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Abstract: In this paper, a novel image encryption scheme is proposed for the secure transmission
of image data. A self-synchronous chaotic stream cipher is designed with the purpose of resisting
active attack and ensures the limited error propagation of image data. Two-dimensional discrete
wavelet transform and Arnold mapping are used to scramble the pixel value of the original image.
A four-dimensional hyperchaotic system with four positive Lyapunov exponents serve as the chaotic
sequence generator of the self-synchronous stream cipher in order to enhance the security and
complexity of the image encryption system. Finally, the simulation experiment results show that this
image encryption scheme is both reliable and secure.

Keywords: hyperchaotic system; self-synchronous stream cipher; permutation entropy; image
encryption; wavelet transform

1. Introduction

With the rapid development of social networking, cloud computing, and mobile network
communication technology, the problem of secure storage and real-time transmission of image data is
increasingly important. Encryption and digital watermarking technology play an important role
in guaranteeing the security of multimedia data [1]. However, because of the high correlation
and redundancy of adjacent pixels of the digital image, some international standard encryption
algorithms are not suitable for image encryption, including 3DES (Triple Data Encryption Algorithm),
IDEA (International Data Encryption Algorithm), and AES (Advanced Encryption Standard), etc.
On the other hand, the chaotic nonlinear dynamic system has some good characteristics, such as
positive Lyapunov exponents, ergodicity, sensitivity to initial conditions, topological transitivity, and
unpredictability [2–5], and was widely applied in the field of cryptography and secret communication.
In recent years, in order to better solve the security transmission of digital images, some scholars have
put forward a series of image security encryption schemes based on the chaotic system and the inherent
characteristics of digital images [6–9]. For example, Ping et al. [10] proposed a permutation-substitution
image encryption scheme with the Henon map, which can resist a chosen-plaintext attack and
known-plaintext attack. Ye et al. [11] put forward an efficient symmetric image encryption algorithm
based on an intertwining Logistic map. Haroun [12] came up with a real-time image encryption
scheme using a low-complexity discrete 3D dual chaotic cipher.

However, these image encryption schemes generally use low-dimensional chaotic systems or
high-dimensional chaotic systems with only one positive Lyapunov exponent such as Logistic, Tent,
Henon, and Lorenz, etc. Compared with the high-dimensional hyperchaotic system with more than
two positive Lyapunov exponents, the complexity of nonlinear dynamic characteristics of the above
chaotic systems are lower. Additionally, because of the influence of the calculation precision and
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the quantization method, the chaotic binary sequences generated by the low-dimensional chaotic
systems emerge with short periodic phenomena [13,14], which will seriously affect the security of
image encryption. Furthermore, the above image encryption schemes usually adopt the synchronous
sequence cipher based on the chaotic binary sequences [15,16]. In synchronous stream ciphers, the key
stream is independent of plaintext or ciphertext. In the process of communication, the sender and
receiver must keep accurate synchronization. If the synchronization mechanism is broken by active
attack, the receiver will not be able to decrypt the ciphertext correctly. For instance, if an attacker
inserts or removes a certain number of bits ciphertext, it will immediately destroy the synchronization
mechanism of the synchronous sequence cipher. Therefore, this encryption method cannot resist
active attack [17]. On the basis of the above image encryption problem, we proposed a novel image
encryption scheme based on self-synchronous chaotic stream cipher and wavelet transform. Firstly,
a two-dimensional discrete wavelet transform is used to convert the original image from the spatial
domain to the frequency domain with the purpose of strengthening the difficulty of cracking. Secondly,
the pixel value of the image is scrambled by Arnold mapping. Finally, the scrambled image is encrypted
by self-synchronous chaotic stream cipher. This algorithm uses a four-dimensional hyperchaotic
system with four positive Lyapunov exponents and a self-synchronous stream cipher mechanism.
The generation of the key stream of the self-synchronous stream cipher is not independent of the
plaintext and ciphertext stream but is related to the seed key and n-bits ciphertext that have been
generated before. In the process of ciphertext transmission, the 1-bit ciphertext error will only affect
the correct decryption of the n-bits ciphertext in the back. The decryption process returns to normal
after this time. Therefore, this scheme cannot only resist active attack but also ensures the limited
error propagation of image data. The experimental results show that the encryption scheme has
good security.

The rest of this paper is organized as follows: Section 2 introduces a four-dimensional
hyperchaotic system and the design scheme of the self-synchronous chaotic stream cipher. Furthermore,
the performance of the discrete chaotic sequence was analyzed by multi-scale permutation entropy and
NIST-800-22 test. In Section 3, a novel image encryption scheme is proposed and a detailed security
analysis is carried out with histogram and information entropy analyses, etc. Section 4 summarizes
the conclusion of this paper.

2. Design and Implementation of Self-Synchronous Chaotic Stream Cipher

2.1. The Description of Four-Dimensional Discrete Chaotic System

In this section, a four-dimensional chaotic system is constructed through the Chen–Lai
algorithm [18,19]. The discrete dynamic equations of the system can be expressed as the follows:

x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 = A


x1(k)
x2(k)
x3(k)
x4(k)

+ (‖A‖2 + ec)


x1(k)
x2(k)
x3(k)
x4(k)

(mod1) (1)

where ‖·‖2 and e represent Euclidean norm and mathematical constant, respectively. The mod is the
module operations, and c is control parameter. Furthermore, matrix A is given as follows:

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 =


0.7 0.4 0.1 0.2
0.2 −0.5 0.1 0
0 −1/3 0.1 0
0 −1/4 0.3 0.6

. (2)

When c = 3, the Lyapunov exponents of the system are given by LE1 = 3.0128, LE2 = 3.0454,
LE3 = 3.0717, and LE4 = 3.0799. The number of positive Lyapunov exponents are more than two. Thus,
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the system is a four-dimensional hyperchaotic system. The chaotic time series of the four-dimensional
hyperchaotic system are shown in Figure 1.
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Figure 1. The chaotic time series of the four-dimensional hyperchaotic system with: (a) x1(k); (b) x2(k);
(c) x3(k); (d) x4(k).

2.2. Quantization and Performance Analysis of Discrete Chaotic Sequences

2.2.1. Binary Quantization Method

For the above chaotic system, xj(k) ∈ (0, 1) with j = 1, 2, 3, 4. In this paper, we adopt the binary
quantization method to quantize discrete chaotic real value sequences. The corresponding quantization
method is defined as follows:

Qj(k) =

{
0 xj(k) < td
1 xj(k) ≥ td

j = 1, 2, 3, 4 (3)

where Qj(k) is the quantized chaotic binary sequence, and td represents the quantization threshold
with td = 0.5.

2.2.2. Multi-Scale Permutation Entropy Analysis

Multi-scale permutation entropy (MPE) [20,21] has the advantages of high robustness and fast
computational speed. It is widely applied in the measurement of binary sequence complexity and
nonlinear system analysis. In this section, we perform a multi-scale permutation entropy analysis
for the above chaotic binary sequence. The parameters of MPE have embedding dimension m, delay
factor τ, and scale factor s. For the choice of the parameter values of the multi-scale permutation
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entropy with the purpose of calculating the complexity of chaotic binary sequences, Sun et al. [22]
and Xu et al. [23] give the recommended parameter range in order to obtain more accurate entropy
values. On the basis of the theoretical research of the above references, in this experiment, we set
m = 3, τ = 2, and s ∈ [3, 7], respectively. The experimental results are shown in Table 1. As can be
seen from Table 1, all MPE values of chaotic binary sequences are more than 0.9 and display good
sequence complexity.

Table 1. The multi-scale permutation entropy (MPE) value of chaotic binary sequences with Q1(k),
Q2(k), Q3(k), and Q4(k).

Scale Factor S Q1(k) Q2(k) Q3(k) Q4(k)

3 0.9201 0.9260 0.9177 0.9132
4 0.9366 0.9382 0.9449 0.9410
5 0.9548 0.9488 0.9567 0.9377
6 0.9590 0.9572 0.9585 0.9526
7 0.9552 0.9533 0.9704 0.9553

2.2.3. NIST-800-22 Test

NIST-800-22 is a statistical test suite for random and pseudorandom number generators for
cryptographic applications. This test standard was enacted by the National Institute of Standards and
Technology (NIST). The test statistic is used to calculate a p-value that summarizes the strength of the
evidence against the null hypothesis. On the basis of the results of NIST test, we can judge whether or
not this chaotic binary sequence is suitable for a cryptographic algorithm. NIST-800-22 is made up of
16 test methods, including the longest run test, cumulative sums, and the linear complexity test, etc.
For these tests, each p-value is the probability that a perfect random number generator would have
produced a sequence less random than the sequence that was tested, given the kind of non-randomness
assessed by the test. A significance level (α) can be chosen for the tests. If p− value ≥ α, then the
null hypothesis is accepted; i.e., the sequence appears to be random. If p− value < α, then the null
hypothesis is rejected; i.e., the sequence appears to be non-random. Typically, α is chosen in the
range [0.001, 0.01]. Common values of α in cryptography are about 0.01 based on the NIST-800-22
test standard [24]. The experimental results of NIST-800-22 test are shown in Table 2. Table 2 shows
that the chaotic binary sequences Q1(k), Q2(k), Q3(k), and Q4(k) passed all the tests. These sequences
show good randomness and meet the requirements of the stream cipher.

Table 2. NIST-800-22 test of chaotic binary sequences.

Test Item
Q1(k) Q2(k) Q3(k) Q4(k) Result

p−Value p−Value p−Value p−Value

Approximate Entropy 0.026853 0.013829 0.068205 0.034937 Success
Block Frequency 0.058378 0.870831 0.724584 0.297646 Success

Cumulative Sums 0.459642 0.069717 0.963210 0.328997 Success
FFT 0.358795 0.919848 0.081236 0.713570 Success

Frequency 0.435391 0.447255 0.888660 0.193601 Success
Linear Complexity 0.186537 0.203633 0.569565 0.232544 Success

Longest Run 0.359643 0.087189 0.789913 0.250387 Success
Non-Overlapping Template 0.348045 0.680967 0.106169 0.068529 Success

Overlapping Template 0.512834 0.063236 0.020689 0.490518 Success
Random Excursions 0.319514 0.181174 0.524622 0.304589 Success

Random Excursions Variant 0.579380 0.177934 0.108254 0.659874 Success
Rank 0.949536 0.648387 0.862457 0.648387 Success
Runs 0.340097 0.086469 0.041369 0.027231 Success

Serial Test-1 0.407933 0.213432 0.648688 0.814738 Success
Serial Test-2 0.462490 0.880617 0.584615 0.512974 Success

Maurer’s Universal 0.026152 0.538143 0.142680 0.600293 Success
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2.3. The Design of Self-Synchronous Chaotic Stream Cipher

The self-synchronous stream cipher is also known as the asynchronous stream cipher.
The generation of the key stream of self-synchronous stream cipher is not independent of the plaintext
and ciphertext stream but is related to the seed key and some ciphertext that has been generated before.

It has the advantages of limited error propagation, self-synchronous and ciphertext statistical
diffusion. In this section, the encryption and decryption block diagram of the self-synchronous stream
cipher based on the four-dimensional hyperchaotic system is shown in Figure 2.
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Where K, (K1
s , K2

s , K3
s , K4

s ), ⊕ and function g(·) represent the seed key, subkey, exclusive OR (XOR)
operational character and subkey generation function, respectively. Ci−1 and Ci are the ciphertext
stream generated at two adjacent moments. Q1, Q2, Q3, and Q4 are the quantized chaotic binary
sequence. P1

i , P2
i , P3

i , and P4
i are the adjacent plaintext stream with the purpose of parallel encryption.

According to Equations (1) and (2), f1(·), f2(·), f3(·), and f4(·) can be given as Equation (4).
x1(k + 1) = f1(·) = A11x1(k) + A12x2(k) + A13x3(k) + A14x4(k) + (‖A‖2 + ec)x1(k)(mod1)
x2(k + 1) = f2(·) = A21x1(k) + A22x2(k) + A23x3(k) + A24x4(k) + (‖A‖2 + ec)x2(k)(mod1)
x3(k + 1) = f3(·) = A31x1(k) + A32x2(k) + A33x3(k) + A34x4(k) + (‖A‖2 + ec)x3(k)(mod1)
x4(k + 1) = f4(·) = A41x1(k) + A42x2(k) + A43x3(k) + A44x4(k) + (‖A‖2 + ec)x4(k)(mod1)

(4)
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The encryption process of the self-synchronous chaotic stream cipher can be described as follows:

1. The subkey (K1
s , K2

s , K3
s , K4

s ) is generated by function g(·) and K j
s ∈ (0, 1) with j = 1, 2, 3, 4.

Where K and Ci−1 are the 0-1 binary sequence with length of 32 bits. The function g(·) is given
as follows: 

K = (k1, k2, · · · , k32)

Ci−1 = (c1
i−1, c2

i−1, · · · , c32
i−1)

K1
s = g(K, Ci−1) =

8
∑

v=1
(k4v−3 ⊕ c4v−3

i−1 )2−v

K2
s = g(K, Ci−1) =

8
∑

v=1
(k4v−2 ⊕ c4v−2

i−1 )2−v

K3
s = g(K, Ci−1) =

8
∑

v=1
(k4v−1 ⊕ c4v−1

i−1 )2−v

K4
s = g(K, Ci−1) =

8
∑

v=1
(k4v ⊕ c4v

i−1)2
−v

(5)

2. The generated subkey (K1
s , K2

s , K3
s , K4

s ) is used as the state variable (x1(k), x2(k), x3(k), x4(k)) of
the four-dimensional hyperchaotic system. The key stream Q1, Q2, Q3 and, Q4 with length of
8 bits are generated by hyperchaotic Equation (4) and a binary quantization operation with the
purpose of parallel encryption.

3. Ciphertext Ci is generated by the Equation (6). At the same time, the Ci will feedback to the
function g(·) with the purpose of generating the next round subkey (K1

s , K2
s , K3

s , K4
s ). Where || is

sequence assembly operation.

Q1 ⊕ P1
i = c1

i , c2
i , · · · , c8

i
Q2 ⊕ P2

i = c9
i , c10

i , · · · , c16
i

Q3 ⊕ P3
i = c17

i , c18
i , · · · , c24

i
Q4 ⊕ P4

i = c25
i , c26

i , · · · , c32
i

Ci = (Q1 ⊕ P1
i )
∣∣∣∣(Q2 ⊕ P2

i )
∣∣∣∣(Q3 ⊕ P3

i )
∣∣∣∣(Q4 ⊕ P4

i ) = c1
i , c2

i , · · · , c32
i

(6)

The decryption process of the self-synchronous chaotic stream cipher is similar to the encryption
process, which is not repeated here.

3. A Novel Image Encryption Scheme Based on Self-Synchronous Chaotic Stream Cipher

3.1. The Description of the Image Encryption Scheme

In this section, a novel image encryption scheme is proposed based on self-synchronous
chaotic stream cipher, Arnold mapping, and two-dimensional discrete wavelet transform (DWT).
The encryption process of the proposed scheme is shown in Figure 3. Firstly, the spatial domain of
the image is transformed into the frequency domain by two-layer DWT. Secondly, Arnold mapping
is implemented with the purpose of obtaining good diffusion effectiveness. Finally, on the basis of
self-synchronous chaotic stream cipher, the scrambled image is encrypted to ensure its security.
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3.1.1. Discrete Wavelet Transform

The DWT plays an important role in image compression and image information
processing. The decomposition process of signal So by the two-dimensional DWT is shown
in Figure 4. A two-dimensional matrix So can be decomposed into four groups of coefficients
[cA, cD(h), cD(v), cD(d)]. Where cA, cD(h), cD(v), and cD(d) represent approximate coefficient (low
frequency component), horizontal detail coefficient, vertical detail coefficient, and diagonal detail
coefficients, respectively. Furthermore, the approximate coefficient cA can continue to be decomposed
by the same method. On the basis of the above image encryption scheme, in order to obtain the
transformation coefficient, the pixel value of the grayscale image is processed by two-dimensional
discrete wavelet transform. Thereafter, the spatial domain of the digital image is transformed into the
frequency domain with the purpose of enhancing the pixel scrambling effect.
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3.1.2. Arnold Mapping

Arnold mapping [25], also known as cat mapping, is a chaotic mapping method for repeated
folding and stretching transformation in a limited area. It is widely applied to pixel scrambling of
images. The mathematical equation of Arnold mapping is given as follows:[

Xn+1

Yn+1

]
=

[
1 a
b ab + 1

][
Xn

Yn

]
(modM) (7)

where (Xn, Yn) and (Xn+1, Yn+1) represent the pixel coordinates of the original image and the pixel
coordinates of transformed image, respectively. In addition, Xn, Yn, Xn+1, Yn+1 ∈ {0, 1, · · · , N − 1},
and a = 1, b = 1. The variable M is the size of the image.

3.2. Security Analysis of Image Encryption Scheme

In this section, the Lena, fruits, and airplane gray images with a size of 256 × 256 are
encrypted using the above image encryption scheme based on self-synchronous chaotic stream cipher.
The security analysis results of image encryption are shown below.

3.2.1. Histogram Analysis

The histogram of the image is an important statistical feature of the image. It can be considered
as the gray density function of the image. One of the evaluation criteria of image encryption effect
is whether the gray histogram of the ciphertext image has the characteristics of uniform distribution.
The results of the grayscale histogram are shown in Figure 5, and the horizontal and vertical coordinates
of the gray histogram represent the pixel values and number of pixel values, respectively. As can be
seen from the Figure 5g–i, the pixel values of the ciphertext images are so evenly distributed that it
is difficult for the attacker to extract the plaintext pixel statistical characteristics from the ciphertext.
Therefore, this image encryption scheme can resist statistical attacks well.
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Figure 5. Histogram test with: (a) plain-image of Lena; (b) plain-image of airplane; (c) plain-image of
fruits; (d) histogram of plain-image of Lena; (e) histogram of plain-image of airplane; (f) histogram of
plain-image of fruits; (g) histogram of encrypted image of Lena; (h) histogram of encrypted image of
airplane; (i) histogram of encrypted image of fruits.

3.2.2. Correlation Analysis of Adjacent Pixels

Correlation analysis refers to the analysis of two variables with correlation so as to measure
the correlation degree of two variables. The correlation of adjacent pixels can reflect the scrambling
effect of image pixels. The mathematical equation for the correlation of adjacent pixels is shown as
follows [26]:

E(x) =
1
N

N

∑
k=1

xk (8)

D(x) =
1
N

N

∑
k=1

(xk − E(x))2 (9)

cov(x, y) =
1
N

N

∑
k=1

(xk − E(x))(yk − E(y)) (10)

ρxy =
cov(x, y)√
D(x)

√
D(y)

(11)

where xk and yk represent the grey values of two adjacent pixels, and N is the number of randomly
selected adjacent pixels from the original or encrypted image. The ρxy, E(x), D(x) and cov(x, y)
represent the correlation coefficient, mean value, variance, and covariance, respectively.

For the correlation analysis experiment, we randomly selected 2000 pairs of adjacent pixels
in horizontal, vertical, and diagonal directions from the plain and encrypted images of Lena.
The experimental results are shown in Figure 6. Where (i, j) represents the position coordinates
of this pixel in the image. As can be seen from the figure, the correlation of cipher-images is much
lower than that of plain-images. Furthermore, Table 3 shows the correlation analysis of the adjacent
pixels with the Lena, airplane, and fruits image. Obviously, the correlation coefficient of the plain-image
is close to 1. On the contrary, the correlation coefficient of the cipher-image is close to 0, which indicates
a good performance.
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Figure 6. The correlation plots of two adjacent pixels for the plain and encrypted images of Lena
with: (a) horizontal correlation of plain-image of Lena; (b) horizontal correlation of cipher-image of
Lena; (c) vertical correlation of plain-image of Lena; (d) vertical correlation of cipher-image of Lena;
(e) diagonal correlation of plain-image of Lena; (f) diagonal correlation of cipher-image of Lena.

Table 3. Correlation analysis of adjacent pixels for the Lena, airplane, and fruits images.

Direction Horizontal Vertical Diagonal

Plain-image of Lena 0.9577 0.9440 0.9126
Cipher-image of Lena −0.0082 0.0027 0.0030

Plain-image of Airplane 0.9147 0.9225 0.9109
Cipher-image of Airplane 0.0334 −0.0285 −0.0073

Plain-image of Fruits 0.9540 0.9497 0.9459
Cipher-image of Fruits −0.0273 −0.0176 −0.0026
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3.2.3. Peak Signal-To-Noise Ratio (PSNR) Analysis

The peak signal-to-noise ratio is an objective criterion for evaluating images, and its mathematical
equation is given as follows:

PSNR = 10 log10(L2/MSE) (12)

MSE =
1

M2

M

∑
i=1

M

∑
j=1

(I′(i, j)− I(i, j))2 (13)

where M × M is the size of image, I′(i, j), and I(i, j) represent the pixel value of encrypted and
original images, respectively. MSE is mean squared error, and L is the range of gray values in the
image. Generally speaking, the better the encryption effect is, the smaller the PSNR of the image
becomes. The results of the PSNR test is shown in Table 4. For the test result of our scheme, it is the
average PSNR of the Lena, airplane, and fruits images. Similarly, for the image encryption method of
Yin et al. [27] and Zhu [28], this PSNR represents the average value of multiple images. As can be seen
from the table, our scheme has a smaller PSNR value, which shows a good encryption effect.

Table 4. Peak signal-to-noise ratio (PSNR) test with different methods.

Methods PSNR Value

Our scheme 8.1543
Yin et al. [27] 8.4100

Zhu [28] 9.2322

3.2.4. Information Entropy Analysis

Information entropy can measure the distribution of gray values in images. The more random the
gray value distribution, the greater the information entropy of the image. According to the information
theory of Shannon, the information entropy can be defined as follows:

H(s) = −
2n−1

∑
i=0

P(si) log2(P(si)) (14)

where P(si) represents the probability of symbol si, n is the number of bits required to store each
pixel value, 2n is the total states of the information source s. When n = 8, the theoretical value of
information entropy is 8. The information entropy test was performed for the encrypted images of
Lena, airplane, and fruits. Table 5 shows the experimental results of the entropy test. The test result of
our scheme is the average entropy value of the Lena, airplane, and fruits images. For the scheme of Liu
et al. [29], Liu et al. [30], and Niyat [31], these entropy values represent the average value of multiple
images. As can be seen from the table, the entropy value of encrypted image of our scheme is closer to
the theoretical value 8. Therefore, this scheme can effectively resist the information entropy attack.

Table 5. Information entropy test with different methods.

Methods Entropy Value

Our scheme 7.9971
Liu et al. [29] 7.9914
Liu et al. [30] 7.9851

Niyat et al. [31] 7.9877

4. Discussion

In this paper, we proposed a novel image encryption scheme with the purpose of ensuring secure
transmission of image data. A four-dimensional hyperchaotic system is constructed to act as the chaotic
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sequence generator. Moreover, the performance of chaotic binary sequences is analyzed by multi-scale
permutation entropy and the NIST-800-22 test. The test results show that the binary sequence has
good randomicity and security. On the basis of the chaotic sequence generator, a self-synchronous
stream cipher is designed to encrypt the image data. The generation of the key stream of the chaotic
stream cipher is related to the seed key and a certain number of bits ciphertext that has been generated
previously. It has the advantages of limited error propagation, self-synchronous and ciphertext
statistical diffusion, which can satisfy the security and stability of image encryption system. Finally,
a novel image encryption scheme is designed based on the self-synchronous stream cipher. Arnold
mapping and wavelet transform are used to obtain a good scrambling effect for the digital image.
Some simulation results show that the proposed scheme is both reliable and secure.
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