M entropy MBPY

Article
A Novel Boolean Kernels Family for Categorical Data *

Mirko Polato *2 Ivano Lauriola > and Fabio Aiolli !

Department of Mathematics, University of Padova, via Trieste 63, 35121 Padova, Italy;

Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento, Italy; ivano.lauriola@phd.unipd.it (I.L.);
aiolli@math.unipd.it (FA.)

* Correspondence: mpolato@math.unipd.it

t This paper is an extended version of our paper published in the 26th International Conference on Artificial
Neural Networks—ICANN 2017.

Received: 28 February 2018; Accepted: 4 June 2018; Published: 6 June 2018

Abstract: Kernel based classifiers, such as SVM, are considered state-of-the-art algorithms and are
widely used on many classification tasks. However, this kind of methods are hardly interpretable
and for this reason they are often considered as black-box models. In this paper, we propose a new
family of Boolean kernels for categorical data where features correspond to propositional formulas
applied to the input variables. The idea is to create human-readable features to ease the extraction of
interpretation rules directly from the embedding space. Experiments on artificial and benchmark
datasets show the effectiveness of the proposed family of kernels with respect to established ones,
such as RBF, in terms of classification accuracy.

Keywords: boolean kernels; kernel methods; SVM; categorical data

1. Introduction

Large-margin kernel machines (e.g., SVM) are recognized state-of-the-art algorithms in machine
learning applications. They are broadly applied to several domains, such as text categorization,
spam filtering, RNA function prediction, and so on. However, since these methods typically work on
an implicitly defined feature space by resorting to the well-known kernel trick, the interpretability of
the resulting model is difficult.

This last aspect is often crucial in specific application areas, such as the medical ones, in which the
simple predictive answer is not enough. Being this a requirement for the acceptance of these black-box
models by end users, in the last decade, several methods have been introduced for rule extraction from
SVMs (see [1] for a recent survey). The majority of the proposed approaches try to extract if~then rules
over the input variables and this task is generally hard when common kernels, e.g., the polynomial
and RBF ones, are used.

On the other hand, Decision Trees (DT), thanks to their easy logical interpretation, are very
appreciated, especially by non-expert users. The shortcoming of DTs is that, in general, they are not as
accurate as more complex methods. In the case of binary valued input data, an alternative approach
to make SVM more interpretable consists in defining features that are easy to interpret, for example,
features that are propositional (i.e., logical) formulas applied to the input vectors. In particular,
Boolean kernels are kernel functions in which the binary input vectors are mapped into an embedding
space formed by propositional formulas of the input variables, and, in such space, the dot product
is performed.

More formally, a Boolean kernel function « : {0,1}" x {0,1}" — N is defined as x(x,z) =
(p(x),¢(z)) where ¢ : {0,1}" — {0,1} is the embedding Boolean function with x, z € {0,1}". When
the input space is binary, the linear kernel can be seen as a limit case of a Boolean kernel in which the
features simply represent the Boolean literals themselves.

Entropy 2018, 20, 444; d0i:10.3390/e20060444 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-4890-5020
https://orcid.org/0000-0002-5823-7540
http://dx.doi.org/10.3390/e20060444
http://www.mdpi.com/journal/entropy

Entropy 2018, 20, 444 2of 14

In this paper, we propose a new family of Boolean kernels able to produce feature spaces composed
by arbitrarily complex propositional formulas. In particular, we first introduce the basic Boolean
kernels [2], namely the conjunctive kernel and the disjunctive kernel, for both the monotone and
non-monotone case. On top of these kernels, we then propose more complex kernels such as the
Disjunctive Normal Form kernel and the Conjunctive Normal Form kernel. For all the proposed kernels,
an efficient method to compute them is provided. We assess the quality of the proposed kernels in
terms of classification accuracy on several categorical datasets, and compare their performance against
state-of-the-art kernels, such as the RBF kernel, and other Boolean kernels proposed in the literature.

The reminder of this paper is structured as follows: in Section 2, we give an overview of the
existing work related to Boolean kernels. In Section 3, we present the proposed Boolean kernels family
and, in Section 4, we discuss their computational complexity. Finally, Section 5 shows all the performed
experiments on several benchmark categorical datasets.

2. Related Work

Sadohara [3] was the first to introduce the idea of Boolean kernel. In that work, the concept of
Boolean kernel is actually related to a single kernel called DNF kernel. Specifically, he proposed a SVM
for learning Boolean functions: since every Boolean (i.e., logical) function can be expressed in terms of
Disjunctive Normal Form (DNF) formulas, the proposed kernel creates a feature space containing all
possible conjunctions of negated or non-negated Boolean variables.

For instance, the feature space for a two variables, e.g., x1, xo, DNF contains the following 321
features: x1,xp, 7x1, 71X, X1 A X2, X1 A 71X, 1x1 A xp, 7x1 A —xp. The resulting decision function of
a kernel machine which employs the DNF kernel can be represented as a weighted linear sum of
conjunctions (Representer Theorem [4,5]), which in turn can be seen as a kind of “soft” DNE.

Formally, the DNF kernel between x, z € R" is defined as

n
Kai(%,2) = =14+ [[(2xizi — x; — zi + 2),
i=1

while its monotone (i.e., without negations) form is the following

n
Koant (X, 2) = =1+ H(xizi +1).
i=1

By restricting the domain of the vectors in {0,1}", the computation of the kernels is simplified
as follows
Kau(x,2) = —1 4 ptwa)HEz) Koant (%, 2) = —1 4 2twa)

where ¥ = 1, — x is the vector with all the binary entries swapped. Note that the sum (x,z) +
(%,Z) simply counts the number of common “bits” between x and z. These last two kernels were
independently discovered in [6,7].

A drawback of this type of kernels is the exponential growth of the size of the feature space
with respect to the number of involved variables, i.e., 3" — 1 for n variables. To give the possibility of
controlling the size of the feature space, Sadohara et al. [8] proposed a variation of the DNF kernel in
which only conjunctions with up to d variables (i.e., d-ary conjunctions) are considered. Over binary
vectors, this kernel, dubbed d-DNF kernel, is defined as

(x,z) = ié <<x,z> —1_ <x,z>>,

and trivially, if d = n, k% (x,2z) = x4(x,z). A nice property of the d-DNF kernel is that it yields a
nested sequence of hypothesis spaces, i.e., H; C Hy C --- C H,. Thus, choosing a degree 4 (also
known as “arity”) for the kernel implicitly means controlling the capacity of the hypothesis space,

Entropy 2018, 20, 444 3of 14

which is a very important aspect in learning. The same “trick” can be applied to the monotone d-DNF

kernel [9]:
d
Kfrl\dnf(x/ Z) = Z <<x;z>>

i=1
Instead of limiting the number of involved variables, Zhang et al. [10] proposed a parametric
version of the DNF and mDNF kernel. Specifically, given x, z € {0,1}" and o > 0, then

Kgff) (x,z) = —1 +H(0xl-zi +o(l—x)+o0(l—z)+1),
i=1

n
Kﬁﬁ(x,z) =-1+ H((Tx,»z,' +1).
i=1

The parameter ¢ induces an inductive bias towards simpler or more complex DNF formulas.
Specifically, for o in the range [0, 1] a bias towards shorter DNF is given, while for o > 1 the bias is more
towards longer DNE. When o = 1, then Kﬁﬁ) (x,z) = Kue(x,), and the same for the monotone DNF
kernel. In the following, we refer to these kernel as c-DNF and c-mDNF kernel, respectively. Zhang et
al. also proved that, for binary input vectors, the polynomial kernel, i.e., khy, (¥, z) = (c/(x,z) +¢)?,
¢ € R4, is a Boolean kernel, even though they did not provide any formal definition of Boolean
kernel. Nonetheless, an important observation is that the embedding space of a polynomial kernel is
composed by all the monomials (that are conjunctions) up to the degree p. Thus, the only difference
between the polynomial one and the d-DNF kernel are the weights associated to the features. It is also
noteworthy that, in the binary case, the embedding of the polynomial kernel contains sets of equivalent
features, e.g., for p = 4 and x € {0, 1}, the value of the features (in the feature space) x3x,, ¥3x3, x1%3
are equivalent to the feature xjxy.

A kernel related to the polynomial is the all-subset kernel [11,12], defined as

n

ke (x,z) = [[(xizi + 1),

i=1

which considers a space with a feature for each subset of the input variables, including the empty subset.
It is different from the polynomial because it does not limit the number of considered monomials, and
it gives the same weight to all the features. It is easy to see that the all-subset kernel and the monotone
DNF kernel are actually the same kernel up to the constant —1, i.e., kc (X, 2) = Ko (¥, 2) + 1.

Both the polynomial and the all-subsets kernel have limited control of which features they use
and how they are weighted. The polynomial kernel uses only monomials of degree up to p with a
weighting scheme depending on a parameter (c). The all-subsets, instead, makes use of the monomials
corresponding to all possible subsets of the n input variables.

A restricted version of the all-subset kernel is the ANOVA kernel [11] in which the
embedding space is formed by monomials with a fixed degree d without repetition. For example,
given x € {0,1}3 the feature space of the all-subset kernel would be made by the features
X1,X2,X3,X1X2, X1X3, X2X3, X1 x2x3 and @, while for the ANOVA kernel of degree 2 it would be composed
by x1x, x1x3 and xpx3. Formally, the ANOVA kernel is defined as follows

d
Kf(xfz) = Z Hxl]zljl

1<ii<ip<---<ig<n j=1

where i1, iy, ..., iy are all the possible sets of indices of cardinality d, taken from the set {1,...,n}.

In [13,14], Boolean kernels are used for studying the learnability of logical formulas, specifically
DNF formulas, using maximum margin algorithms, such as SVM. In particular, in [14], the authors
showed the learning limitations of some Boolean kernels inside the PAC (Probably Approximately

Entropy 2018, 20, 444 4 of 14

Correct) framework. Moreover, in [13], Kowalczyk at al. proposed a generalization of the Sadohara
mDNF kernel. A special case of this kernel is represented by the c~-mDNF kernel.

From the application point of view, Boolean kernels have been successfully applied on many
learning tasks, such as face recognition [15,16], spam filtering [17], load forecasting [18], and generic
binary classification tasks [8,10].

3. A New Family of Boolean Kernels

In this section, we propose a new family of Boolean kernels which owns the characteristic of
creating feature spaces that are very easy to understand, since they are based on logic. Specifically,
features are logical formulas (of a fixed form) over the input Boolean variables.

Firstly, we present the most basic Boolean kernel and then, for both the monotone and the
non-monotone cases, we propose kernels which mimic the conjunctive operator (and) and the disjunctive
operator (or). Then, we provide an efficient way to combine these “base” Boolean kernels to obtain
more complex ones, such as kernels with feature spaces composed by normal form formulas.

Throughout the paper, unless specified otherwise, we refer to vectors x,z € {0,1}" as binary
(Boolean) vectors of dimension n € Ny. We alsouse X = {i|x; =1} and Z = {i|z; = 1} as the sets
interpretation of those vectors, while the set i/ = {1,...,n} indicates the universal set. Given a set
A, we refer to its i-th element with A; for some enumeration of the elements of .A. With the notation
[AJf = {S C A | |S| = k}, we express the set of all the subsets of .A of cardinality k. It is worth
noticing that, for any binary vector x, ||x||3 = | x||; holds, which is the number of ones contained in
it. For the sake of brevity, we refer to this quantity with |x|. Moreover, 1,, denotes the n-dimensional
vector with all entries equal to 1, and with the notation (-, -) we refer to the dot product. The symbol ®
denotes the entry-wise multiplication between matrices. Finally, given a function f : X — V", Y CR,
then | f| denotes the dimension of its codomain, i.e., 7.

For each of the proposed kernels, the embedding function is provided in the general form
¢ : x — ¢)(x),ep, where B is a set of Boolean functions (formulas) over variables of x such that
¢") (x) = b(x) is a truth value associated with the application of the formula b to x. For example, let
b(x) = xy Axpand v = [0,1,0,1], then b(v) = 0, that is false. For the sake of simplicity, for each new
kernel, only the set B from which the Boolean formulas are taken is defined.

3.1. Monotone Boolean Kernels

A Boolean function (or formula) f : {0,1}" — {0,1} is called monotone if replacing a 0 (i.e., false)
with a 1 (i.e., true) in the input can only increase f’s value, i.e., the truth value can only change from
false to true. In other words, a formula f is monotone if it does not have any not operator.

3.1.1. Monotone Literal Kernel

In logic, a literal is an atomic formula or its negation. Here, we are in the monotone setting,
so we refer to a literal only in its positive form. In this case, the embedding is formed by Boolean
literals taken from the set B = {f; | fi(x) = x;}. Hence, the monotone Literal (mL) kernel, «,, (x, z),
will count how many true (i.e., positive) input literals the vectors have in common. Actually, «,, is
exactly the linear kernel «,(x, z) = (x, z), which simply performs the dot product between the two
input binary vectors.

3.1.2. Monotone Conjunctive Kernel

In Boolean algebra, given two Boolean variables x,z € {0,1}, the conjunction (i.e., and) between x
and z, denoted by x A z, is satisfied if and only if x = z = 1, that is if and only if both variables are
true. Given two vectors x,z € {0,1}", the monotone Conjunctive (mC) kernel [19] «¢_(x, z) counts
how many monotone conjunctions of the input variables, of a fixed arity c, are satisfied in both x and z.
In particular, the embedding is defined by Boolean formulas taken from B = {f; | fi(x) = Njeus xj},
which represent all the possible conjunctions of c literals (i.e., variables) taken from x. The dimension

Entropy 2018, 20, 444 5o0f 14

of the resulting feature space is (?), that is the number of all the combinations of ¢ different variables
taken from the input n-dimensional space. To count all the possible conjunctions of ¢ variables satisfied
in both x and z, we need to calculate the number of combinations of ¢ monomials that can be formed
by using all the positive variables in both the vectors, that is the value of the kernel ., (x, z). Hence,

we obtain:
ey = () - (1)

It is easy to see that for binary vectors x¢. is actually the ANOVA kernel of degree c [11].
As shown in [19], we can express the Sadohara mDNF Kernel [3] as a linear combination of
mC-kernels of arity 1 < d < n as in the following:

n n
Knnant (%, 2) = 2z 1 — 2 <<xz,iz>> —1= Z K (x,2).
d=1

d=0
A similar construction also holds for the d-mDNF kernel.

3.1.3. Monotone Disjunctive Kernel

The disjunction of two Boolean variables x,z € {0,1}, denoted by x V z, is not satisfied if and
only if x = z = 0, that is if and only if both variables are false, or, in other words, it is satisfied anytime
at least one of the variables is true. The monotone Disjunctive (mD) kernel [19], k% (x, z) counts how
many monotone disjunctions, of a fixed arity d, are satisfied in both x and z. The embedding of this
kernel is defined by Boolean formulas taken from B = {f; | fi(x) = Vjcy: x;}, with a feature space
of dimension (}). To explain how to count the common positive disjunctions in both x and z, we can
rely on the analogy between binary vectors and sets. An active disjunction of d literals for X can be
defined as a set of d elements taken from the universe U, let us call it U, such that 3a € U, |a € X.
Anytime 3 a,b € U; | a € X ANb € Z (potentially a = b), then U is an active subset for X and
Z. Using this interpretation, we can say that the value of the kernel is the number of active subsets
Uy in common between X’ and Z. We can count the number of these subsets in a negative fashion.
Starting from the number of all possible subsets, which is (%‘), we remove the inactive subsets for X’
and for Z. An inactive subset for X is a set such that it does not contain any element of X, and the
number of this kind of sets is (lu;X|). Analogously, we can do the same for Z. Now, we have removed
twice the subsets formed by elements taken from X U Z = U~ (X U Z) and hence we need to add its

(lU\(F;UZ)l) d

contribution once, that is . We can now define x% as

= () = () < (P21 (502D

_ (1011) 7 (n—éx,x)) B <n—£<zz,z>> n (n— (x,x) —E<iz,z> + <x,z>>.

3.2. Non-Monotone Boolean Kernels

)

Converse to the monotone case, non-monotone Boolean formulas can contain negated variables,
e.g., —x;, thus the mL-kernel is not expressive enough to be the simplest non-monotone Boolean kernel
because it does not consider negated variables.

3.2.1. Non-Monotone Literal Kernel

To include the contribution of the negated variables, we need to add the number of false variables
in common between x and z to the mL-kernel. This can be calculated by the negation kernel, defined as

KNEG(x/ Z) = <(1n - x)/ (171 - Z)>
=n—(x,x)—(z,z) + (x,z),

Entropy 2018, 20, 444 6 of 14

in which the embedding is defined by Boolean functions taken from B = {f; | fi(x) = —x;}. Hence,
the non-monotone Literal (L) kernel, k1 (x, z), counts how many true and false variables x and z have in
common, and it is defined as a sum of kernels [11] as in the following:

KL(x, Z) = KmL(X, Z) + KNEG(xI Z)
=n—(x,x) — (z,2) +2(x, z).

3.2.2. Non-Monotone Conjunctive Kernel

The non-monotone Conjunctive (C) kernel counts how many non-monotone conjunctions of a
certain arity c are satisfied in both x and z. The embedding is defined by boolean functions in the set
B of all the non-monotone conjunctions of c literals. Formally, given the set U = {S C {1,...,2n} |
|S| = ¢,3i,j € Sst.i = 2j} and the function g(x,i) = x; if i < n or g(x,i) = —x; otherwise,
then B = {f; | fi(x) = Ajep), §(x,j) }. Since we are considering conjunctions of variables, this kernel
will count how many combinations of (possibly negated) common variables there are between x and
z. Thus, relying on these considerations and on the definition of x;, we can finally define the x¢(x, z)
as follows:

la2) (KL(x,z)) _ (n— (x,x) — <z,z>+2(x,z>>.

C c

Similar to the monotone case, we can express the Sadohara DNF Kernel [3] as a linear combination
of C-kernels of arity 1 < d < n as in the following;:

K, 7) = 202 HED _ 1 — i <<x12> + <x12>) i i (KmL(x,z) + KNEG(x,z)> i

i=0 ! !

- é <KL(;’Z)> —1= Ié Kg(x,z).

An analogous construction also holds for the d-DNF kernel.

3.2.3. Non-Monotone Disjunctive Kernel

The non-monotone Disjunctive (D) kernel counts how many non-monotone disjunctions, of a
certain arity d, are satisfied in both x and z. The embedding is defined by Boolean formulas in the set B
of all the non-monotone disjunctions of d literals. Formally, B = {f; | fi(x) = Ve, §(x, /) }, with Uy
and g defined as in the previous section. As for the monotone case, we derive the kernel function in a
negative fashion. The number of every possible combination of arity d of variables that can be also
in their negated form is 2¢ (7). For both x and z, we have to discard the combinations that are false,
which are exactly (}j) because for each set of d different variables, there exists only one assignment
of the negations such that the disjunction is false. For example, given the variables x; = 1,x, = 0
and x3 = 1, only the disjunction —x; V x, VV —x3 is false and all the others 23 — 1 negation assignments
are true. Then, we have to re-add the false combinations that have been discarded twice, that is the
combinations made with variables that are false in both the vectors. This can be seen as the opposite of
what C-kernel computes, but, since we generate all the possible combinations with all the possible
negation assignments, the counting is actually the same as the C-kernel. Finally, we can define the
k4 (x,z) as

n

Kg(x,z) = (Zd -2) (d) + Kg(x,z)
3.3. Boolean Kernels Combination

Given the Boolean kernels defined in the previous sections, we have now all the basic elements
to build new Boolean kernels that represent a specific Boolean concept. Table 1 shows a summary of

Entropy 2018, 20, 444 7 of 14

all the presented Boolean kernels. It is easy to see that all the kernels are function of dot products
of the input vectors, and this allows us to create new kernels by replacing those dot products with
other Boolean kernels. The logical interpretation of the new kernel depends on how the base kernels
are combined. In the following, we present some new Boolean kernels generated by using the above
mentioned method.

Table 1. Summary of the just presented Boolean kernels: x, z € {0,1}" and |¢| stands for the dimension
of the feature space.

K x(x,z) (x, x) lp|

Konl (x,z) || n
Ko (Fo(2r2)y (i))
Ky () = (") = () (Rl Ry ey ey

KNEG n— x| —|z| + (x,z) n— |x| n
KL Kt + Knec n 2n
K (+x2)) () 2¢(7)
xd (27 =2)() +xd(x,2) -1 2

3.3.1. DNF Kernels

A disjunctive normal form (DNF) is a normalization of a logical formula which is a disjunction of
conjunctive clauses. In the monotone case, both conjunctive and disjunctive clauses are monotone, i.e.,
the literals are only in their positive form. Since DNFs are disjunctions of conjunctive clauses, we can
combine the embedding maps of the mC-kernel and the mD-kernel in this way qbf"rfNF cx o (¢S (%)),
obtaining the desired feature space for the monotone DNF, which leads to the definition of the

mDNF-kernel as in the following:

K (x,2) = ((’Z)) _ (('Z) —Kic(x,x)) _ ((E‘) —Kfnc(Z/Z)) n ((E‘) = Kac (%,%) = K5c(2,2) +Kic(x,2)).
d d d d

Note that we need to know the dimension of the feature space of the mC-kernel. The features of
this kernel are actually monotone DNF formulas with exactly d disjunctions of conjunctive clauses
of arity c. In the non-monotone case, we proceed in a similar way but, since the conjunctive clauses
are non-monotone, we have to use the C-kernel instead of the mC-kernel. So, the feature space can
be created by composing the embedding map of the mD-kernel with the one of the C-kernel, that is,
4>5;§F x> ¢l (¢S(x)). Consequently, the DNF-kernel is defined as follows:

) = (X0 - (X0) (0) | (2O s - e),

3.3.2. CNF Kernels

Alogic formula is in conjunctive normal form (CNF) if it is composed of conjunctions of disjunctive
clauses. Clearly, in its monotone form it does not contain any negated literal. By using a similar
approach as for the mDNF-kernel, the feature space is defined by the function 4>f1'fNF cx o (98, (%)),
and hence in the kernel function we replace the dot products inside the mC-kernel with the mD-kernel

d
K% (x, z
Kz/CCNF(x/ Z) < D()) *

as in the following:

Entropy 2018, 20, 444 8 of 14

The resulting feature space is composed of monotone CNF formulas with exactly ¢ conjunctions
of disjunctive clauses of arity d. By swapping the mD-kernel with the D-kernel, we can easily obtain
the non-monotone CNF kernel: ;

Ko (x, z
KCNF(er) = (D()>/

[

which has associated the embedding function qbgng a2 (08 (%)),
For the sake of brevity, in the rest of the paper, we indicate the mDNF-kernel having d disjunctions
and c conjunctions with either the notation mDNF(d,c)-kernel or simply mDNF(d,c).

4. Computational Complexity

The computational complexity of the Boolean kernels described in the previous sections is
bounded by the complexity of the calculation of the binomial coefficient, that is O (k) with k the arity
of the combinations. Hence, computing an entire kernel matrix over n-dimensional examples taken
from a dataset with I examples would lead to a complexity of O((k + n) - I?). Even though it is not
possible to reduce such complexity, we can take advantage of the recursive nature of the binomial
coefficient to compute the kernels in a recursive fashion. By doing so, it is possible to compute higher
degree kernel matrices by leveraging on kernel matrices of lower degrees.

Let the matrix K° be the base (Boolean) kernel matrix over the dataset D, such that
ng = (p(x;), ¢(x;)), for x;, x; € D and some ¢ with codomain {0, 1}". Then, we can recursively define
the Boolean kernels for both monotone and the non-monotone case as described in the following.

4.1. mC-Kernel
1

mC/

By definition, the mC-kernel matrix of arity 1, that is K, is equivalent to the base kernel matrix

K. By using K as base case, we can recursively define the mC-kernel matrix as

1
K=K o (C+1 (K;C - c1,1,T)) .

4.2. mD-Kernel
Let us define the matrices
S = diag(K")-1], Ny=n11] —S, and Ny = Ny — ST+ K.
Then, we define, recursively in its parts, the mD-kernel matrix K% as

d)

K4 =N@D _N@ - NDT N,

where

N@+) — N@) o (” - dl,llT) .

d+1
d+1 d 1
N — N (d+1 (Nx—dm})) . and
d d 1
Na(cz+l) = Na(cz) (d—|—1 (Nxz - dlllz-)) ’

with the corresponding base cases N = nllllT, N§3> = N, and N,(clz) = Nyz.

Entropy 2018, 20, 444 9of 14

4.3. C-Kernel

By relying on the previous definition of S and the base case kernel matrix
K! =n11] — S — ST+ 2K,

the C-kernel matrix can be recursively defined by

1
Kl =K o <C+1 (K% —cllllT)> .

4.4. D-Kernel

Using the previous definitions of the matrices N and K¢, we can define the D-kernel matrix,
recursively in its parts, as
K1 = ((2d - 2)111}) ON@ — K.

Both the standard and the recursive definition have been implemented in a freely available Python
module pyros available at the following URL: https://github.com/makgyver/pyros.

5. Evaluation

5.1. Evaluation Protocol

In all experiments, the kernels have been normalized using the well-known formula

7(x,z) = _ kxz)
x(x,x)k(z,z)

We assessed the proposed Boolean kernels by using SVM as kernel machine and we compared
them with the linear kernel, the RBF kernel, the (monotone) DNF kernel proposed by Sadohara et al. [3],
the d-DNF kernel [9], the o-mDNF kernel [10] and the Tanimoto kernel.

Both validation and test were evaluated in terms of the Area Under the ROC Curve (AUC). The
used validation method is a five-fold nested cross validation. For each dataset, the test was repeated
10 times and the average performances were recorded. Specifically, we validated the misclassification
cost parameter C for the SVM in the set {274,273, ..., 24}; for each of the proposed kernels we validated
both the conjunctive arity ¢ (when applicable) and the disjunctive arity d (when applicable) in the
set {1,...,5}, for the RBF kernel we validated the hyper-paramater v € {107%,...,10*}, while for
the d-mDNF we fixed d = 5. Finally, for the o-mDNF kernel we validated ¢ in the set {0.2,0.5,1,2}.
All the experiments were implemented in Python using the machine learning module Scikit-learn [20].
The source code is freely available at https://github.com/makgyver/pyros.

The benchmark datasets used for the experiments are reported in Table 2. These datasets are
freely available from the UCI repository [21] and the KEEL repository [22]. We selected datasets with
binary or categorical features and for each of them the following preprocessing steps were performed:

e Instances with missing attributes were removed.

e categorical features, including the binary ones, were mapped into binary features by means of
the one-hot encoding [23]. This preprocessing keeps for every example in the dataset the same
number of ones , or in other words every input vector has the same euclidean norm.

e Non-binary tasks were artificially transformed into binary ones, by arranging the classes into two
groups while trying to keep the number of instances balanced.

https://github.com/makgyver/pyros
https://github.com/makgyver/pyros

Entropy 2018, 20, 444 10 of 14

Table 2. Datasets information: name, number of instances (# Examples), number of features (# Features),
class distribution and number of active variables for example.

Dataset Name # Examples pos/neg (%) #Features m = ||x||1
z0o 101 40/60 36 16
promoters 106 50/50 228 57
lymphography 148 45/55 44 15
house-votes 232 46/54 32 16
soybean 266 54/46 97 35
spect 267 79/21 44 22
breast 277 71/29 41 9
primary-tumor 339 41/59 34 15
monks-1 432 50/50 17 6
crx 653 55/45 40 9
tic-tac-toe 958 65/35 27 9
flare 1066 49/51 41 11
car 1728 30/70 21 6
dna_bin 2000 47 /53 180 47
splice 3175 48/52 240 60
kr-vs-kp 3196 52/48 73 36

5.2. Experimental Results

The first set of experiments assessed the quality of the proposed kernels. The average AUCs
over 10 runs as well as the standard deviations are reported in Table 3. The last row of each table
summarizes the average rank achieved by all kernels over the benchmark datasets.

It is evident from the tables that normal form (NF) kernels perform on average better than the other
Boolean kernels, with the only exception of the C-kernel on the AUC metric. This is reasonable since
normal form kernels are a generalization of the (m)C-kernel and the (m)D-kernel. However, after the
validation procedure, there is no guarantee that a NF kernel is always better than their correspondent
base kernels, as underlined by the very good performance of the C-kernel. Another interesting
observation is that both the D-kernel and the mD-kernel are almost always the worst performing ones,
and this can be explained by the fact that they are less expressive than the competing kernels.

Since NF kernels have shown very good performances, we built, for each normal form, the average
kernel over all the degrees, that is:

1 D C Qe
CxD 2 ZKI\}F<X'Z)-
d=1c=1

Kavg NF =

In this way, given a normal form, the feature space of the resulting kernel contains all the normal
form formulas for each of the degrees (¢,d) with1 < ¢ < Cand 1 < d < D. Since we have fixed the
maximum degrees C and D or all the kernels, and the «,y¢ NF has no other hyper-parameters, it did
not require any further validation.

Entropy 2018, 20, 444 11 of 14

Table 3. AUC performances on benchmark datasets. For each dataset the best performing kernel is
highlighted with both the boldface font and with a dot (-).

Dataset mC mD C D mDNF mCNF DNF CNF
breast 71.19 71.68- 71.52 71.70 71.21 71.31 71.54 71.50
+1.27 +1.51 +1.87 +1.80 +1.73 +2.07 +1.82 +1.90
car_bin 100.00- 99.97 100.00- 99.62 100.00- 100.00- 100.00- 100.00-
+0.00 +0.08 +0.00 +0.12 +0.00 +0.00 +0.00 +0.00
crx 91.77 92.04 92.11- 91.99 91.81 91.86 92.08 92.03
+0.39 +0.37 +0.22 +0.28 +0.34 +0.38 +0.29 +0.30
dna_bin 99.03 98.98 99.07- 98.96 99.07- 99.01 99.07- 99.06
+0.05 +0.06 +0.05 +0.05 +0.05 +0.04 +0.05 +0.05
flare_bin 94.80 94.91 94 .91 9491 94 .88 94.89 94.92. 94.90
+0.13 +0.13 +0.13 +0.10 +0.11 +0.11 +0.10 +0.13
house-votes-84 99.23 99.19 99.27. 99.18 99.19 99.18 99.18 99.16
+0.26 +0.28 +0.25 +0.31 +0.28 +0.29 +0.30 +0.32
kr-vs-kp 99.95 99.74 99.94 99.74 99.96- 99.96- 99.96- 99.96-
+0.02 +0.01 +0.02 +0.01 +0.01 +0.01 +0.01 +0.01
lymphography_bin 92.45 92.81 92.77 92.73 92.40 92.67 92.86 93.03-
+1.45 +1.09 +1.10 +1.23 +1.33 +1.25 +1.13 +1.16
monks-1 100.00- 91.58 100.00- 87.75 100.00- 100.00- 100.00- 100.00-
+0.00 +1.40 +0.00 +1.86 +0.00 +0.00 +0.00 +0.00
primary-tumor 72.88 72.92 72.80 72.72 72.97- 72.95 72.70 72.86
+0.61 +0.56 +0.79 +0.58 +0.54 +0.51 +0.82 +0.61
promoters 97.51 97.39 97.39 97.28 97.57- 97.49 97.43 97.45
+1.06 +0.92 +0.87 +0.87 +1.09 +1.13 +0.89 +0.88
soybean 99.66 99.64 99.69- 99.66 99.66 99.65 99.68 99.69-
+0.08 +0.09 +0.09 +0.07 +0.10 +0.09 +0.07 +0.06
spect 83.60 83.58 83.79 83.75 83.61 83.63 83.93- 83.81
+2.07 +2.08 +1.98 +2.06 +2.04 +2.04 +2.00 +2.08
splice 99.35- 99.20 99.28 99.19 99.35- 99.35- 99.29 99.29
+0.04 +0.04 +0.02 +0.04 +0.03 +0.04 +0.02 +0.02
tic-tac-toe 98.03 97.86 98.25- 98.25- 98.03 98.03 98.25- 98.25-
+0.61 +0.43 +0.37 +0.37 +0.60 +0.61 +0.37 +0.37
Z0o 100.00- 100.00- 100.00- 100.00- 100.00- 100.00- 100.00- 100.00-
+0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00
Rank 4.38 5.13 3.06 5.44 4.00 3.88 2.88 3.13

The average AUCs over the 10 runs as well as the standard deviations are reported in Table 4.

In general, we can see that the normal form kernels seem to achieve performances almost always
comparable or higher than the competing kernels. Good performance is also achieved by the d-mDNF
kernel which we have shown is the summation of d mC-kernels.

An interesting observation can be done regarding the monks-1 dataset which can be explained
by a mDNF rule. The obtaining results on monks-1 show that most of the proposed Boolean kernels
achieve an AUC of 100% while all other kernels are not able to achieve this perfect score. This is because
these Boolean kernels contain the target formula, or a set of related formulas, in the feature space.

All the reported results are further confirmed by other experiments with other metrics, such as
precision, recall and F1, however they are not reported here for space reasons.

Entropy 2018, 20, 444 12 of 14

Table 4. AUC performances on benchmark datasets. For each dataset the best performing kernel is highlighted with both the boldface font and with a dot (-).

Dataset Linear RBF DNF[3] d-mDNF Tanimoto o¢-mDNF avg.mDNF avg.mCNF avg.DNF avg.CNF
breast 70.69 71.21 71.56 71.82 72.32- 71.24 70.09 72.16 7218 72.03
+0.91 +1.63 +1.55 +1.50 +1.99 +1.77 +1.69 +1.85 +1.97 +1.73
car_bin 98.98 99.96 100.00- 100.00- 100.00- 100.00- 99.82 100.00- 100.00- 100.00-
+0.13 +0.07 40.00 +0.00 40.00 +0.00 +0.04 40.00 40.00 40.00
crx 91.08 92.03 91.96 91.82 92.14. 91.99 91.78 91.96 92.02 92.09
+0.41 +0.36 +0.21 +0.23 +0.26 +0.36 +0.21 +0.30 +0.27 +0.25
dna_bin 98.21 98.84 97.25 98.50 98.92 98.52 98.51 99.04 99.07 99.07-
+0.10 +0.06 +0.19 +0.05 +0.05 +0.06 +0.05 +0.05 +0.05 +0.05
flare 94.85 94.87. 93.72 94.53 94.84 94.82 93.89 94.76 94.76 94.86
+0.14 +0.14 +0.18 +0.12 +0.17 +0.10 +0.17 +0.12 +0.18 +0.16
house-v. 99.38- 99.36 98.67 98.96 99.26 99.16 98.85 98.87 98.94 98.94
+0.18 +0.17 +0.24 +0.26 +0.26 +0.21 +0.23 +0.20 +0.25 +0.25
kr-vs-kp 99.14 99.98- 99.94 99.97 99.94 99.98- 99.97 99.94 99.97 99.94
+0.01 40.01 40.01 +0.01 40.01 +0.01 +0.01 40.01 40.01 +0.01
lympho. 92.37 92.62 92.20 93.08 93.03 93.10 92.86 93.07 93.13 93.34.
+1.20 +1.28 +0.82 +1.01 +1.10 +1.17 +0.89 +1.02 +1.01 +1.08
monks-1 46.32 99.10 89.87 91.98 99.70 99.71 100.00- 100.00- 100.00- 100.00-
+3.12 +0.47 +1.52 +1.35 +0.23 +0.32 +0.00 +0.00 +0.00 +0.00
primary-t. 73.31 72.75 73.01 73.41. 73.00 72.99 73.37 73.06 73.12 73.34
+0.81 +0.90 +0.89 +0.39 +0.68 +0.54 +0.55 +0.54 4045 +0.45
promoters 97.23 97.37 95.07 97.65- 97.31 97.29 97.61 97.46 97.37 97.41
+0.98 40.98 +0.88 +0.82 1+0.94 +0.92 +0.75 1091 +0.92 +0.83
soybean 99.47 99.68 99.56 99.72 99.65 99.74 99.73- 99.72 99.71 99.71
+0.12 +0.10 +0.08 +0.07 +0.06 +0.10 +0.09 +0.07 +0.09 +0.09
spect 83.81- 83.70 78.57 82.34 84.14 83.43 82.27 82.25 82.53 82.42
+1.82 +1.82 +1.90 +1.94 +1.92 +1.77 +1.97 +2.04 +1.99 +1.95
splice 98.48 99.12 98.27 99.31- 99.11 99.01 99.30 99.25 99.29 99.28
+0.03 +0.04 +0.13 +0.04 +0.04 +0.05 +0.04 40.03 40.03 40.03
t-t-t 97.86 98.53 99.94 99.97. 99.89 99.88 99.96 99.95 99.96 99.95
+0.43 +0.18 +0.03 +0.02 +0.05 +0.05 +0.03 +0.03 +0.03 +0.02
Z00 100.00- 100.00- 100.00- 100.00- 100.00- 100.00- 100.00- 100.00- 100.00- 100.00-
+0.00 +0.00 £0.00 +0.00 £0.00 +0.00 +0.00 +0.00 +0.00 £0.00

Rank 7.25 525 7.81 413 5.00 513 531 4.56 3.50 3.44

Entropy 2018, 20, 444 13 of 14

6. Conclusions

We present a family of Boolean kernels designed to have feature spaces composed by logical
formulas that can be exploited to interpret the solution of a large-margin kernel machine, such
as an SVM. For all kernels, we provide the logic interpretation and an efficient way to compute
them. Experimental results on many categorical datasets show that the presented kernels achieve a
performance comparable to the performance of state-of-the-art kernels (such as the RBF) and other
Boolean kernels. In particular, we observed that, in general, those kernels corresponding to normal
form achieve very good performances. In the future, we aim to develop methods able to learn how
to combine different Boolean kernels, for example by means of Multiple Kernel Learning algorithms.
Moreover, we also aim to find efficient and effective ways to interpret the solution of SVMs based on
Boolean kernels.

Author Contributions: M.P. and FA. contributed to the development of the Boolean kernel framework. M.P.
conceived, designed and performed the experiments; I.L. collected and prepared the datasets. M.P. wrote the
paper and FA. revised the draft.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barakat, N.; Bradley, A.P. Rule extraction from support vector machines: A review. Neurocomputing 2010,
74,178-190.

2. Polato, M,; Lauriola, I.; Aiolli, F. Classification of Categorical Data in the Feature Space of Monotone DNFs.
In Proceedings of the 2017 International Conference on Artificial Neural Networks and Machine Learning,
Alghero (Sardinia), Italy, 11-14 September 2017.

3. Sadohara, K. Learning of Boolean Functions Using Support Vector Machines. In Proceedings of the 12th
International Conference on Algorithmic Learning Theory, Washington, DC, USA, 25-28 November 2001;
Abe, N., Khardon, R., Zeugmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 106-118.

4. Kimeldorf, G.S.; Wahba, G. Some Results on Tchebycheffian Spline Functions. J. Math. Anal. Appl. 1971,
33, 82-95.

5. Hofmann, T.; Scholkopf, B.; Smola, A.J. Kernel methods in machine learning. Ann. Stat. 2008, 36, 1171-1220.

6. Watkins, C. Kernels from Matching Operations; Technical Report; Department of Computer Science,
Royal Holloway, University of London: London, UK, 1999.

7. Khardon, R.; Roth, D.; Servedio, R. Efficiency Versus Convergence of Boolean Kernels for On-line Learning
Algorithms. In Proceedings of the 14th International Conference on Neural Information Processing Systems:
Natural and Synthetic, Vancouver, BC, Canada, 3-8 December 2001; MIT Press: Cambridge, MA, USA, 2001;
pp- 423-430.

8. Sadohara, K. On a Capacity Control Using Boolean Kernels for the Learning of Boolean Functions.
In Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan,
9-12 December 2002; IEEE Computer Society: Washington, DC, USA, 2002; pp. 410-417.

9. Nguyen, S.H.; Nguyen, H.S. Applications of Boolean Kernels in Rough Sets. In Proceedings of the Second
International Conference on Rough Sets and Intelligent Systems Paradigms, Granada and Madrid, Spain,
9-13 July 2014; pp. 65-76.

10. Zhang, Y,; Li, Z.; Kang, M.; Yan, J. Improving the classification performance of boolean kernels by applying
Occam’s razor. In Proceedings of the 2nd International Conference on Computational Intelligence, Robotics
and Autonomous Systems (CIRAS '03), Singapore, 15-18 December 2003.

11. Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: New York,
NY, USA, 2004.

12. Kusunoki, Y.; Tanino, T. Boolean kernels and clustering with pairwise constraints. In Proceedings of the
2014 IEEE International Conference on Granular Computing (GrC), Noboribetsu, Japan, 22-24 October 2014;
pp- 141-146.

13. Kowalczyk, A.; Smola, A.J.; Williamson, R.C. Kernel Machines and Boolean Functions. In Advances in Neural
Information Processing Systems 14, Proceedings of the Neural Information Processing Systems, Natural and Synthetic,
Vancouver, BC, Canada, 3-8 December 2001; MIT Press: Cambridge, MA, USA, 2001; pp. 439-446.

Entropy 2018, 20, 444 14 of 14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Khardon, R.; Servedio, R.A. Maximum Margin Algorithms with Boolean Kernels. In Learning Theory
and Kernel Machines, Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop,
COLT/Kernel 2003, Washington, DC, USA, 24-27 August 2003; Springer: Berlin/Heidelberg, Germany, 2003;
pp- 87-101.

Cui, K.; Han, F; Wang, P. Research on Face Recognition Based on Boolean Kernel SVM. In Proceedings
of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18-20 October 2008;
Volume 2, pp. 148-152.

Cui, K; Du, Y. Application of Boolean Kernel Function SVM in Face Recognition. In Proceedings of the 2009
International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan,
China, 25-26 April 2009; Volume 1, pp. 619-622.

Liu, S.; Cui, K. Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering.
Modern Appl. Sci. 2009, 3, 27.

Cui, K,; Du, Y. Short-Term Load Forecasting Based on the BKF-SVM. In Proceedings of the 2009 International
Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan, China,
25-26 April 2009; Volume 2, pp. 528-531.

Polato, M.; Aiolli, E Boolean kernels for collaborative filtering in top-N item recommendation.
Neurocomputing 2018, 286, 214-225.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python.]. Mach. Learn. Res. 2011, 12,
2825-2830.

Lichman, M. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/ (accessed on
28 February 2018).

Alcalé-Fdez, J.; Fernandez, A.; Luengo, J.; Derrac,].; Garcia, S.; Sinchez, L.; Herrera, F. Keel data-mining
software tool: Data set repository, integration of algorithms and experimental analysis framework. J. Mult.
Valued Logic Soft Comput. 2011, 17, 255-287.

Harris, D.M.; Harris, S.L. Digital Design and Computer Architecture, 2nd ed.; Morgan Kaufmann: Boston, MA,
USA, 2013.

® (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://archive.ics.uci.edu/ml/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	A New Family of Boolean Kernels
	Monotone Boolean Kernels
	Monotone Literal Kernel
	Monotone Conjunctive Kernel
	Monotone Disjunctive Kernel

	Non-Monotone Boolean Kernels
	Non-Monotone Literal Kernel
	Non-Monotone Conjunctive Kernel
	Non-Monotone Disjunctive Kernel

	Boolean Kernels Combination
	DNF Kernels
	CNF Kernels

	Computational Complexity
	mC-Kernel
	mD-Kernel
	C-Kernel
	D-Kernel

	Evaluation
	Evaluation Protocol
	Experimental Results

	Conclusions
	References

