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Abstract: This paper focuses on studying a truncated positive version of the power-normal (PN)
model considered in Durrans (1992). The truncation point is considered to be zero so that the resulting
model is an extension of the half normal distribution. Some probabilistic properties are studied for
the proposed model along with maximum likelihood and moments estimation. The model is fitted
to two real datasets and compared with alternative models for positive data. Results indicate good
performance of the proposed model.
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1. Introduction

Lehmann [1] proposed a class of asymmetric distributions. The cumulative distribution function
(cdf) for such class is given by:

FF(z; α) = {F(z)}α, z ∈ R, (1)

where F is in itself a cumulative distribution function and α ∈ Q, with Q the set of rational numbers.
In the special case where α is an integer number, the above cdf corresponds to the distribution of the
maximum in a sample of size α.

Durrans [2] gives an interpretation for (1) in the more general case α ∈ R+ based on fractional
order statistics. Assume F is an absolutely continuous function and f denotes its respective probability
density function (pdf), i.e., f = dF. The pdf related to (1) is:

fF(z; α) = α f (z){F(z)}α−1, z ∈ R, α ∈ R+. (2)

Henceforth, we refer to a random variable with pdf as in (2) as the power distribution (PF), and we use
the notation Z ∼ PF(α). The particular case where F = Φ(·), the cdf of the standard normal model,
was approached in [2]. In such a case, the respective pdf of the model is reduced to:

fΦ(z; α) = αφ(z){Φ(z)}α−1, z ∈ R, α ∈ R+, (3)

where φ(·) is the standard normal pdf. The authors used the term generalized Gaussian distribution to
refer the model in Equation (3). This model also was studied with more detail by [3]. Pewsey et al. [4]
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call Model (3) the power-normal (PN) model, denoting Z ∼ PN(α), and show that its Fisher information
matrix (FIM) for the location-scale extension is nonsingular for α = 1 (i.e., the symmetric case).

The generalization of the normal distribution in (3) also is a particular case of the Beta-normal
model discussed in [5].

On the other hand, the random variable X follows a half-normal distribution with scale parameter
σ if its pdf is given by:

fHN(x; σ) =
2
σ

φ
( x

σ

)
I{x > 0},

for σ > 0. We denote X ∼ HN(σ). Cooray and Ananda [6] extended the half-normal (HN) model by
introducing the generalized half-normal (GHN) model, that is X is a random variable with the GHN
distribution with scale parameter σ and shape parameter α, if its pdf is given by:

fGHN(x; σ, α) =

√
2
π

(α

x

) ( x
σ

)α
exp

[
−1

2

( x
σ

)2α
]

I{x > 0} , σ > 0, α > 0.

We use the notation X ∼ GHN(σ, α). Observe that GHN(σ, α = 1) ≡ HN(σ), that is one obtains the
half-normal model with scale parameter σ > 0.

Some properties of the GHN distribution are:

1. H(x; σ, α) = 2Φ
(( x

σ

)α
)
− 1

2. E(X) =
√

21/α

π Γ
(

1+α
2α

)
σ

3. Var(X) = 21/α

π

(√
πΓ
( 2+α

2α

)
− Γ2

(
1+α
2α

))
σ2

4. E(Xr) =
√

2r/α

π Γ
( r+α

2α

)
σr, for r = 1, 2, ...,

where H(·) is the cdf of X and Γ(·) is the gamma function. The proofs of those properties are presented
in [6]. Recent extensions of the HN model are considered in [7,8], among others.

The recent literature has experienced a growth in the theory and applications of the continuous
truncated models. Among others, we refer the reader to [9–16].

The main focus of this paper is to study the positive truncation for the model considered in (3),
where the normalizing constant for the pdf (3) is to be determined, and the resulting model is
an extension of the half-normal distribution. That is, we generate a more flexible extension of the
half-normal distribution that we call the truncated positive power-normal (TPN) distribution, where
the asymmetry parameter α is a shape parameter. Given its flexibility, the model is quite useful for
fitting positive data related to survival analysis and reliability.

The paper is organized as follows. In Section 2, we present the TPN distribution. Some basic
properties such as the quantile function, the risk function and some moments are considered,
and Shannon entropy is studied. In Section 3, we discuss some inferential aspects such as the
log-likelihood function and its maximization, the corresponding Fisher information matrix (FIM)
and the method of moments estimation. Section 4 deals with an extension of the TPN model and
presents results for a small-scale simulation study, indicating good parameter recovery. Results of
using the proposed model in two real applications are reported in Section 5. The main conclusion is
that the TPN model can be a viable alternative for adjusting positive data.

2. The Truncated Positive PN Distribution

In this section, we present the pdf of the TPN model, some of its basic properties, moments and
asymmetry and kurtosis coefficients.

2.1. The Probability Density Function

Proposition 1. A random variable Z has a TPN distribution and is denoted as Z ∼ TPN(σ; α) with parameters
σ and α, if its pdf is given by:
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fZ(z; σ, α) =
2αα

(2α − 1)σ
φ
( z

σ

) {
Φ
( z

σ

)}α−1
I{z > 0}, σ, α ∈ R+. (4)

Proof. Under the assumption that X ∼ PN(σ, α), the pdf for the model TPN follows after computing
the conditional distribution of Z = X|X > 0, concluding the proof.

Remark 1. For α ∈ N = {1, 2, . . .}, the TPN model admits the following stochastic representation. If W1, . . . ,
are independent and identically distributed (iid) random variables with common distribution N(0, σ2), then:

Z = max(0, X1, . . . , Xα) ∼ TPN(σ, α).

Its distribution function is given by:

FZ(z; σ, α) =

(
2α

2α − 1

)(
Φα
( z

σ

)
− 1

2α

)
, (5)

For σ = 1 and varying α, Figure 1 depicts examples of the pdf for model TPN.
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Figure 1. Probability density function of TPN(α, σ = 1) for different values of α.

2.2. Properties

2.2.1. Quantile Function

Simple algebraic manipulations yield:

Q(p) = σΦ−1

((
p(2α − 1) + 1

2α

)1/α
)

,

for a probability 0 < p < 1. The quartiles are, consequently:

1. First quartile = σΦ−1
((

2α+3
2α+2

)1/α
)

2. Median(Z) = σΦ−1
((

2α+1
2α+1

)1/α
)
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3. Third quartile = σΦ−1
((

3(2α−1)+4
2α+2

)1/α
)

2.2.2. Hazard Rate Function

The hazard rate function for the random variable Z ∼ TPN(σ, α) is given by:

h(z) =
fZ(z)

1− FZ(z)
=

αφ
( z

σ

)
Φα−1 ( z

σ

)
σ
(
1−Φα

( z
σ

)) ,

Remark 2. (i) If α = 1, then h(z) is the hazard function for the half-normal model ∀z ∈ R+.

(ii) ∀σ, α, z ∈ R+, h(z) is monotonically increasing with h(0) =
√

2
π

α
σ(2α−1) .

(iii) ∀σ, α, h(z)→ ∞, as z→ ∞.

For σ = 1 and varying α, Figure 2 depicts examples of the hazard rate function for model TPN.
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Figure 2. Hazard rate function of the TPN(α, σ = 1) model and different values for α.

2.3. Moments

Proposition 2. If Z ∼ TPN(σ, α), then the r-th moment of Z is:

µr = E(Zr) =
α2ασr

2α − 1
dr(α), r = 1, 2, ...

where dr(α) =
∫ 1

1/2

(
Φ−1(u)

)r uα−1du has to be computed numerically.

Proof. Making the variable change, u = Φ
( z

σ

)
, we obtain:

E(Zr) =
∫ ∞

0

2ααzr

(2α − 1)σ
φ
( z

σ

) {
Φ
( z

σ

)}α−1
dz =

∫ 1

1/2

2αασr

(2α − 1)

(
Φ−1(u)

)r
uα−1du.

Corollary 1. Therefore, the first four moments are given by:

(a) µ1 = E(Z) = α2ασ
2α−1 d1(α).
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(b) µ2 = E(Z2) = α2ασ2

2α−1 d2(α).

(c) µ3 = E(Z3) = α2ασ3

2α−1 d3(α).

(d) µ4 = E(Z4) = α2ασ4

2α−1 d4(α).

Corollary 2. Asymmetry and kurtosis coefficients are given, respectively, by:

√
β1 =

(2α − 1)2d3(α)− 3α(2α − 1)2αd1(α)d2(α) + α222α+1 [d1(α)]
3

√
α2α

[
(2α − 1)d2(α)− α2α [d1(α)]

2
]3/2

and:

β2 =
(2α − 1)3d4(α)− α(2α − 1)22α+2d1(α)d3(α) + 3α222α+1(2α − 1) [d1(α)]

2 d2(α)− 3α323α [d1(α)]
4

α2α
[
(2α − 1)d2(α)− α2α [d1(α)]

2
]2 .

Remark 3. If α = 1, the asymmetry and kurtosis coefficients take the values 0.99527 and 3.86918, respectively,
which correspond to those for the classical HN distribution. Figure 3 depict plots for the asymmetry and kurtosis
coefficients, respectively, of the HN and TPN distribution.
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Figure 3. Asymmetry (left) and kurtosis (right) coefficients for TPN(σ, α) (solid line) and half normal
(HN) (α = 1, dotted line).

2.4. Shannon Entropy

Shannon entropy (see [17]) measures the amount of uncertainty for a random variable Z. It is
defined as:

S(Z) = −E(log fZ(z)).

Therefore, it can be verified that the Shannon entropy for the TPN model is:

S(Z) = 1− 1
α
+ log

(σ

α

)
+ log (2α − 1) +

1
2

log (2π) +
α2α−1d2(α)

2α − 1
−
[

α +
α− 1
2α − 1

]
log(2), (6)

Figure 4 shows the Shannon entropy for the TPN model fixing σ = 1. Note that for a fixed σ, S(Z)
is maximized at α ≈ 5.4962.

Remark 4. (i) From Figure 4 and for a fixed σ, we conclude that S(Z) ≤ SN(Z), ∀α > 0, where SN(Z)
denotes the Shannon entropy for the N(0, σ2) distribution.
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(ii) For α = 1, it follows that d2(1) = 1/2, and S(Z) agrees with the entropy for the half-normal distribution
(see [18]), which is given by:

SHN(Z) =
1
2
+

1
2

log
(

πσ2

2

)
.
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0.90

α

S
(Z

)

Figure 4. Shannon entropy of TPN(α, σ = 1) for different values of α. The dashed line corresponds to
the Shannon entropy for the standard normal model.

2.5. Rényi Entropy

A generalization of the Shannon entropy is the Rényi entropy, which is defined as:

Rp(Z) =
1

1− p
log
(∫ ∞

0
[ f (z)]pdz

)
.

Routine calculations show that for the TPN model:

Rp(Z) = log
(√

2πσ
)
+

p
1− p

(α log(2) + log α− log(2α − 1))− 1
2(1− p)

log(p)

+
1

(1− p)

∫ ∞

0
φ(w) {Φ (

√
pw)}p(α−1) dw.

Remark 5. For m = p(α− 1) ∈ N = {1, 2, . . . , }, the Rp(Z) is reduced to:

Rp(Z) = log
(√

2πσ
)
+

p
1− p

(α log(2) + log α− log(2α − 1))− 1
2(1− p)

log(p) +
1

(1− p)cm
(√

p
) ,

where cm
(√

p
)

is the normalization constant in the Balakrishnan skew-normal distribution ([19,20]). In the
last two references, the following facts are shown:

(a)
[
c1
(√

p
)]−1

= 1
2 .

(b)
[
c2
(√

p
)]−1

= 1
4 + 1

2π sin−1
(

p
1+p

)
.

(c)
[
c3
(√

p
)]−1

= 1
8 + 3

4π sin−1
(

p
1+p

)
.

(d) ∀m ∈ N,
[
cm
(√

p
)]−1 → 1

2 , for
√

p→ ∞.

(e) For m ≥ 4, there is no closed form expression for
[
cm
(√

p
)]−1. However, approximated values are

provided in Table 1 from [21].
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2.6. Kullback–Leibler Divergence for HN and TPN Models

The Kullback–Leibler divergence (DKL( f1, f2)) is a measure of how one pdf (say f1) diverges from
a second (say f2) pdf. For this reason, it can be used as a measure to decide between two alternative
models for a particular dataset. As the HN model is a particular case of the TPN model (for α = 1),
we compute the Kullback–Leibler from the HN(σ1) and TPN(σ2, α) models, which can be shown to
be given by:

DKL(TPN, HN) = −
∫ ∞

0
log

(
fHN(z; σ1)

fTPN(z;σ2,α)

)
fTPN(z; σ2, α)dz

= −1
2

log
(

2
π

)
+ log σ1 +

1
2σ2

1
Eσ2,α(Z2)− S(Z)

=
1
α
− 1 + log

(
σ1α

σ2

)
+

α2α−1d2(α)

2α − 1

(
σ2

2
σ2

1
− 1

)
− log(2α − 1) + (α− 1)

[
1 +

1
2α − 1

]
log(2).

Remark 6. As expected, DKL(TPN, HN) = 0, if σ1 = σ2 and α = 1.

3. Inference

In this section, we discuss moments and maximum likelihood estimation (MLE) and FIM and
present a simulation study to investigate parameter recovery.

3.1. Moments Estimation

Solving for σ in Equation (a) from Corollary 1 and replacing Z for E(Z), it follows that:

σ = (2α−1)Z
α2αd1(α)

, (7)

Thus, replacing σ, given in Equation (8), and the second sample moment in Equation (b) from
Corollary 1, it follows that:

Z2α2α [d1(α)]
2 − (2α − 1)Z2d2(α) = 0 (8)

Solving the equation given in (9) for α, we obtain α̂M, and hence, replacing α by α̂M in Equation (8),
one obtains σ̂M. This leads to the moments’ estimators (σ̂M, α̂M) for (σ, α). The equation given in (9) is
solved numerically using the function solve available in the software MAPLE.

3.2. The Log-Likelihood Function

For a random sample Z1, . . . , Zn from the distribution TPN(σ, α), the log likelihood function can
be written as:

l(σ, α) = n
(

log
(

α√
2πσ

)
− log(1− 2−α)

)
− 1

2σ2

n

∑
i=1

z2
i + (α− 1)

n

∑
i=1

log
[
Φ
( zi

σ

)]
, (9)

so that the likelihood equations are given by:

1
σ3

n

∑
i=1

z2
i −

(α− 1)
σ2

n

∑
i=1

ziφ
( zi

σ

)
Φ
( zi

σ

) =
n
σ

(10)

log(2)
2α − 1

+
n

∑
i=1

log
[
Φ
( zi

σ

)]
=

n
α

(11)

The solution for Equations (10)–(11) can be obtained by using the function optim available in [22],
and the specific method is the L-BFGS-B developed by [23], which allows constrained optimization,
which uses a limited-memory modification of the quasi-Newton method.
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Fisher Information Matrix

Let random variable Z ∼ TPN(σ, α). For a single observation z, the log-likelihood function for
θ = (σ, α) is:

log fZ(θ; z) = log(α)− log(σ) + α log(2)− log(2α − 1)− log(
√

2π)− z2

2σ2 + (α− 1) log[Φ(z/σ)]

The first derivatives of log fZ(θ, z) are:

∂ log fZ(θ; z)
∂σ

= − 1
σ
+

z2

σ3 − (α− 1)
z

σ2
φ(z/σ)

Φ(z/σ)

∂ log fZ(θ; z)
∂α

=
1
α
+ log(2)− 2α log(2)

2α − 1
+ log[Φ(z/σ)]

The second derivatives of log fZ(θ, z) are:

∂2 log fZ(θ; z)
∂σ2 =

1
σ2 −

3z2

σ4 −
z(α− 1)

σ3

(
z2

σ2
φ(z/σ)

Φ(z/σ)
+

z
σ

(
φ(z/σ)

Φ(z/σ)

)2

− 2
φ(z/σ)

Φ(z/σ)

)
∂2 log fZ(θ; z)

∂α2 = − 1
α2 +

2α(log(2))2

(2α − 1)2

∂2 log fZ(θ; z)
∂σ∂α

= − z
σ2

φ(z/σ)

Φ(z/σ)

It can be shown that the FIM for the TPN distribution is given by:

IF(σ, α)=

(
Iσσ Iσα

Iσα Iαα

)
with the following elements:

Iσσ = − 1
σ2 +

3
σ4 a20 +

(α− 1)
σ3

(
1
σ2 a31 +

1
σ

a22 − 2a11

)

Iσα =
1
σ2 a11

Iαα =
1
α2 −

2α(log(2))2

(2α − 1)2 ,

where aij = E
[

Zi( φ(z/σ)
Φ(z/σ)

)j
]
, for i, j = 1, 2, 3, must be computed numerically.

3.3. Truncation at c

As the following result indicates, the truncation point for the distribution TPN can be located at
any c ≥ 0. We denote this extension by Z ∼ TPNc.

Proposition 3. A random variable Z ∼ TPNc, if its pdf is given by:

fZ(z; σ, α, c) =
α

(1−Φα(c/σ))σ
φ
( z

σ

)
Φα−1

( z
σ

)
I{z > c}, σ, α ∈ R+ (12)

where φ(·) and Φ(·) denote the pdf and cdf of the standard normal distribution, respectively. We use the notation
Z ∼ TPNc(σ, α).
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Proof. Under the assumption that X ∼ PN(σ, α), the pdf for the model TPN arises after computing
the conditional distribution of Z = X|X > c, concluding the proof.

4. Simulation Study

In this section, we present a brief simulation study in order to assess the performance of the MLEs
of the TPN model in finite samples. To simulate from the TPNc distribution, it is sufficient to simulate
from the PN distribution, accepting only those values greater than c. The simulation algorithm is then:

1. Simulate U ∼ U(0, 1), and compute Y = σΦ−1(U1/α).
2. If Y ≥ c, make Z = Y. Otherwise, go to the previous step.

The acceptance ratio is then 1−Φα(c/σ). Hereafter, c is considered known and taking values of
0, 0.5 and 1.0. Likewise, for α and σ were chosen three values, and the generated samples were of sizes
n = 30, n = 50, n = 100 and n = 200. For each combination of sample size and parameter values,
1000 samples were generated and MLEs were computed. Tables 1 and 2 summarize the mean of the
estimated parameters (mean), the mean of the estimated standard deviations (s.d.) and the root of
the mean squared error (

√
MSE). Note that a small sample size (say n = 30 and n = 50) presents a

moderate bias for both parameters, which are decreasing for n increasing. Additionally, the s.d.’s are
closer to

√
MSE, especially when n is increased, suggesting that the s.d. are well estimated even in

small sample sizes.

Examples

Figure 5 depicts the model fitting for some simulated samples of size n = 200 and truncations at
c = 0.5 and at c = 1.
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Figure 5. Examples of the estimation of the TPNc(σ = 1.0, α = 1.5) with their corresponding estimates.
Left panel: c = 0.5, α̂ = 1.695 and σ̂ = 1.032. Right panel: c = 1.0, α̂ = 1.578 and σ̂ = 0.959.
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Table 1. Mean of the estimated parameters (mean), mean of the estimated standard deviations (s.d.) and root of the mean squared error (
√

MSE) for MLEs of the
TPNc(σ, α) model (cases n = 30 and n = 50).

True Value
n = 30 n = 50

α̂ σ̂ α̂ σ̂

c α σ mean s.d.
√

MSE mean s.d.
√

MSE mean s.d.
√

MSE mean s.d.
√

MSE

0.0 0.8 1 1.235 1.099 1.221 0.959 0.164 0.166 1.304 1.050 0.987 0.953 0.136 0.133
2 1.238 1.097 1.221 1.923 0.329 0.328 1.229 1.018 0.968 1.923 0.274 0.268
3 1.244 1.095 1.234 2.876 0.491 0.499 1.137 0.935 0.964 2.922 0.406 0.41

1.0 1 1.414 1.145 1.269 0.965 0.164 0.169 1.399 1.052 0.951 0.964 0.136 0.13
2 1.420 1.159 1.262 1.932 0.329 0.330 1.352 1.023 0.971 1.943 0.273 0.262
3 1.412 1.156 1.280 2.901 0.494 0.502 1.286 0.960 0.980 2.934 0.404 0.405

1.5 1 1.857 1.265 1.353 0.975 0.163 0.162 1.770 1.056 0.996 0.980 0.132 0.126
2 1.835 1.261 1.336 1.955 0.326 0.328 1.721 1.043 0.992 1.972 0.265 0.255
3 1.838 1.259 1.348 2.936 0.490 0.495 1.695 1.016 1.030 2.966 0.396 0.39

0.5 0.8 1 2.256 2.383 3.004 0.945 0.149 0.157 2.423 2.421 2.441 0.932 0.129 0.131
2 1.595 1.568 1.866 1.907 0.314 0.324 1.687 1.538 1.497 1.891 0.265 0.264
3 1.468 1.394 1.605 2.863 0.477 0.490 1.355 1.219 1.241 2.897 0.398 0.406

1.0 1 2.329 2.415 2.996 0.953 0.151 0.155 2.537 2.418 2.451 0.936 0.128 0.131
2 1.730 1.607 1.888 1.921 0.315 0.325 1.801 1.544 1.498 1.901 0.265 0.262
3 1.615 1.454 1.634 2.884 0.482 0.497 1.507 1.249 1.261 2.911 0.398 0.402

1.5 1 2.665 2.553 2.989 0.965 0.153 0.154 2.764 2.388 2.313 0.953 0.128 0.122
2 2.163 1.770 1.965 1.939 0.318 0.320 2.088 1.542 1.468 1.937 0.262 0.251
3 2.020 1.570 1.714 2.922 0.483 0.480 1.858 1.290 1.294 2.949 0.394 0.385

1.0 0.8 1 8.602 10.109 12.768 0.912 0.146 0.171 3.867 4.601 6.288 0.953 0.112 0.117
2 2.287 2.389 3.112 1.891 0.298 0.317 2.378 2.381 2.455 1.868 0.257 0.263
3 1.733 1.777 2.139 2.858 0.465 0.479 1.846 1.740 1.765 2.830 0.392 0.4

1.0 1 8.637 10.050 12.698 0.914 0.146 0.169 4.061 4.658 6.454 0.956 0.112 0.118
2 2.364 2.433 3.008 1.901 0.301 0.315 2.449 2.373 2.369 1.881 0.257 0.257
3 1.963 1.866 2.227 2.866 0.466 0.481 1.942 1.743 1.734 2.855 0.393 0.393

1.5 1 8.611 9.785 11.740 0.922 0.147 0.165 4.376 4.830 6.260 0.961 0.114 0.116
2 2.664 2.565 2.986 1.932 0.307 0.313 2.754 2.374 2.354 1.907 0.256 0.247
3 2.300 1.987 2.252 2.903 0.471 0.471 2.245 1.757 1.689 2.892 0.390 0.373
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Table 2. Mean of the estimated parameters (mean), mean of the estimated standard deviations (s.d.) and root of the mean squared error (
√

MSE) for MLEs of the
TPNc(σ, α) model (cases n = 100 and n = 200).

True Value
n = 100 n = 200

α̂ σ̂ α̂ σ̂

c α σ mean s.d.
√

MSE mean s.d.
√

MSE mean s.d.
√

MSE mean s.d.
√

MSE

0.0 0.8 1 0.967 0.707 0.678 0.986 0.102 0.100 0.857 0.508 0.511 0.996 0.074 0.074
2 0.923 0.675 0.690 1.979 0.202 0.199 0.856 0.508 0.511 1.99 0.149 0.147
3 0.930 0.672 0.687 2.964 0.301 0.297 0.850 0.509 0.505 2.989 0.223 0.221

1.0 1 1.129 0.719 0.701 0.991 0.101 0.100 1.046 0.519 0.524 0.998 0.073 0.073
2 1.107 0.701 0.712 1.985 0.200 0.197 1.040 0.519 0.522 1.996 0.146 0.145
3 1.104 0.705 0.706 2.976 0.301 0.297 1.042 0.518 0.521 2.994 0.22 0.218

1.5 1 1.591 0.739 0.735 0.995 0.096 0.096 1.535 0.525 0.529 0.999 0.069 0.069
2 1.584 0.735 0.746 1.990 0.192 0.191 1.545 0.525 0.525 1.994 0.137 0.138
3 1.566 0.735 0.738 2.990 0.289 0.284 1.532 0.525 0.53 2.998 0.206 0.209

0.5 0.8 1 1.287 1.252 1.402 0.979 0.092 0.092 1.058 0.931 0.992 0.989 0.069 0.068
2 1.057 0.907 0.961 1.968 0.193 0.192 0.915 0.681 0.705 1.988 0.144 0.143
3 1.003 0.816 0.853 2.957 0.293 0.290 0.882 0.622 0.621 2.984 0.22 0.215

1.0 1 1.435 1.304 1.424 0.983 0.093 0.091 1.202 0.967 1.020 0.993 0.069 0.069
2 1.195 0.944 0.974 1.980 0.195 0.190 1.095 0.714 0.724 1.993 0.145 0.142
3 1.178 0.860 0.883 2.969 0.295 0.293 1.068 0.644 0.641 2.992 0.219 0.216

1.5 1 1.850 1.432 1.513 0.991 0.094 0.093 1.656 1.058 1.095 0.997 0.07 0.069
2 1.639 1.022 1.041 1.991 0.194 0.192 1.560 0.748 0.755 1.998 0.141 0.141
3 1.637 0.921 0.930 2.984 0.290 0.287 1.563 0.666 0.673 2.994 0.209 0.209

1.0 0.8 1 2.469 2.839 3.670 0.972 0.084 0.086 2.445 2.674 2.689 0.967 0.068 0.066
2 1.287 1.265 1.403 1.960 0.185 0.183 1.044 0.938 0.981 1.980 0.138 0.134
3 1.102 1.001 1.067 2.953 0.285 0.282 0.963 0.759 0.778 2.975 0.213 0.207

1.0 1 2.586 2.954 3.590 0.974 0.085 0.086 2.542 2.683 2.666 0.971 0.068 0.066
2 1.439 1.323 1.434 1.967 0.186 0.186 1.224 0.982 1.015 1.984 0.139 0.138
3 1.290 1.064 1.121 2.959 0.288 0.283 1.145 0.796 0.824 2.979 0.214 0.213

1.5 1 2.962 3.118 3.723 0.979 0.086 0.086 2.810 2.701 2.610 0.976 0.069 0.064
2 1.844 1.429 1.509 1.982 0.188 0.186 1.658 1.063 1.069 1.993 0.14 0.136
3 1.704 1.147 1.178 2.980 0.289 0.284 1.597 0.841 0.848 2.994 0.211 0.211
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5. Real Data Illustration

In this section, we present two applications to illustrate the performance of the TPN model
compared with other usual distributions in the literature, such as the Weibull, gamma, GHN,
Birnbaum–Saunders (BS, [24,25]), β-Birnbaum–Saunders (β-BS, [26]), epsilon half-normal (EHN, [7]),
power half-normal (PHN, [27]) and truncated positive normal (TN, [28]) models. Model comparison is
implemented by using the AIC ([29]).

5.1. Australian Athletes

This dataset consists of several variables recorded on 202 Australian athletes and reported in [30].
Concretely, we analyze here measurements of the body mass index (BMI). Table 3 presents basic
descriptive statistics for the dataset. We use the notation

√
b1 and b2 to represent sample asymmetry

and kurtosis coefficients, respectively.

Table 3. Descriptive statistics.

Dataset n X S
√

b1 b2 min(x) max(x)

BMI 202 22.96 8.20 0.95 5.18 16.75 34.42

Using results from Section 3.1, moment estimators were computed leading to the following values:
σ̂M = 7.644 and α̂M = 447.867, which were used as initial estimates for the maximum likelihood (ML)
approach. In this case, we fixed two values for the TPN model, namely c = 0 and c = 16 (a value close
to the sample minimum).

Table 4 depicts parameters’ estimates by maximum likelihood using the bbmle function in [22].
The standard errors of the MLE are calculated using the information matrix of each model. For each,
we report the estimated log-likelihood function and the corresponding AIC. It can be noted that the
AIC scores indicate better fit of the TPN model. On the other hand, results for c = 0 and c = 16 are
similar. Therefore, we chose the standard model with c = 0. In Figure 6, the estimated densities of
the models using the ML estimates are shown with the data histogram. This also indicates good fit
for the TPM model. Finally, Figure 7 shows the q-q plots for the TPN model and the other considered
models. Note that TPN is a more appropriate model than Weibull, gamma, GHN and TN for this
dataset because the sample quantiles are closer to the respective theoretical quantiles. Excepting the
TPN distribution, all the other models present serious difficulties in accommodating the right tail of
the data. Finally, the estimated skewness and kurtosis coefficients for the TPN model consider that
the MLEs are 0.694 and 3.731. The 95% confidence intervals (CI) for those coefficients estimated via
bootstrap (based on 10,000 bootstrap samples) are given by (0.167; 1.420) and (2.411; 6.841), respectively.
Note that the sample versions of both coefficients are contained in the estimated CI.

Table 4. Parameter estimates (with their respective standard deviations in parenthesis) and AIC values
for Weibull, Gamma, generalized half-normal (GHN) and TPN models.

Estimates Weibull Gamma GHN TPN TPN TN

σ 24.259(0.249) 0.339(0.034) 24.954(0.283) 7.667(0.225) 7.676 (0.229) 1.050 (0.142)
α 7.281(0.340) 67.804(6.730) 4.949(0.070) 439.234(109.204) 433.809 (109.878) -
λ - - - - - 8.035 (0.406)
c - - - 0 (-) 16 (-) -

log-likelihood −524.52 −492.73 −545.91 −488.98 −488.93 −498.67
AIC 1053.04 989.45 1095.81 981.97 981.85 1001.33
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Figure 6. Histogram for the BMI dataset, with lines representing adjusted distributions using MLE for
different models.
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Figure 7. q-q plots: TPN model (left), gamma model (center) and TN model (right).

5.2. Breaking Stress of Carbon Fibers

This dataset is considered in [31] and corresponds to breaking stress of carbon fiber (BSFC)
measures in Gba. Cordeiro and Lemonte [26] already analyzed these data comparing the BS and β-BS
models. Additionally, we also compared those models with the EHN and PHN distributions. Table 5
presents basic descriptive statistics for the dataset. Note that for this dataset, the sample minimum is
close to zero. Therefore, in this case, it seems reasonable to consider c = 0.

Table 5. Descriptive statistics. BSFC, breaking stress of carbon fiber.

Data Set n X S
√

b1 b2 min(x) max(x)

BSFC 66 2.760 0.891 −0.13 3.22 0.39 4.90
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We also computed the moment estimators, resulting in σ̂M = 1.604 and α̂M = 14.505, which were
used as initial estimates for the maximum likelihood approach.

Table 6 shows the MLEs. It can be noted that AIC shows a better fit of the TPN model. In Figure 8,
the ML setting of models is shown with the probability histogram. Finally, from the q-q plots in
Figure 9, we have that the TPN model fits the data better than the other models considered.

Table 6. Parameter estimates (with their respective standard deviations in parenthesis) and AIC values
for the Birnbaum–Saunders (BS), β-BS, epsilon half-normal (EHN) and TPN models.

Estimates BS β-BS EHN TPN PHN

σ - - 2.898(0.252) 1.679(0.101) 0.570 (0.118)
α 0.437(0.038) 1.045(0.004) 0.003(0.068) 12.470(2.252) 1.581 (0.913)
β 2.515(0.132) 57.600(0.331) - - -
a - 0.193(0.026) - - -
b - 1876.732(605.050) - - -

log-likelihood −100.19 −91.35 −118.13 −87.21 −89.18
AIC 204.38 190.71 240.25 178.42 182.37
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Figure 8. Histogram for the BSFC dataset, with lines representing adjusted distributions using MLE
using different models.
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Figure 9. q-q plots: TPN model (left), PHN model (center) and β-BS model (right).
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6. Discussion

The main focus of this paper is studying a truncated positive version of the PN model, obtaining
a new extension of the HN model. This model involves two parameters and is an alternative to other
positive models. Maximum likelihood estimation is conducted for parameter estimation, and results
of a simulation study indicate that it has good properties for small and moderate sample sizes, as well
as applications to real data, indicating that it can outperform competing distributions. A simulation
study was implemented using the acceptance rejection method for some truncation values, and the
results were satisfactory.
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