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Abstract: The mechanical fault diagnosis results of the high voltage circuit breakers (HVCBs) are
mainly determined by the feature vector and classifier used. In order to obtain more remarkable
characteristics of signals and a robust classifier which is suitable for small sample classification,
in this paper, a new mechanical fault diagnosis method is proposed. Firstly, the vibration signals
of HVCBs are collected by a designed acquisition system, and the noise of signals is eliminated by
a soft threshold de-noising method. Secondly, the empirical wavelet transform (EWT) is adopted
to decompose the signals into a series of physically meaningful modes, and then, the improved
time-frequency entropy (ITFE) method is used to extract the characteristics of the vibration signals.
Finally, a generalized regression neural network (GRNN) is used to identify four types of vibration
signals of HVCBs, while the smoothing parameter δ of GRNN is optimized by a loop traversal
method. The experimental results show that by using this optimal classifier for fault diagnosis,
the proposed fault diagnosis method has the better generalization performance and the recognition
rate of unknown samples is over 95%, and the signal features obtained by the ITFE method are more
significant than those of the traditional TFE method.

Keywords: HV circuit breakers; mechanical fault diagnosis; empirical wavelet transform; improved
time-frequency entropy; generalized regression neural network; loop traversal method

1. Introduction

As an important switchgear in the power system, high voltage circuit breakers (HVCBs) have
dual responsibilities of controlling and protecting the power grid. When HVCB failures occur and lead
to abnormal outages, there will be economic losses and the people’s lives will be affected, therefore,
it is urgent to study the fault diagnosis of HVCBs, so as to maintain the power grid over time. Studies
show that many HVCB faults are caused by mechanical components [1,2]. Over the past decade, most
HVCB fault diagnosis studies were about the mechanical vibration signals [2–14] and all these studies
could be successfully applied to a certain extent because the vibration signals produced by mechanical
components often provide abundant dynamic information about mechanical system condition.

The vibration signal of HVCBs is a transient non-stationary nonlinear time series, with a maximum
frequency usually thought to be about 10 kHz [4]. The vibration events with frequencies greater than
10 kHz are very few, so these components can be ignored. The traditional physical instruments to
collect these vibration signals are often characterized by single function and high cost. In this study,
different from traditional physical instruments, a vibration signal acquisition system for HVCBs
based on a “virtual instrument” is designed. This method is more flexible for signal acquisition.
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Through graphical (LabVIEW) programming (LabVIEW 2014, National Instruments, Austin, TX, USA),
the “virtual instrument” can work like a real physical instrument, and many studies [15–17] now use
LabVIEW for signal acquisition.

Transient non-stationary nonlinear time series are usually processed and analyzed by
time-frequency methods. Since Hung et al. [18] proposed the empirical mode decomposition (EMD)
in 1998, adaptive mode decomposition has attracted many mechanical fault diagnosis scholars’
attention [7,19], with variants such as local mean decomposition (LMD) [20], ensemble empirical mode
decomposition (EEMD) [21,22], iterative filtering (IF) [23], empirical wavelet transform (EWT) [24],
variational mode decomposition (VMD) [25], nonlinear mode decomposition (NMD) [26], adaptive
local iterative filtering (ALIF) [27], etc. Although EMD and EEMD do not need any a priori basis to
match the signal characteristic, they lack rigorous a mathematical formulation and always generate
extra intrinsic modal function (IMF) components. Some studies therefore select the main IMFs for
signal analysis [7,28–30], but an effective criterion for selecting IMFs is still lacking. Huang et al. [9,10]
used LMD and VMD to decompose the vibration signals of HVCBs, respectively. However, in practical
applications, LMD sometimes also suffers the same mode mixing shortcomings as EMD does [10],
while for the VMD method, how to determine the number of IMFs is a difficult issue. NMD and ALIF
are two new signal decomposition methods, which have not been widely applied in machinery fault
diagnosis until now. The NMD method suffers from a high computational burden, and the NMD
simulations take a lot of time, besides, because of the nature of NMD algorithm, many signals couldn’t
extract a mode. As for the ALIF method, some signals that contain a lot of noise cannot be decomposed
effectively. In view of the shortcomings of the above signal decomposition methods, the EWT method
is adopted in this paper.

EWT is a new signal adaptive decomposition method, widely used in the field of mechanical fault
diagnosis and its performance has been widely recognized [2,31,32]. Because it has the theoretical
framework of wavelet transforms, and it can decompose the signals into a series of physically
meaningful modes, the mode aliasing problem of EMD method can be well solved.

In the process of extracting the mechanical fault features of HVCBs, there are two commonly
used feature extraction methods. The first method is the envelope energy entropy method [3,7], where
the envelopes of IMF components are divided by means of equal time or equal energy, and then
energy entropies are calculated as the characteristics. The second method is the time frequency entropy
method (TFE) [2,4,11]. However, for the first method, the time-frequency distribution information
of the original signal energy is lost to a certain extent, and it is easily affected by false modalities [2].
For the TFE method, at present, wavelet TFE (WTFE) has been widely used for signal feature extraction
of HVCBs [4,11], however, the wavelet transform has frequency aliasing problems [33] and the wave
base is hard to choose. Besides, in the time-frequency plane division process of the TFE method,
the time-frequency plane is often divided in an even way [2,11], and the characteristics of the signal
therefore cannot be well extracted. In view of the above shortcomings, in this paper, combined with
EWT, The EWT-ITFE method therefore is proposed.

Finally, a suitable classifier is needed for fault diagnosis. The artificial neural network (ANN) [3,6,34]
and support vector machine (SVM) methods [2,10,11] are the most commonly used in fault diagnosis
of HVCBs. Thus, Sun et al. [3] used a back propagation neural network (BPNN) to diagnose HVCB
faults, Yang et al. [34] used a probabilistic neural network (PNN) [35] to diagnose the HVCB faults
and Huang et al. [10,11] used SVM to diagnose HVCB faults. However mechanical vibration samples
of HVCBs are difficult to obtain, and BPNN is not suitable for the classification of small data samples.
Although PNN and SVM are suitable for small sample datasets, the smoothing parameter δ of PNN has a
great influence on the recognition results, and the penalty coefficient C and kernel function parameter g of
SVM are also the same, while in the field of HVCB mechanical fault diagnosis, few people have studied
the optimization of classifier parameters.

The generalized regression neural network (GRNN) is a supervised learning network, developed
from the concept of the radial basis function neural network (RBFNN) [36]. Compared with BPNN and
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RBFNN, it has the advantages of fast training speed, strong approximation ability and high simulation
accuracy [37]. GRNN is suitable for classification and prediction of small sample dataset. Li et al. [38]
applied GRNN to fault diagnosis of rolling bearings, in which good results were achieved. However,
like PNN, GRNN also has smoothing parameter δ that needs to be adjusted, where the smoothing
parameter δ is the parameter contained in the transfer function of GRNN, and its value also called
“spread”. In the process of mechanical fault diagnosis of HVCBs, people often ignore the influence
of classifier parameters on the diagnosis results, thus, combined with K fold cross validation (K-CV),
the loop traversal method is used to optimize the smoothing parameters δ. The loop traversal method
can traverse all possible parameter values, then choose the best “spread” based on the principle of
minimum mean square error (MSE).

The main contribution of this paper is to propose a novel mechanical fault diagnosis method for
HVCBs based on EWT, ITFE and the optimal GRNN, where the optimal GRNN classifier is established
by using the loop traversal method and K-CV. Firstly, a signal acquisition system is designed in
LabVIEW, and the soft threshold de-noising is utilized to de-noise the signals. Then, after extracting
the physically meaningful modes by the EWT method, and the signal features are calculated by the
ITFE method. Finally, the optimal GRNN classifier is employed to identify the unknown samples.

2. Signal Acquisition and Fault Diagnosis Process

2.1. Experimental Materials

The data acquisition cards of the National Instruments (NI) Company are widely used for the
mechanical vibration signal acquisition. They have the following advantages: flexible in use, high
sampling rate, and a large number of ports. In this paper, the type of HVCB is ZW-12G/630-20
(Yueqing Wei Chuan Electric Co., Ltd., Zhejiang, China), so before we collect its vibration signals, we
have to consider the frequency range of the vibration signals and the sampling rate of devices. The NI
USB6002 is a data acquisition card with a maximum sampling rate of 50 kS/s, and an ADC resolution
of 16 bits, which can extend external trigger circuits. These advantages are suitable for instantaneous
signal acquisition in this experiment. Besides the NI USB6002 and trigger circuit, a LC0159 piezoelectric
acceleration sensor (LANCE TECHNOLOGIES INC., Hebei, China), DC stabilized voltage source
and an AFT-0931 signal conditioner (Electronic Technology Co., Ltd., Shijiazhuang, Hebei, China)
are applied to build the vibration signal acquisition system for the HVCB. The frequency range of
the LC0159 piezoelectric acceleration sensor is 1–12,000 Hz, and the range and sensitivity are 500 g,
10 mV/g respectively, while the frequency response and gain of the AFT-0931 signal conditioner are
0.5–45 kHz, and 5, respectively.

2.2. Design of Acquisition System

In order to collect the transient non-stationary nonlinear vibration signals of HVCBs in real-time,
in this paper, firstly, the LC0159sensor is used to transform the vibration signals into analog electrical
signals. Secondly, the analog electrical signals are input into the AFT-0931 signal conditioner, and
the filtering and amplification process of the analog electrical signals is then completed in the signal
conditioner. In addition, the signal conditioner can prevent shock signals with big amplitude from
damaging the host computer. Finally, the analog electrical signal is input into the NI USB6002 for
AD conversion, and the AD conversion process will be assisted by the trigger circuit. The design
framework of the entire signal acquisition system is shown in Figure 1. The trigger circuit triggers
the NI USB6002 by +5 V high level, and when the HVCB vibration signals occur, the NI USB6002
will be triggered to work, otherwise, the host computer acquisition system will wait for the actions of
the HVCB, and the NI USB6002 therefore will not work. This is very suitable for the acquisition of
instantaneous signals.
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Figure 1. Design framework of the entire signal acquisition system. HVCB: high voltage circuit breaker;
DC: direct-current.

2.3. Fault Diagnosis Process

The new fault diagnosis method proposed in this paper mainly consists of three steps: signal
decomposition, feature extraction and state recognition. In the signal decomposition step, the EWT
method is adopted. In the feature extraction step, firstly, according to the modes decomposed by
EWT, we use the Hilbert transform to calculate the time frequency plane of the signals. Secondly,
according to the frequency domain features and time domain features of the signals, we segment the
time frequency plane, then calculate the signal features by the ITFE method. In the state recognition
step, firstly, all samples are randomly divided into a training set and test set, then the loop traversal
and K-CV methods are used to find the best “spread” of the GRNN classifier. Finally, we use this
optimal classifier to classify the test samples. The whole fault diagnosis process in this paper is shown
in Figure 2.
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3. EWT

3.1. EWT Decomposition Theory

Nonlinear nonstationary signals are usually characterized by time-varying amplitudes and
frequencies. To better analyze these signals, Gilles recently proposed the EWT method [24]. The main
idea of EWT is to extract the different amplitude-modulated and frequency-modulated (AM-FM)
components of a signal by designing a series of appropriate wavelet filter banks. It’s considered that
the AM-FM components of a signal have a tightly supported Fourier spectrum, therefore, extracting
the different modes is equivalent to segmenting the frequency axis of the Fourier spectrum and
applying some filtering corresponding to each detected support. The detailed process of the EWT
decomposition is as follows: firstly, we normalize the frequency range of the Fourier spectrum of
the signal to the interval [0, π] (the unit is rad/s) and then adaptively segment the frequency axis
into N contiguous subintervals, thus N + 1 boundaries are needed, where boundaries ω0 = 0 and
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ωN = π are two boundaries, therefore we need to find N − 1 extra boundaries. Let ωn to be the
boundary of the adjacent interval, the choice of ωn is the midpoint of two adjacent maxima of the
Fourier spectrum, then each subinterval can be denoted as Λλ = [ωλ−1, ωλ], where λ = 1, 2, . . . , N,
thus UN

λ=1Λλ = [0, π], the segmentation of the Fourier axis is shown in Figure 3, the gray hatched areas
are defined as transition phase Tn, its width is 2τn and the center is ωn, and τn = γωn, where γ is
coefficient, and 0 < γ < 1.
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After determining the division interval Λλ, the empirical wavelets are defined as bandpass filters
on each Λλ. In order to realize this idea, according to the construction methods of Littlewood-Paley
and Meyer’s wavelet [39], similarly, the empirical scaling function φ̂n(ω) is defined as follows:

φ̂n(ω) =



1, |ω| ≤ ωn − τn

cos
(

π
2 β
( 1

2τn
(|ω| −ωn + τn)

))
,

ωn − τn ≤ |ω| ≤ ωn + τn

0, other

(1)

while the empirical wavelets function ψ̂n(ω) are defined as:

ψ̂n(ω) =



1, ωn+τn ≤ |ω| ≤ ωn+1 − τn+1

cos
(

π
2 β
( 1

2τn+1
(|ω| −ωn+1 + τn+1)

))
,

ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin
(

π
2 β
( 1

2τn
(|ω| −ωn + τn)

))
ωn − τn ≤ |ωn| ≤ ωn + τn

0, other

, (2)

where τn = γωn, and in order to meet tight frame conditions, let γ < minn
(
(ωn+1 −ωn)/(ωn+1 + ωn)

)
.

Function β(x) is an arbitrary Ck function, and for ∀x ∈ [0, 1]:

β(x) + β(1− x) = 1, (3)

and usually:
β(x) = x4(35− 84x + 70x2 − 20x3) , (4)

According to the definition of φ̂n(ω) and ψ̂n(ω), similar to the construction method of classic
wavelet, we can now define the empirical wavelet transform. The detail coefficient is defined by the
inner product of the signal f (t) and the empirical wavelet function ψn(t):

ωε
f (n, t) = 〈 f (t), ψn(t)〉 =

∫
f (τ)ψn(τ − t)dτ = F−1( f (ω)ψ̂n(ω)

)
, (5)
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while the approximate coefficient is defined by the inner product of the signal f (t) and the scaling
function φ1(t):

ωε
f (0, t) = 〈 f (t), φ1(t)〉 =

∫
f (τ)φ1(τ − t) dτ = F−1( f (ω)φ̂1(ω)

)
, (6)

where ψ̂n(ω) and φ̂1(ω) are the function defined by Equations (1) and (2) respectively, and
F
(
ψn(t)

)
= ψ̂n(ω), F

(
φ1(t)

)
= φ̂1(ω), symbol F denotes the Fourier Transform, ψn(τ − t) and

φ1(τ − t) are the complex conjugate of ψn(τ − t) and φ1(τ − t) respectively. Finally, reconstructing
signal f (t) by detail coefficient and approximate coefficient:

f (t) = ωε
f ∗ φ1(t) +

N

∑
n=1

ωε
f (n, t) ∗ ψn(t) = F−1(ω̂ε

f (0, ω)φ̂1(ω) +
N

∑
n=1

ω̂ε
f (n, ω)ψ̂n(ω)

)
(7)

where symbol * denotes convolution operation, and F
(
ωε

f (0, t)
)
= ω̂ε

f (0, ω), F
(
ωε

f (n, t)
)
= ω̂ε

f (n, ω),
following this mathematical form, the empirical mode fk (k = 0,1,2 . . . N − 1) is defined as:

fk(t) =

{
ωε

f (0, t) ∗ φ1(t), k = 0
ωε

f (k, t) ∗ ψk(t), k = 1, 2 . . . N − 1
, (8)

3.2. Determining the Segment Number N of EWT

The segment number N (or number of mode) should be predefined in the EWT method, as the
appropriate value of N can reflect the physically meaningful components of signals. Gilles [29] gives a
threshold method to determine the value of N, the basic idea being that the most important maxima
in the amplitude of the Fourier transform of the input signal (corresponding to the center of each
desired Fourier segments) are significantly larger than the other existing maxima. Let {Mi}K

k=1 be
the amplitude of the detected maxima in the frequency range. Then arrange Mi in descending order
(M1 ≥ M2 ≥ M3 . . . ≥ MK) and normalized it in interval [0, π] (rad/s). In practice, we can keep
all maxima which are larger than a predefined threshold MK + α(M1 −MK), where the value of α is
around 0.3 and 0.4. Now there are two cases:

(1) K ≥ N, in this case, the algorithm finds enough maxima in Fourier spectrum, then just keep the
first N − 1 maxima.

(2) K < N, in this case, the signal has less modes than expected, then keep all the detected maxima
and reset N to the appropriate value.

3.3. Simulation Signal Decomposition by EWT Method

3.3.1. Modeling of Classical Simulation Signal

In the closing process of HVCBs, an impact or friction of the mechanical components in the
operating mechanism will generate a vibration event, then, each sub-vibration event superimposes
on the measuring point of the sensor, and the final measured signal is therefore formed. In the
field of HVCB fault diagnosis, many researchers adopt the following signal as simulation signal for
HVCBs [2,4,10,40]:

f (t) =
n

∑
i=1

Aie−αi(t−ti)sin
(
2π f i(t− ti)

)
u(t− ti) + ω(t), (9)

where n is the number of vibration events, Ai is maximum amplitude of the i-th vibration event, αi is
the attenuation coefficient of the amplitude, u(t) is the unit step signal, ti is the starting time of each
vibration component, fi is the main frequency of each vibration component. ω(t) is white noise and
ω(t) ∼ N(0, 0.012). All parameters of the simulation signal are set as shown in Table 1.
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Table 1. Parameters of the simulation vibration signal.

Vibration Event mi ti/ms fi/Hz Ai αi

m1 15 1200 0.1 85
m2 21 4000 0.3 95
m3 25 5500 1.0 75
m4 34 7000 0.5 60
m5 51 2300 0.2 45

Matlab (Matlab R2014b, MathWorks, Natick, MA, USA) is used to generate the simulation signal
f (t), and the sampling frequency is set to 40 kS/s, sampling time is set to 0.1 s, 4000 sampling points are
collected in total. The time domain waveform of the original simulation signal f (t) and the de-noised
signal are shown in Figure 4a,b respectively. The simulation signal denoted in Figure 4a is simple,
but is representative because of its multi-component nature and non-stationarity.

Entropy 2018, 20, x 7 of 22 

 

Matlab (Matlab R2014b, MathWorks, Natick, MA, USA) is used to generate the simulation signal 
f(t), and the sampling frequency is set to 40 kS/s, sampling time is set to 0.1 s, 4000 sampling points 
are collected in total. The time domain waveform of the original simulation signal f(t) and the de-
noised signal are shown in Figure 4a,b respectively. The simulation signal denoted in Figure 4a is 
simple, but is representative because of its multi-component nature and non-stationarity. 

  
(a) (b) 

Figure 4. (a) Time domain waveform of simulated signal; (b) De-noised signal obtained by soft 
threshold method. 

3.3.2. Simulation Signal Decomposition 

The EMD and EEMD methods have been widely used in mechanical fault diagnosis in past 
decades [7,19,22,28]. In recent years, the emerging methods mainly include IF [23], VMD [25], NMD [26] 
and ALIF [27], etc. The pros and cons of each method have been discussed in detail in the Introduction 
section. Here, we mainly compare the performances of EMD, EEMD, IF and VMD methods to 
decompose the simulation signal (the signal in Figure 4). The performances of these five method are 
shown in Figures 5 and 6, where the value of N in EWT method is 6, the value of K in VMD method is 
5, and the number of IMFs of IF method is set to 5, the noise standard deviation, number of realizations, 
maximum number of sifting iterations of EEMD method are set to 0.01, 100, 20,000, respectively, and 
the EMD method uses default parameters. 

 
  

(a) (b) (c) 

 
(d) 

Figure 4. (a) Time domain waveform of simulated signal; (b) De-noised signal obtained by soft
threshold method.

3.3.2. Simulation Signal Decomposition

The EMD and EEMD methods have been widely used in mechanical fault diagnosis in past
decades [7,19,22,28]. In recent years, the emerging methods mainly include IF [23], VMD [25],
NMD [26] and ALIF [27], etc. The pros and cons of each method have been discussed in detail
in the Introduction section. Here, we mainly compare the performances of EMD, EEMD, IF and VMD
methods to decompose the simulation signal (the signal in Figure 4). The performances of these five
method are shown in Figures 5 and 6, where the value of N in EWT method is 6, the value of K in VMD
method is 5, and the number of IMFs of IF method is set to 5, the noise standard deviation, number
of realizations, maximum number of sifting iterations of EEMD method are set to 0.01, 100, 20,000,
respectively, and the EMD method uses default parameters.

It can be see that the Fourier axis is adaptively divided into six segments in Figure 5d, and
correspondingly, the simulation signal is decomposed into six modes by the EWT method, as shown in
Figure 5b. Each mode (in Figure 5b, from top to bottom) is the filtering result of applying a band-pass
filter on the interval [0, ω1], [ω1, ω2], [ω2, ω3], [ω3, ω4], [ω4, ω5], [ω5, π], respectively. We can see from
Figure 5b that the second to sixth modes are mostly the same as the corresponding vibration component
in Figure 5a. However the first IMF component decomposed by the EWT method corresponds to
the first segment (interval [0, ω1]) in Figure 5d, and it mainly caused by noise, rather than any real
physically meaningful components. Because the amplitude of the first mode is very small, therefore,
it can be ignored. That is, the EWT method can decompose simulated vibration signals thoroughly,
and each physically meaningful components of the simulated signal can be obtained by using the EWT
method. Figure 5c is the time-frequency plane, and the frequency components of simulation signal in
the graph are clearly visible.
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Conversely, in Figure 6a,b, we can see that more than 10 modes are obtained by EMD and EEMD
method. The modes decomposed by EMD method have serious modal aliasing problem, especially for
the first mode. Although EEMD can eliminate modal aliasing to a certain extent, but compare with
EWT method, each mode obtained by EEMD is still unclearly. IF is better than EMD in some aspect,
such as it overcomes the shortcoming of sensitivity to the singularities, however it shows almost the
same performance as EMD with modal aliasing in this study, just as shown in Figure 6c, 6 modes are
obtained, where the last one is the trend and the remaining modes are actual IMFs, however the first
mode contains several vibration components. In Figure 6d, due to some parameter settings, the fifth
mode obtained by VMD is not physically meaningful mode, while the remaining four modes are
relatively close to original vibration components. The VMD method is generally better than other
methods (like EMD, EEMD and IF) as shown in Figure 6.

In summary, the characteristics (such as starting time and spectrum) of each mode obtained by
EMD, EEMD, IF and VMD are unclearly or untrue to a certain extent, i.e., they are not the best way for
feature extraction of nonstationary nonlinear signals. Therefore, the EWT method is used in this paper.

4. Feature Extraction by Improved Time-Frequency Entropy Method

4.1. Calculation of Time-Frequency Plane

The instantaneous frequency of the original multi-component signal at a certain moment is
not physically meaningful, because signal’s multi-component nature. By introducing the Hilbert
transform, the corresponding analytic signals can be constructed from the original signal, and then
the characteristics of original signal can be obtained, such as instantaneous amplitude, instantaneous
frequency and time-frequency spectrum. In order to make instantaneous frequency meaningful,
the signal for Hilbert transform should be single component signal. While the modes decomposed by
EWT method are single component, combining EWT and Hilbert transform, the time-frequency plane
with meaningful instantaneous frequency can be obtained.

For a single component signal x(t), the Hilbert transform is defined as follows:

x̂(t) =
1

πt
∗ x(t) =

1
π

∫ +∞

−∞

x(t)
t− τ

dt, (10)

where * denotes convolution operation. Then the analytic signal g(t) is defined as:

g(t) = x(t) + jx̂(t) = A(t)ejϕ(t) = A(t)ej
∫ T

0 ω(t)dt (11)

where A(t) =
√

x(t)2 + x̂(t)2 is instantaneous amplitude of g(t), ϕ(t) = arctan x̂(t)
x(t) is phase of g(t),

and ω(t) = dϕ(t)
dt is the instantaneous frequency of single component signal x(t).

According to Equations (7) and (8), when Hilbert transform is performed on each IMF component
fk(t), the original signal f (t) can be denoted as:

F(t) =
N−1

∑
k=0

fk(t) = Re
N−1

∑
k=0

gk(t) = Re
N−1

∑
k=0

Ak(t)ejϕk(t) = Re
N−1

∑
k=0

Ak(t)ej
∫ T

0 ωk(t)dt , (12)

That is to say, the original signal f (t) can be expressed as the bivariate functions of time t and
instantaneous frequency ω, i.e., f (t) = H(ω, t), where H(ω, t) is the time-frequency plane and the
integral of H(ω, t) to time t is marginal spectrum h(ω):

h(ω) =
∫ T

0
H(ω, t)dt, (13)
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while the integral of H2(ω, t) to frequency ω is instantaneous energy density IE(t):

IE(t) =
∫

ω
H2(ω, t)dω (14)

4.2. Improved Time-Frequency Entropy Method

Wavelet time-frequency entropy (WTFE) method is one of feature extraction method of vibration
signal of HCVBs [2,4]. In order to calculate the time frequency entropy, the whole time-frequency plane
needs to be divided into several sub-planes. However, it is not enough to reflect the characteristics of
signal accurately by just dividing time-frequency plane equably. Therefore, inspired by the method of
equal energy segmentation of signal envelope [3], in this paper, a new time-frequency plane division
method is proposed, the main idea is as follows: for a standard normal state signal, firstly, divide the
time-frequency plane’s time axis into L segments by equal energy segmentation. Then find F main
frequency bands of the standard signal through the marginal spectrum, according to these frequency
bands, divide the time-frequency plane’s frequency axis into F segments. Finally, record the position
of each division time (0, t1, . . . , tL) and frequency band (band 1, band 2, . . . , band F), and apply this
segmentation method to all signals. The segmentation schematic diagram of the time frequency plane
is shown in Figure 7:
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Where each sub-plane may not be the same size due to the new division method, and the F main
frequency bands are determined by minimum of the marginal spectrum, i.e., F − 1 minimums of
marginal spectrum are selected as the partition boundary in this paper.

When mechanical faults of HVCBs occur, the energy distribution along the time-frequency plane’s
time axis and frequency axis will change, therefore, in order to measure this change, the information
entropy is used in this paper. Firstly, the amplitude contribution (or energy distribution) of each
sub-plane (P11, P12, . . . , PFL) should be normalized to the interval [0, 1], i.e., satisfy the condition
0 ≤ Pij ≤ 1 (i = 1, 2, . . . , F; j = 1, 2, . . . , L). In order to calculate time-frequency entropy Tj and Ei
separately, there are two cases need to be discussed in this paper.

1. Along the time axis

Pij = Aij/
L

∑
k=1

Aik, i = 1, 2, . . . , F; j = 1, 2, . . . , L , (15)

Ei = −
L

∑
j=1

Pijlog Pij , i = 1, 2, . . . , F , (16)
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2. Along the frequency axis

Pij = Aij/
F

∑
q=1

Aqj, i = 1, 2, . . . , F; j = 1, 2, . . . , L , (17)

Tj = −
F

∑
i=1

Pijlog Pij, j = 1, 2, . . . , L , (18)

where Aij is the integral (for discrete signals, it is the sum) of the amplitude envelope of the
corresponding sub-plane. Then the feature vector can be denoted as:

Fv = [T1, T2, . . . , TL, E1, E2, . . . , EF], (19)

where the value of Ei describes the characteristics of signal in the frequency domain, while the
value of Tj describes the characteristics of signal in the time domain, thus the time migration of
each vibration events can be detected by Tj. Therefore the proposed ITFE method can measure
the features of signals from both frequency domain and time domain.

4.3. Steps of Feature Extraction

In summary, an improved time-frequency entropy (ITFE) method is proposed to extract HVCB
vibration features in this paper. The main steps are now summarized as follows:

(1) Decompose the vibration signals of HVCB into a series of physically meaningful modes by
EWT method.

(2) According to these mode components, calculate the time frequency plane and marginal spectrum
of vibration signal by Hilbert transform.

(3) Divide the time frequency plane into F × L segments by using proposed ITFE method.
(4) Calculate the time-frequency entropy Tj and Ei, and then construct the feature vectors

Fv = [T1, T2, . . . , TL, E1, E2, . . . , EF].

5. Optimal GRNN Classifier Design

The generalized regression neural network (GRNN) was proposed by Donald F. Specht in 1991 [36].
It is suitable for solving small samples, nonlinear problems, and its structure is similar to radial basis
neural network (RBFNN) [6], as shown in Figure 8:
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It can be see that GRNN consists of four layers, i.e., input layer, pattern layer, summation layer
and output layer. The number of input layer neuron is equal to the dimension n of input vectors X
(assume that X = [x1, x2, . . . , xn]

T), the input vectors pass directly to the pattern layer without any
change. While the number of pattern layer neuron is equal to the total number r of training samples,
and each pattern layer neuron corresponds to a training sample. The transfer function of pattern layer
neuron i is

Pi = exp

[
− (X−Xi)

T(X−Xi)

2σ2

]
, i = 1, 2, 3, . . . , r, (20)

where Pi is the output of pattern layer neuron i, X is the input vector of a text sample, Xi is the
corresponding training sample of neuron i, σ is the smoothing parameter that needs to be optimized,
and the value of σ is always called “spread”. Equation (20) shows that the output of neuron i in pattern
layer is related to the Euclidean distance between X and Xi. In the summation layer of GRNN, two
summation methods exist:

(1) Summing all outputs of mode layers directly, i.e., the connection weight between each pattern
layer neuron and summation layer neuron is 1. The transfer function can be denoted as:

SD =
r

∑
i=1

Pi, i = 1, 2, 3, . . . , r, (21)

(2) Summing all outputs of mode layers with weight Wij, the transfer function can be denoted as:

SNj =
r

∑
i=1

yijPi, j = 1, 2, 3, . . . , k, (22)

where yij is the weight between i-th neuron of pattern layer and j-th neuron of summation layer.

In the output layer of GRNN, the number of neurons is equal to the dimension k of output vectors
of learning sample. The estimation results Ŷ(X) = [y1, y2, y3, . . . yk] can be calculated as:

yj =
SNj

SD
, j = 1, 2, . . . , k, (23)

It can be seen from Equation (20) that the value of smoothing parameter σ (“spread”) in transfer
function needs to be determined in advance. The larger “spread” is, the smoother the function
approximation will be, in this case, GRNN may cause under-fitting results. When “spread”→ 0 ,
the more accurate the function approximation will be, GRNN may cause over-fitting results, therefore,
the network might not generalize well. In summary, the value of “spread” has a great influence on the
performances of GRNN classifier, it is necessary to optimize the “spread”. In this paper, we use the loop
traversal method to find the best parameter “spread”, then use K fold cross-validation (K-CV) to verify
the rationality of the parameter “spread”, where the rationality of the parameters “spread” is measured
by the MSE (MSE is a commonly used loss function in classification problems). The loop traversal
method is similar to grid search (GS) method, the “spread” will traverse the entire value interval
[S1, S2] with the step length TL. Compared with the method of choosing “spread” by experience, the
loop traversal method is more efficient. The whole design process of the classifier is shown in Figure 9.
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6. Experimental Results and Analysis

6.1. Signal Collection

The vibration signals of HVCB are collected by designed acquisition system in Figure 1. In this
paper, there are four mechanical operating states that have been simulated: Normal state (Normal),
looseness of the base screw (Fault I), delay fault (Fault II), one of the energy storage spring shedding
(Fault III). Among them, Fault I and Fault III are simulated just like Figure 10a,b respectively. While
Fault II is mainly caused by delay action of the electromagnetic mechanism, and compare with the
normal state, it only has time delay, therefore, here we use the LabVIEW program to achieve this type
of fault, i.e., in normal condition, set a delay time to the acquisition system. In Figure 10c, it is the
measurement position of sensor, the sensor is placed close to the operating mechanism.

In this paper, 30 samples per each mechanical state are collected by acquisition system, so there
are 120 samples in total. Figure 11 shows the time domain waveform of Normal signal and three
types of fault signals, the sampling frequency is 40 Ks/s, and the sampling time is 0.2 s. It can be
seen in Figure 11 that the time domain waveform of normal state and fault II is very similar, the main
difference between them is only a time delay. While relatively speaking, the other two kinds of faults
are more different from normal conditions. These differences are mainly caused by the impact or
friction of the each mechanical component of operating mechanism, when the mechanical fault occurs,
the impact or friction process will change to a certain extent, therefore the instantaneous frequency,
instantaneous amplitude and occurrence time of each vibration event will be different.
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As mentioned previously, after the signal acquisition work is completed, signals need to be
de-noised. Taking into account the smoothness of the de-noised signal, in this paper, the soft threshold
de-noising method is applied in signal de-noising. The de-noised signal of four types of original
signals are shown in Figure 12.
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6.2. Signal Decomposition and Feature Extraction

Different from simulation signal in Equation (9), the measured signals are more complicated.
Here are 8 components that have been decomposed from measured signals, as shown in Figure 13,
each mode component is a narrow band AM-AF signal. It can be seen that each mode component of
Normal signal is similar to the Fault II, their main difference is a time delay. While the modes of Fault I,
Fault III and Normal state are different from each other, i.e., the frequency distribution of the vibration
events has changed, and this change is mainly caused by mechanical components.
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The time-frequency plane and marginal spectrum of the four types of vibration signals are shown
in Figure 14. Where the time-frequency plane obtained in this paper is a matrix of 400 rows and 7889
columns, and the values of the elements in this matrices represent the instantaneous amplitude. It can
be seen from Figure 14 that a lot of black spots exist in time-frequency plane, while the color intensity
of these black spots measure the magnitude of instantaneous amplitude. Therefore, the time-frequency
plane can reflect the instantaneous amplitude, instantaneous frequency and occurrence moment
of the vibration signal, the characteristics of the signals therefore can be well extracted from the
time-frequency plane.

Since the signals have a very small amplitude between 0.1 to 0.2 s, the time-frequency plane presents
a large blank, for clarity, we only show the time frequency plane from 0 to 0.1 s (however, the whole
time-frequency plane is still used to extract signal features). It can be seen from time-frequency plane that
the frequency distribution of Normal, Fault I and Fault II states are similar, especially Normal and Fault II
states, and the frequencies of them are concentrated around 3000 Hz, while the frequency distribution of
Fault III are obviously different. Besides, there is a time delay between Fault II state and other three states.
Therefore, it is necessary to divide the time-frequency plane according to the time-frequency distribution
characteristics of the signals, rather than simply dividing the time-frequency plane evenly. All these
characteristics can be further seen from the marginal spectrum.

According to Equation (13), the marginal spectrum can be obtained from the corresponding
time frequency plane, it can be seen from marginal spectrum that the main frequency components
of the measured signals (Normal, Fault I, Fault II) are concentrated in 0~4725 Hz, while for Fault III,
Its maximum frequency component is around 6475 Hz. Besides, the marginal spectrum of the normal
state signal is similar to Fault II, while other two types of faults are different from each other. Therefore,
we need to distinguish between Normal and Fault II from other aspects, such as occurrence time of
vibration events. In summary, in order to correctly identify the four types of vibration signals, we must
pay attention to both time domain features and frequency domain features.

After the signal is decomposed by the EWT method, the ITFE method is adopted to extract the
features of vibration signals. Firstly, select a standard normal state vibration signal from the collected
signals. Then according to the minimum distribution of the marginal spectrum, and the number of
mode components in Figure 13, horizontally divide the time-frequency plane into 9 segments, and
according to the principle of equal energy segmentation, vertically divide the time-frequency plane
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into 10 segments, therefore, 9 × 10 sub-planes are obtained. Finally, record the division boundaries of
this standard time-frequency plane and apply it to other signals. Here the choice of segment number is
the result of multiple experiments, when segment number is too large, the features of signal are too
sensitive to change, however, when the segment number is too small, the features of signal are not
obvious enough.
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The division boundaries of standard normal state vibration signal are recorded as shown in
Table 2. In this paper, time-frequency plane is a matrix of 400 rows, 7998 columns, the “serial number”
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in Table 2 represents the row where the frequency boundary is located in the time-frequency plane.
While for discrete time series, sampling points can be equivalent to time, i.e., t = 0 s corresponds to the
first sampling point, while t = 0.2 s corresponds to the 8000th sampling point in this paper.

Table 2. Division boundaries of standard time-frequency plane.

Item Division Boundaries

frequency (Hz) 0 1475 2425 2675 2875 3175 3725 5825 12430 fmax –
Serial number 1 30 49 54 58 64 75 117 249 400 –

time (ms) 0 23.23 24.05 24.75 26.4 33 35.15 37 39.78 46.11 200
sampling point 1 929 962 990 1056 1320 1406 1480 1591 1844 7998

Compared with TFE method, the proposed ITFE method can divide the time-frequency plane
more densely in the places where the signal energy or frequency bands are concentrated. In this paper,
combined with EWT, the empirical wavelet transform-improved time frequency entropy (EWT-ITFE)
feature extraction method is proposed. To validate the superiority of proposed EWT-ITFE method,
EWT-ITFE, EWT-TFE and WTFE method are compared in this study. Where the WTFE method
follows the feature extraction method in literature [11], and the db35 wavelet basis is chosen, while the
decomposition levels of wavelet packet transform is 5, besides, the time-frequency plane is equally
divided into 10× 9 parts in this study, i.e., horizontally divide the time-frequency plane into 9 segments,
and vertically divide the time-frequency plane into 10 segments (the same with EWT-TFE method).

In order to describe the overall trend of the feature vectors of each type of signal, Figure 15 shows
the EWT-ITFE feature distribution, EWT-TFE feature distribution and WTFE feature distribution, and
for clarity, only four feature vectors of each mechanical condition are listed. Figure 15 shows that the
characteristic curves of same type of signal have a certain degree of dispersion, however, the overall
trend of these characteristic curves is similar. While the characteristic curves of different types of
signals have obviously differences. Compared Figure 15a with Figure 15b,c, the superiorities of the
proposed EWT-ITFE method are mainly reflected in the following aspects:

(1) It can be seen that the characteristic curves of same type of signal obtained by EWT-TFE and
WTFE methods are more dispersed than the EWT-ITFE ones, this indicates that the EWT-ITFE
method can better highlight the similarity between the same type of signal.

(2) It also can be seen that the overall trend of characteristic curves of different types of signals
obtained by EWT-TFE and WTFE methods have a certain degree of similarity, especially the
frequency domain features of Normal, Fault I and Fault II (as shown in Figure 15b,c). While
for EWT-ITFE method, the characteristic curves between different types of signals are obvious
different. These indicate that the EWT-ITFE method can better highlight the differences between
different types of signals.

The differences between Figures 15a and 15b are mainly caused by the division method of
time-frequency plane. ITFE method divides the time-frequency plane according to the frequency
distribution characteristics and energy distribution characteristics of the signal, while the TFE method
has no basis for the division of the time frequency plane, besides, how to select the number of division
boundary still lacks an effective criterion, usually we can only choose the number of division boundary
by experience. Except for the division method of time-frequency plane, the differences between
Figures 15a and 15c are also caused by wavelet basis function and wavelet packet decomposition level.
However, different from wavelet packet decomposition, EWT method can effectively extract the each
vibration events of multi-component signals (as shown in Figure 5b), therefore, EWT-ITFE feature
extraction method is adopted in this paper.
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6.3. Classification by Using K-CV and GRNN

According to the classifier design process shown in Figure 9, firstly, a total of 120 feature vectors
should be randomly divided into test set and training set. For each type of signal, 30 feature vectors
are include, we randomly select 20 feature vectors as the training samples, while other 10 feature
vectors as test samples. Secondly, 2 fold cross validation is used in this paper, i.e., a total of 80 training
samples are equally divided into 2 data sets again, one for training, while other for testing, and let
cross validation performs four times. Besides, the loop traversal interval is [0.1, 2], and traversing step
length TL is 0.1 in this paper, therefore, 20 “spread” values are available for selecting the optimal value.
When the SME is minimum, the corresponding “spread” value is the best one. Figure 16 shows this
parameter optimization process of 4 times cross-validation. For each cross validation process, we can
see from Figure 16 that the value of “spread” has a tendency to decrease first and then increase, this
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indicates that the value of “spread” has a certain influence on the classification results, too large or too
small “spread” values can’t make the performances of the classifier the best. Figure 16 shows that the
minimum MSE value is obtained during the second cross validation process, at this time, the value of
“spread” is 0.9.
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A total of 40 feature vectors are entered into the optimal classifier (GRNN with “spread” = 0.9) for
testing, while only 5 samples per fault type and 5 samples of normal condition are list in Table 3 as an
example, the partial outputs of GRNN are shown in Table 3. Because there are four types of vibration
signals, the number of output layer neuron in GRNN should be 4, i.e., the practical outputs of GRNN
should be a series of four-dimensional vectors [y1, y2, y3, y4]. In Table 3, the expected vector [1, 0, 0, 0]
represents Normal condition, expected vector [0, 1, 0, 0] represents Fault I condition, expected vector
[0, 0, 1, 0] represents Fault II condition and expected vector [0, 0, 0, 1] represents Fault III condition,
the closer the value between practical output vector and expected vector, the better the classification
effect is. And usually, 0.5 is used as a threshold to judge the mechanical conditions, for example, if y1
is greater than 0.5, we think that the recognition result is Normal condition, and other cases are similar.
Due to the large fluctuation of time-frequency entropy of some signals, it can be seen from Table 3
that only one fault I vibration signal is misidentified as a Normal signal, Finally, the vibration signal
recognition rate are: Normal 100%, Fault I 90%, Fault II 100%, Fault III 100%.

Table 3. Partial outputs of optimal GRNN.

Types

Outputs

y1 y2 y3 y4

Expected Practical Expected Practical Expected Practical Expected Practical

Normal 1 0.8977 0 0.0936 0 0.0080 0 0.0006
Normal 1 0.9173 0 0.0765 0 0.0057 0 0.0005
Normal 1 0.9352 0 0.0621 0 0.0024 0 0.0002
Normal 1 0.9109 0 0.0816 0 0.0070 0 0.0005
Normal 1 0.9227 0 0.0627 0 0.0136 0 0.0010
Fault I 0 0.0000 1 0.9386 0 0.0613 0 0.0001
Fault I 0 0.0001 1 0.9423 0 0.0566 0 0.0009
Fault I 0 0.0000 1 0.9232 0 0.0767 0 0.0002
Fault I 0 0.2902 1 0.6511 0 0.0512 0 0.0074
Fault I 0 0.7006 1 0.2401 0 0.0533 0 0.0060
Fault II 0 0.0027 0 0.0001 1 0.9384 0 0.0588
Fault II 0 0.0038 0 0.0002 1 0.9322 0 0.0638
Fault II 0 0.0024 0 0.0002 1 0.9369 0 0.0605
Fault II 0 0.0016 0 0.0001 1 0.9327 0 0.0656
Fault II 0 0.0011 0 0.0001 1 0.9396 0 0.0593
Fault III 0 0.0787 0 0.0004 0 0.0773 1 0.8436
Fault III 0 0.0841 0 0.0003 0 0.0722 1 0.8434
Fault III 0 0.0888 0 0.0002 0 0.0583 1 0.8527
Fault III 0 0.0497 0 0.0002 0 0.0945 1 0.8555
Fault III 0 0.0552 0 0.0001 0 0.0634 1 0.8811
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In the past decades, RBFNN and BPNN are mostly widely used classifiers in HVCB fault diagnosis,
and all these classifiers applied successfully in a certain extent, to prove the ability to distinguish
normal and fault conditions of these classification methods, the GRNN, RBFNN and BPNN classifiers
are compared in this paper, and the EWT-ITFE, EWT-TFE and WTFE feature extraction methods are
adopted. GRNN classifier is optimized by the loop traversal method, and when using EWT-ITFE
feature extraction method, the “spread” takes 0.9, while using other two feature extraction method,
the “spread” takes 0.7, 1.2 respectively, as shown in Table 4.

Table 4. Final recognition results.

Classifier Feature Extraction Method (Parameter)
Recognition Rate

Normal Fault I Fault II Fault III All Test
Samples

GRNN
EWT-ITFE (spread = 0.9) 100% 90% 100% 100% 97.5%
EWT-TFE (spread = 0.7) 90% 80% 100% 100% 92.5%

WTFE (spread = 1.2) 80% 80% 100% 100% 90%

RBFNN

EWT-ITFE (number of neurons in
hidden layer = 12) 100% 90% 90% 100% 95%

EWT-TFE (number of neurons in hidden
layer = 23) 90% 80% 90% 100% 90%

WTFE (number of neurons in hidden
layer = 31) 70% 70% 90% 100% 82.5%

BPNN

EWT-ITFE (number of neurons in
hidden layer = 20) 100% 90% 80% 100% 92.5%

EWT-TFE (number of neurons in hidden
layer = 16) 70% 70% 90% 100% 82.5%

WTFE (number of neurons in hidden
layer = 19) 60% 70% 70% 100% 75%

The number of neurons in hidden layer have a certain effect on the prediction results of neural
network. For RBFNN classifier, the number of neurons in input layer and output layer is 19, 4
respectively, while the number of neurons in hidden layer is determined by minimum prediction
error of multiple trainings. For BPNN classifier, we followed the literature [3], BPNN is designed as
a three-layer neural network in this paper, the number of neurons in input layer and output layer is
the same as that in RBFNN, while the number of neurons in hidden layer are list in Table 4. Besides,
the final recognition results of these three classifiers are shown in Table 4.

Table 4 shows that all samples of Fault III condition can be correctly identified by using each
fault diagnosis method, while the samples of Fault I are easily misidentified, these indicate that the
vibration signals of the fault III condition are very different from the vibration signals of the other three
conditions, however, the vibration signals of the fault I condition is the opposite. Besides, for the same
classifier, the EWT-ITFE feature vectors, EWT-TFE feature vectors and WTFE feature vectors are
selected as the input vectors of the classifier respectively, Table 4 shows that the recognition rates
of each type of signal are higher by using EWT-ITFE feature extraction method, this indicates that
the signal features obtained by EWT-ITFE method are more significant. Compared optimal GRNN
classifier with RBFNN and BPNN classifiers, Table 4 shows that using the same feature extraction
method, the recognition rates of GRNN classifier are higher than other two classifiers. In general,
Table 4 shows that the EWT-ITFE feature extraction method and the optimal GRNN classifier are
more suitable for mechanical fault diagnosis of HVCBs. Only one parameter in GRNN needs to be
optimized, and this parameter is easy to determine by using loop traversal method.

7. Conclusions

This paper presents a new method for mechanical fault diagnosis of HVCBs. Firstly, the original
vibration signals are collected by designed acquisition system, and secondly, EWT is employed to
decompose the vibration signals into a series of physically meaningful modes, and then, an improved
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TFE method is used for feature extraction. Finally, GRNN is employed to identify four mechanical
conditions, where the parameter “spread” of GRNN is optimized by loop traversal method, meanwhile,
K-CV is used to verify the performances of the optimal parameter spread. The simulation and practical
test results demonstrate the following advantages of the new method:

(1) Compared with EMD, EEMD, IF and VMD methods, the EWT method can better decompose
the signals into a series of physically meaningful modes, while the VMD method is difficult to
determine the value of parameter K and other remain mentioned methods contain the false modes.

(2) Compared with EWT-TFE and WTFE feature extraction method, the proposed EWT-ITFE method
is more superior in feature extraction. The feature curves of different types of signals obtained by
EWT-ITFE method are more dispersed than other two method, this is good for classification.

(3) GRNN has the parameter spread needs to be determined, it usually depends on human choice.
Combined with K-CV, the loop traversal method can effectively find the best value of parameter.

(4) According to the final recognition rates, the EWT-ITFE feature extraction method and the optimal
GRNN classifier are more suitable for mechanical fault diagnosis of HVCBs, the signal features
obtained by EWT-ITFE method are more significant, and the optimal GRNN classifier is more
robust. The proposed EWT-ITFE method provides a new idea for mechanical feature extraction
of HVCBs.

(5) According to the final recognition rates, the fault diagnosis results mainly depend on the feature
extraction method and classifier.
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