state when the LE is greater than zero. The hyperchaotic
systems is defined as a chaotic system with several positive LE [19].

Figure 2 shows the LEs (λ1, λ2) of DLCL, 2D-SLMM and 2D-SIMM. DLCL is chaotic for
α ∈ [2.44, 4] and is hyperchaotic for α ∈ [3.81, 4]. 2D-SLMM, when α ∈ [0.885, 1] and α ∈ [0.905, 1],
is chaotic and hyperchaotic, respectively. 2D-SLMM, when α ∈ [0.735, 1], is chaotic and, when
α ∈ [0.735, 1], is hyperchaotic. Comparison shows that DLCL has a much wider chaotic range, which
is six times more than that of other two maps. In addition, DLCL’s LE value is also bigger than that of
2D-SLMM. This means that DLCL is more sensitive to initial values and initial conditions and larger
key space can be produced using DLCL.
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Figure 2. The Lyapunov exponent value of DLCL, 2D-SLMM, and 2D-SIMM. (a) DLCL; (b) 2D-SLMM;
(c) 2D-SIMM.

2.2.3. Analysis of Permutation Entropy

Permutation entropy (PE) [20,21] is suitable for measuring the complexity of series of chaos.
The larger the value of PE, the more difficult it is to predict the generated chaotic sequence. The PE
of DLCL, 2D-SLMM, and the PE of 2D-logistic map, 2D-SIMM and logistic map from Figure 3 can
be seen. Obviously, the PE value of DLCL is greater than all maps except 2D-SIMM. The PE value of
DLCL and 2D-SIMM are both close to 1 when α/4(a0) ∈ [0.74, 1], and DLCL has a wider range than
2D-SIMM. This means that DLCL has better chaotic properties.

Figure 3. The Permutation entropy of DLCL, 2D-SLMM, 2D-SIMM, 2D-logistic map and logistic map.

2.2.4. Randomness Analysis

National Institute of Standards and Technology (NIST) tests are used to test the randomness of
binary sequences generated by hardware or software-based encryption random or pseudo-random
number generation programs [22]. A statistical package consisting of fifteen tests. We performed a
NIST test on the chaotic sequence map, by setting α = 0.01, as long as p-value is greater than α, the tests
passed:

y(n) = x(n)× 10k − f loor(x(n)× 10k). (3)
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In order to improve the randomness of the chaotic sequence, we perturb it in terms of Equation (3).
We set k = 7, where each sequence is of size 108. Tests results show that the sequence we generated
passed fifteen tests in Table 1, indicating that the generated sequence has a good randomness.

Table 1. NIST (National Institute of Standards and Technology) test results.

p-Value Result

ApproximateEntropy 0.909515 SUCCESS
BlockFrequency 0.543991 SUCCESS

CumulativeSums 0.984758 SUCCESS
FFT 0.354010 SUCCESS

Frequency 0.756105 SUCCESS
LinearComplexity 0.174121 SUCCESS

LongestRun 0.097498 SUCCESS
NonOverlappingTemplatel 0.999353 SUCCESS

OverlappingTemplate 0.055895 SUCCESS
RandomExcursion 0.818931 SUCCESS

RandomExcursionsVariant 0.925711 SUCCESS
Rank 0.335464 SUCCESS
Runs 0.531190 SUCCESS
Serial 0.160284 SUCCESS

Universal 0.418957 SUCCESS

3. Image Encryption Algorithm Based on DLCL

Based on the DLCL model, we propose an image encryption algorithm. Separate R, G, B
information from the size of M× N image, and then recombine these three gray-scale images into
one image according to certain combination rules and get the image size of M × 3N. The chaotic
sequence is then used to generate two sets of sorted sequences to perform row and column scrambling
on the merged image. In the diffusion process, an improved diffusion strategy is used to XOR the
current pixel value with not only the encryption value of the previous pixel and the diffusion sequence,
but also XOR with the encryption value of the pixel above the current pixel, so that the diffusion has
excellent results. The encryption flowchart of algorithm shows in Figure 4.

Figure 4. The encryption flowchart of algorithm.

Image Encryption Algorithm

1. Input original color image.
2. Image pre-processing. The color image is separated, and then combined to get a new image

according to the Formula (4):
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
P(:, j) = R‘(:, 1 + j

3 ) i f mod(j, 3) = 1,
P(:, j) = R‘(:, 1 + j

3 ) i f mod(j, 3) = 2,
P(:, j) = R‘(:, 1 + j

3 ) i f mod(j, 3) = 0,

(4)

where j = 0, 1, 2, . . . , N.
3. The initial value is obtained according to the image P‘

M×3N , we set init1 = 0.3 and init2 = 0.4.
A chaotic sequence for permutation is generated. The average value of the pixel P‘

M×3N values is
averaged and mapped to the range of (0,1) according to the determined transformation formula to
obtain the first initial value, the pixel value of the image P‘

M×3N is subtracted from the average
value of all the pixels, after calculating the variance, the variance is mapped to the range of (0,1)
according to the determined transformation formula to obtain the second initial value, and the
expression is as follows: Init1 = (

∑M
i=1 ∑N

j=1 P‘(i,j)
M×N + init1) mod1,

Init2 = (
∑M

i=1 ∑N
j=1(P‘(i,j)−x)2

M×N + init2) mod1,
(5)

where M is the row of input image, N is the column of image, and x is the average value of all the
pixels. By Formula (4), we can get the length of L = M + N series S.

4. Given a 256-bit external binary key K, 8-bit as a unit of its block is divided, we can get

K = k1, k2, k3, k4, ..., k32. (6)

Generating two initial values of the chaotic sequence according to Formula (8) and substituting
the sequence S’ for diffusion:{

init1 = (k1 ⊕ k2 ⊕ k3 ⊕ ...⊕ k32),
init2 = (k17 ⊕ k18 ⊕ k19 ⊕ ...⊕ k32).

(7)

5. The sequence S is used for scrambling and diffusion of the image. First, S is divided into two
series S1 and S2 according to Formula (7). Then, S1 and S2, are used, respectively, to replace the
rows and columns of the image P‘:{

S1(i) = S(i) i f i ≤ M,
S2(i) = S(M + i) i f i ≤ 3N −M.

(8)

The two subsequences S1 and S2 obtained in Equation (7) are sorted from small to large.
The permutation of the image P‘ is performed according to the subscript array ind1 of the
sorted subsequence S1. According to the sorted S2 subsequence generating the standard array
ind2, then column replacement gets a new image P

′′
M×3N ;

6. Transform the series S‘ to S‘
M×N according to two initial values from Formula (7), execute the

diffusion to image P
′′
M×3N according to Formula (9):


P
′′
(i, j) = P

′′
(i, j)⊕ f loor(S(i, j)× 256) i f i = 1, j = 1,

P
′′
(i, j) = P

′′
(i, j)⊕ P

′′
(i, j− 1)⊕ f loor(S(i, j)× 256) i f i = 1, 1 < j ≤ 3N,

P
′′
(i, j) = P

′′
(i, j)⊕ P

′′
(i− 1, j)⊕ f loor(S(i, j)× 256) i f i = M, j = 1,

P
′′
(i, j) = P

′′
(i, j)⊕ P

′′
(i− 1, j)⊕ P

′′
(i, j− 1)⊕ f loor(S(i, j)× 256) i f 1 < i ≤ M, 1 < j ≤ 3N,

(9)

where floor(x) is the smallest integer not greater than x, and ⊕ is the operation that two numbers
are bit-XORed by their binary values. P

′′
is the encrypted image after diffusion.

7. Let P
′′

divide into R
′
M×N , G

′
M×N , B

′
M×N according to Formula (4). They are then combined for

the imagePM×N . The image decryption process is the reverse process of the encryption.
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4. Experimental Results and Analysis of Performance

We set system parameters u as 3.57, α as 0.6, and have one round of encryption of the original
image. Figure 5 shows the results before and after the size of 512× 512× 3 Lena encryption and
decryption. Figure 6 shows the the encryption results of R, G, B components, and we can see the
encrypted image correctly from the results, in order to show the effectiveness of the algorithm. At the
same time, we can see through the histogram and R, G, B image encryption results in Figure 6 that the
algorithm can also encrypt the size of M× N gray-scale image effectively.

Figure 5. The results of encryption and decryption. (a) the original image of Lena; (b) encrypted Lena
image and (c) decrypted Lena image.

Figure 6. The encryption results of color image and R, G, B components.
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4.1. Secret Key Size Analysis

A good encryption system should have enough large key space to effectively prevent brute force
attacks. The cryptographic system key space includes Logistic mapping control parameters, coupling
gain and two initial values used to generate chaotic sequences. The proposed encryption algorithm
has a 256-bit key, and it has 2256 of key space. In Table 2, we compare the proposed algorithm’s key
space with other algorithms. Therefore, the key space of this paper is sufficient to resist the exhaustive
attack and has larger key space.

Table 2. Comparison of key space.

Algorithm Our Proposed Algorithm Ref. [23] Ref. [24] Ref. [7] Ref. [25]

Key space 2256 2170 2128 2256 6.5536× 1048

4.2. Secret Key Sensitivity Analysis

Key sensitivity indicates that the key is slightly altered, which can greatly change the decoding
result. This image adopts Lena to detect the key sensitivity of algorithms. The key’s offset size is set to
10−15. The result can be seen in Figure 7, (a) is to make α diverge 10−15 and (b) is to make u diverge
10−15. It is easy to see in the figure, in the case of 10−15 deviation from the decryption key, that
no meaningful information can be obtained from the decryption result. Therefore, the key sensitivity of
the algorithm is strong.

Figure 7. Secret key sensitivity test results. (a) α deviates from 10−15 decrypted images; (b) u deviates
from 10−15 decrypted images.

4.3. Histogram Analysis

Image pixel histograms can directly reflect the degree of confusion of image pixels. In the proposed
algorithm, each encrypted image pixel is evenly distributed. We can see from the graphs in Figure 8,
that the distribution of the plaintext image approaches a diagonal line, indicating that the correlation
is strong and the encrypted image is added horizontally, vertically and diagonally. We can also see
the distribution of a more uniform direction, indicating that the encrypted image adjacent pixels greatly
reduced the correlation between them.
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Figure 8. Histograms of the Lena color image and encrypted image. (a) histograms of original image R;
(b) histograms of original image G; (c) histograms of original image B; (d) histograms of encrypted
image R; (e) histograms of encrypted image G and (f) histograms of encrypted image B.

4.4. Correlation Analysis

Correlation coefficients between adjacent pixels are another measure of image statistical
information. From the image, we select 4000 adjacent pixels in vertical, horizontal and diagonal
directions, respectively, and then use Formula (10) to calculate the correlation coefficient:

ρxy =
E{[x− E(x)][y− E(y)]}√

D(x)
√

D(y)
, (10)

where E(x) = 1
l ∑l

i=1 xi is mean, D(x) = 1
l ∑l

i=1[xi − E(x)]2 is variance.
The corresponding calculation results tested by the size of 256× 256× 3 Lena image are shown in

Table 3. From this table, after encryption, the correlation coefficient of the image in all three directions is
significantly reduced apparently. The correlation of adjacent pixels in each direction of the image before
encryption is close to 1, and the result of after encryption is close to 0. This shows that the correlation
between adjacent pixels in the encrypted image is greatly reduced and the proposed algorithm has
low correlation.

Figure 9 plots the distribution of the original image’s correlation, indicating that the original
image’s correlation is quite strong, and the encrypted image is more evenly distributed in the horizontal,
vertical, and diagonal directions.
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Table 3. Comparison of the correlation coefficients of two adjacent pixels in Lena with other algorithms.

Color Image Channels
Original Image Encrypted Image

Horizontal Vertical Diagona Horizontal Vertical Diagona

Lean R 0.9437 0.9710 0.9196 0.0016 −0.0008 0.0020
G 0.9458 0.9724 0.9234 −0.0001 −0.0039 0.0001
B 0.8952 0.9437 0.8553 −0.0066 −0.0004 0.0010

Ref. [23] R 0.9853 0.9753 0.9734 0.0046 −0.0028 0.0013
G 0.9802 0.9666 0.9630 −0.0009 0.0004 0.0007
B 0.9558 0.9334 0.9264 −0.0007 −0.0029 −0.0050

Ref. [7] R 0.9956 0.9780 0.9435 0.0092 0.0053 0.0008
G 0.9943 0.9711 0.9301 0.0043 −0.0051 0.0095
B 0.9280 0.9575 0.9093 −0.0037 0.0095 0.0033

Ref. [25] R 0.9566 0.9812 0.9295 0.0027 −0.0013 0.0039
G 0.9432 0.9695 0.9199 0.0034 −0.0034 −0.0021
B 0.9269 0.9586 0.9020 −0.0046 0.0038 0.0013

Ref. [26] R 0.9400 0.9679 0.8829 0.0024 −0.0009 −0.0147
G 0.9408 0.9709 0.8646 −0.0056 −0.0036 −0.0295
B 0.8933 0.9426 0.7451 −0.000664 0.0031 −0.0246

Figure 9. Correlation between plaintext and encrypted images in different directions. (a) vertical
direction of original image; (b) horizontal direction of original image; (c) diagonal direction of
original image; (d) vertical direction of encrypted image; (e) horizontal direction of encrypted image;
(f) diagonal direction of encrypted image.
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4.5. Analysis of Information Entropy

Information entropy can be used to measure the randomness of image. Let m be the source of
information in this section, and the formula of information entropy of m can be defined as:

H(m) =
2n−1

∑
i=0

P(mi)log2
1

P(mi)
. (11)

P(mi) indicates the probability that the symbol appears. For a 256-grayscale image, the ideal
value is 8. The closer the information entropy of the encrypted image is to 8, the closer the pixels of the
ciphertext image are to the random distribution. We use Lean image with the size of 512× 512× 3 to
calculate the information entropy of the three channels of the encrypted image. From the results in
Table 4, it can be seen that the information entropy of the three channels after image encryption is very
close to 8. In addition, compared with other algorithms, the information entropy of our proposed
algorithm is relatively closer to 8. Therefore, our proposed encryption algorithm can make ciphertext
images exhibit good random performance.

Table 4. Information entropy of encrypted images.

Color Image
Encrypted Image

Average of Encrypted Image
R G B

Lena 7.999218 7.999310 7.999203 7.999243
Ref. [27] 7.997200 7.997200 7.997600 7.997333
Ref. [28] 7.997300 7.997000 7.997100 7.997133
Ref. [7] 7.997500 7.997200 7.997300 7.997333
Ref. [29] 7.997400 7.997100 7.997200 7.997233
Ref. [30] 7.997300 7.996800 7.997200 7.997100
Ref. [24] 7.989300 7.989800 7.989400 7.989500

4.6. Differential Analysis

The more an image encryption system is sensitive to plaintext, the better the ability to resist
differential attacks. To describe the sensitivity of the image encryption algorithm to plaintext, we use
the number of pixels change rate (NPCR) and unified average changing intensity (UACI) to measure it.
The formula can be defined as [31]: NPCRR,G,B = ∑M

j=1 ∑N
j=1

D(i,j)
T × 100%,

UACIR,G,B = ∑M
j=1 ∑N

j=1
|CR,G,B(i,j)−CR,G,B‘(i,j)|

F×T × 100%,
(12)

D(i, j) =

{
0, i f ≤ CR,G,B(i, j) = CR,G,B‘(i, j),
1, i f ≤ CR,G,B(i, j) 6= CR,G,B‘(i, j),

(13)

where T is number of pixels in total, and F is the maximum support pixel values in the image.
We can use the NPCR test defined by Equation (14) [32]. If in the NPCR test the encryption algorithm
NPCR value is greater than the one-sided hypothesis test under the significance level α defined by
Formula (14), it means that the NPCR test passes:

N∗α =
L−Φ−1(α)

√
T/F

T + 1
. (14)

At the same time, we also need to do a UACI test [32], and this test defined by Formulas (15)–(17).
It consists of the left value µ∗−α and the right value µ∗+α . We choose α = 0.05, and select
eight images from the Unversity of Southern California Signal and Image Processing Institute
(USC-SIPI) image database. For the size of 256 × 256 color image, the N∗0.05 ≥ 99.5693%,
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the µ∗−0.05 ≥ 33.2834% and the µ∗+0.05 ≤ 33.6447%. For the size of 512 × 512 color image,
the N∗0.05 ≥ 99.5893%, the µ∗−0.05 ≥ 33.3730% and the µ∗+0.05 ≤ 33.5541%. The results in Table 5 show that
they all pass NPCR and UACI tests. It can be seen that the image encryption algorithm proposed in
this paper is very sensitive to plaintext. Therefore, this algorithm can resist differential attacks well:

µu =
T + 2

3T + 3
, (15)

σu =
(T + 2)(T2 + 2T + 3)

18(T + 1)2TF
, (16)

{
µ∗−α = µu −Φ−1(α/2)σu,
µ∗+α = µu + Φ−1(α/2)σu.

(17)

Table 5. Test results of NPCR (number of pixels change rate) and UACI (unified average changing
intensity).

Image File
NPCR(%) UACI(%)

Test Results
Red Green Blue Red Green Blue

lena (256 × 256 × 3) 99.6323 99.6277 99.5712 33.4913 33.3786 33.4692 Pass
4.1.01.tiff (256 × 256 × 3) 99.6414 99.6124 99.6384 33.6004 33.3232 33.3923 Pass
4.1.02.tiff (256 × 256× 3) 99.5789 99.6368 99.6170 33.3656 33.4348 33.6682 Pass
4.1.03.tiff (256 × 256 × 3) 99.5514 99.6368 99.5941 33.4909 33.4300 33.6542 Pass
4.1.04.tiff (256 × 256 × 3) 99.6475 99.6048 99.6094 33.5038 33.4447 33.4032 Pass
4.2.03.tiff (512 × 512 × 3) 99.5991 99.5846 99.6208 33.4546 33.4330 33.3988 Pass
4.2.05.tiff (512 × 512 × 3) 99.5964 99.6075 99.6212 33.4933 33.4383 33.4691 Pass
4.2.06.tiff (512 × 512 × 3) 99.6056 99.6201 99.5937 33.4249 33.4264 33.4655 Pass

4.7. Encryption Efficiency Analysis

One of the important indicators to measure the performance of image encryption algorithms is
encryption efficiency, which has many indicators to measure, such as encryption/decryption time,
the encryption throughput (ET) and the number of cycles [33], and they are defined as:

ET =
Imagesize(byte)

Encryptiontime(second)
, (18)

Number o f cycles per byte =
CPUspeed(Hertz)

ET(byte)
. (19)

We choose the size of 256 × 256 × 3 Lena image. The lab platform is Inter(R) Core(TM)
i7-4172MQ CPU@2.30 GHZ with RAM 8.0 GB in MATLAB R2015b (The MathWorks, Inc, Natick,
MA, USA) on Windows 8.1 OS (Microsoft, Redmond, WA, USA). Table 6 shows the results that
the image encryption algorithms have relatively low complexity and high encryption efficiency.
By comparison, we conclude that the proposed encryption algorithm is slower than Refs. [24,34],
but quicker than Refs. [23,35]. The algorithm proposed by Murillo et al. [24] is for real-time
application. As a result, the encryption time is shorter and the encryption speed is faster and the
algorithm of Ref. [34] is for encrypting gray-scale images. The reason why the speed is relatively
slow is that our algorithm is complicated in the scrambling and diffusion of images. However,
comparing other encryption performances such as information entropy, the algorithm can achieve
relative balance in performance.
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Table 6. Time performance analysis and comparison.

Average Encryption Time (s) Encryption Throughput (MBps) Cycles per Byte

Encrypted image 0.35 0.54 4062
Ref. [23] 1.1347 0.165 20,229.45
Ref. [35] 3.6175 0.052 64,189.61
Ref. [34] 0.160 0.39 2445
Ref. [24] 0.1225 1.531 2180.18

4.8. Robustness Analysis

4.8.1. Quality Metrics Analysis

Quality evaluation of digital images can use the Mean Squared Error (MSE) and Peak
Signal-to-Noise Ratio (PSNR) for measurement. They are defined as Equations (20) and (21):

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(X(i, j)−Y(i, j))2, (20)

PSNR = 10log10(
(2n − 1)2

MSE
), (21)

where H ×W is the size of original image, X(i, j) is the original image and Y(i, j) is the encrypted
image. The smaller the MSE value is, the larger the PSNR value is, which means that there is a high
degree of similarity between the tested images. By calculation, the MSE between the original image
and the decrypted image is 0, and the value of PSNR is Inf. The MSE between the original image and
the decrypted image is 30,390, and PSNR is 3.304. The results show that the quality metrics of the
tested images is good.

4.8.2. Chosen Plain Image Attack Analysis

In chosen plain image attack, attackers usually select simple images, such as black images.
Because its pixel value is zero, it eliminates the normal image features on the algorithm and the key for
encryption. We use the black image for the chosen plain image attack, and the results are shown in
Figure 10b. The cryptanalyst uses this information as a possible key and attempts to decrypt other
passwords that may be encrypted with the key. Then, we use the possible information to decrypt the
original image, and the results show no useful information can be obtained in Figure 10. Therefore,
our proposed algorithm can resist the chosen attack.

4.8.3. Occlusion Attack Analysis

In an occlusion attack, we choose 12.5%, 25%, and 50% of occlusion in an encrypted image.
In Figure 11, the attack results are shown. For 12.5% of occlusion, MSE value is 3871.8 and PSNR value is
12.2517. For 25% of occlusion, MSE value is 7727.3 and PSNR value is 9.2505. For 50% of occlusion,
MSE value is 15,436 and PSNR value is 6.2456. The results show that the proposed cryptographic
algorithm can effectively resist occlusion attack.
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Figure 10. The results of the chosen plain image attack. (a) black image; (b) encrypted black image;
(c) encrypted original image; (d) decryption of encrypted black image with possible key.

Figure 11. The results of occlusion attack. (a) encrypted with 12.5% occlusion; (b) encrypted with 25%
occlusion; (c) encrypted with 50% occlusion; (d) decrypted with 12.5% occlusion; (e) decrypted with
25% occlusion; (f) decrypted with 50% occlusion.
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4.8.4. Noise Attack Analysis

In order to verify the anti-noise performance of the proposed algorithm, Gaussian noise with
different intensities was added to the encrypted image. The intensities were 10, 15, and 20, respectively,
and they were then decrypted. The results are shown in Figure 12. For 10 of intensity, the MES value is
7900 and PSNR value is 9.1545. For 15 of intensity, the MES value is 10,865 and PSNR value is 7.7704.
For 20 of intensity, the MES value is 13,383 and PSNR value is 6.8653. It can be seen that the original
image can be basically recovered after the noise image is decrypted. Therefore, the proposed algorithm
has a certain anti-noise attack capability.

Figure 12. The results of noise attack analysis. (a) noise with 10 of intensity; (b) noise with 15 of
intensity; (c) noise with 20 of intensity.

5. Conclusions

We proposed a new one-dimensional delay and linearly coupled Logistic chaotic map in this
paper. It has a relatively simple structure, excellent ergodicity property, good sensitivity and better
chaotic properties. In the proposed algorithm based on DLCL, through a round of scrambling
and diffusion, excellent performance was achieved in many experiments including secret key size
analysis, secret key sensitivity analysis, histogram analysis, correlation analysis, information entropy
analysis, differential analysis and encryption efficiency analysis. Through the analysis of algorithm
performance, this algorithm can resist some common attacks, such as brute force attack, differential
attack, statistical attack, chosen plain image attack, and noise attack. Therefore, this algorithm
has relatively better encryption performance than other algorithms and is more effective for image
encryption applications. In the future, we would improve the construction of chaotic map, reduce the
complexity of the algorithm and shorten the encryption time.
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