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Abstract: According to the fact that high frequency will be abnormally attenuated when seismic
signals travel across reservoirs, a new method, which is named high-precision time-frequency entropy
based on synchrosqueezing generalized S-transform, is proposed for hydrocarbon reservoir detection
in this paper. First, the proposed method obtains the time-frequency spectra by synchrosqueezing
generalized S-transform (SSGST), which are concentrated around the real instantaneous frequency of
the signals. Then, considering the characteristics and effects of noises, we give a frequency constraint
condition to calculate the entropy based on time-frequency spectra. The synthetic example verifies
that the entropy will be abnormally high when seismic signals have an abnormal attenuation. Besides,
comparing with the GST time-frequency entropy and the original SSGST time-frequency entropy in
field data, the results of the proposed method show higher precision. Moreover, the proposed method
can not only accurately detect and locate hydrocarbon reservoirs, but also effectively suppress the
impact of random noises.

Keywords: synchrosqueezing generalized S-transform; time-frequency entropy; hydrocarbon
reservoirs detection; random noises

1. Introduction

In the traditional hydrocarbon-reservoir detection, an abnormal attenuation of the high-frequency
energy is regarded as an indication of existence of reservoirs. This is because wave induced by fluid
flow can lead to stratum absorption, which is the main causation of attenuation of seismic waves [1–4].
In this case, the energy distribution shows the loss of high-frequency energy and the conservation of
strong low-frequency energy [4–7]. Thus, it is possible to detect reservoirs by comparing the frequency
energy distribution [8].

The energy entropy can be used to calculate the change of the energy distribution [9]. When the
energy distribution is changed, the entropy will change too. However, the traditional energy entropy
is calculated only in the time or frequency domain and cannot detect both time and location of
the changes [8,10,11]. Time-frequency analysis methods can well reflect the information of both
time and frequency. Thus, some researches have introduced the energy entropy into time-frequency
distribution [12–14]. Time-frequency entropy uses both time and frequency information to measure any
distribution of information and has been widely applied in many practical applications, such as feature
extraction and machinery fault diagnosing. In 2009, time-frequency entropy based on S-transform
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(ST) is applied to reservoir detection by Cai H.P. et al. [15]. The result shows that the greater entropy,
the more unstable the frequency. In order to obtain better time-frequency entropy, a high precision
time-frequency analysis method is required. Thus, the time-frequency analysis plays a significant role
in time-frequency entropy.

Although the traditional time-frequency analysis methods, for instance, short time Fourier
transform (STFT) [16], wavelet transform (WT) [17], and S-transform (ST) [18] are widely applied in
many areas, and all of them perform well [19–21], they still have some disadvantages such as low
time-frequency resolution, spectral smearing, the fixed changing trend of the basic wavelet, and so
on [20,22–24]. These disadvantages limit their application.

Therefore, for better solving those disadvantages, varieties of forms of generalized S transform
(GST) on the basis of ST have been proposed by researchers [25–30]. In contrast to the ST approach,
the generalized S-transform (GST) which is introduced by Gao et al. [27] overcomes the dilemma of
the fixed wavelet in ST by introducing four undetermined parameters (amplitude, energy decay rate,
energy delay time, and video rate) to construct the basic wavelet adaptive to the non-stationary signal
characteristics in practical application.

Inspired by the squeezes along the frequency direction [31–33], Chen H. et al. proposes a
new high resolution time-frequency analysis method which is named synchrosqueezing generalized
S-transform (SSGST) in 2017 [34]. This method introduces GST to replace the WT of synchrosqueezing
wavelet (SST) [35,36], squeezes, and reconstructs the complex coefficient spectra of GST results
along the frequency direction, so that the energy distributions on the time-frequency spectra
are concentrated around the real instantaneous frequency of the target signal and shows a high
time-frequency resolution.

In this paper, we propose a novel high-precision time-frequency entropy based on SSGST for
reservoir detection. Considering the noise effect, we give a frequency constraint condition to reduce
the impact of random noises. The rest of this paper is organized as follows: Section 2 gives the theory
of SSGST and proposes the concept of the time-frequency entropy based on SSGST. In Section 3,
a synthetic signal is used to demonstrate the high time-frequency resolution of SSGST compared to
GST and the time-frequency entropy of two synthetic signals calculated by the proposed method
reflects the change of frequency energy distribution of signals. Section 4 applies the field data to verify
the high precision of the proposed method in hydrocarbon reservoir detection. Moreover, the proposed
method can be useful in suppressing the effect of noise. Lastly, the conclusion of this paper is given in
Section 5.

2. Materials and Methods

2.1. SSGST

In 2017, synchrosqueezing generalized S-transform (SSGST) is proposed by Chen H. et al. [34].
This method based on the generalized S-transform (GST) with four parameters which is proposed by
Gao J.H. et al. [27] is defined as:

GSTx( f , b) = A| f |
∫ ∞

−∞
x(t) exp

{
−α[ f (t− b)− β]2

}
exp(−i2π f0 f t)dt (1)

where, x(t) is a signal, the basic wavelet amplitude is A, α(α > 0) represents the energy attenuation
rate. β and f0 are energy delay time and video frequency of the basic wavelet, respectively. f is
frequency, t is time, and b denotes the time shift.

Then, the instantaneous frequency of the signal can be calculated by:

fx( f , b) = f0 f + [i2πGSTx( f , b)]−1 ∂GSTx( f , b)
∂b

(2)
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Therefore, according to the theories of synchrosqueezing [37] and Function (2), the SSGST is
defined as Equation (3):

SSGSTx( fl , b) = L−1
f ∑

fk :| fx( fk ,b)− fl |≤∆ f /2
GSTx( fk, b)ei2π f0 fkb f−1

k
∆ fk (3)

where, fl is the frequency of the result obtained by SSGST. L f denotes the half length of frequency
range [ fl − L f , fl + L f ] centered on the frequency point fl . fk represents the discrete frequency points
in frequency ranges of the GST, and ∆ fk = fk − fk−1.

The Equation (3) represents that the time-frequency spectra values among the frequency range
[ fl − L f , fl + L f ] are superimposed on the frequency point fl , so that the SSGST has higher accuracy of
time-frequency decomposition ability.

2.2. Time-Frequency Entropy Based on SSGST

In this part, we give the basic process of the proposed method named time-frequency entropy
based on SSGST. Firstly, performing the SSGST transform to each signal and we can get the
time-frequency spectra of signals. Then, calculating the entropy along the time direction based
on the time-frequency spectra. For reducing the effect caused by noises in field data, we give an
empirical constraint of the frequency, which is presented in Function (4):{

e( fi, tj) = e( fi, tj), flow < f < fhigh
e( fi, tj) = 0, else

i = 1, 2, · · · , N; j = 1, 2, · · · , M (4)

where, e( fi, tj) represents the energy of the i-th frequency point at the j-th time, and N is the number of
frequency points, M is the number of time points. flow and fhigh are respectively the lower and upper
limit of the effective frequency band of signals. As we all know the frequency distribution of seismic
signals is like a normal distribution. The low frequency is from 3 to 10 Hz and the high frequency is
usually from 80 to 120 Hz. However, they were determined according to field seismic data quality.
In this paper, we give flow = 10 and fhigh = 80.

And the total energy of each time tj is Etj :

Etj =
N

∑
i=1

e( fi, tj) (5)

Then, the percent of the energy of the i-th frequency point is:

p( fi, tj) =
e( fi, tj)

Etj

, i = 1, 2, · · · , N. (6)

In which p( fi, tj) is the percent of the energy of the i-th frequency point fi at the j-th time in the whole

signal energy Etj and
N
∑

i=1
p( fi, tj) = 1.

So, the time–frequency entropy obtained by the follow formula:

Stj = −
N

∑
i=1

p( fi, tj) ln p( fi, tj) (7)

The workflow of the proposed method is shown in Figure 1 and the time-frequency entropy
program in this paper is detailed in the supplementary.
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Figure 1. The workflow of the proposed method. Figure 1. The workflow of the proposed method.

3. Synthetic Example

In this section, we test the performance of SSGST with a synthetic signal and illustrate the
effectiveness of hydrocarbon detection by the proposed method with two different attenuated
synthetic signals.

3.1. The Time-Frequency Spectra of a Synthetic Signal Using GST and SSGST

In order to show the superior resolution of SSGST better, we design a synthetic signal,
which contains 1000 points and the sampling interval is 1 ms, to compare the performance of
four-parameter GST and SSGST. Figure 2 shows the details of the synthetic signal. Figure 2a shows
random reflection coefficients and a minimum phase wavelet is shown in Figure 2b whose dominant
frequency is 60 Hz. Figure 2c is the synthetic signal by convolution of Figure 2a,b. The time-frequency
spectra of the synthetic signal (Figure 2c), obtained by SSGST and four-parameter GST, are presented
in Figure 3, respectively. From Figure 3a, it can be clearly observed that it is difficult to accurately
identify the frequency from 50 to 100 Hz. However, the SSGST method can not only clearly identifies
all individual components of the synthetic signal, but also precisely depict frequency of the signal.
Therefore, the SSGST can obtain a higher frequency resolution compared to four-parameter GST and
due to the high resolution, it can ensure the entropy more accuracy.
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Figure 2. The details of synthetic signal. (a) Random reflection coefficients of synthetic signal; (b) A
minimum phase wavelet with dominate frequency around 60 Hz; (c) The synthetic signal generated by
convolution of (a) and (b).

3.2. The Time-Frequency Entropy of Synthetic Signals

As we all known, the seismic signal is attenuated during the propagation process and the Q value
can well simulate the attenuation. Therefore, we use the Q value to simulate the seismic attenuation [38].
The Q values for the synthetic signal (Figure 1c) are exhibited in Table 1. From Table 1, the synthetic
signal is attenuated by different Q values. Thus, we get two different attenuated synthetic signals
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(signal 1 and signal 2). Signal 1 (the blue one in Figure 4a) is attenuated only by one Q value (Q = 50),
and signal 2 (the red one in Figure 4a) is attenuated by three different Q values (Q = 50, 30, and 20,
respectively) in different times.
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Table 1. The Q value of synthetic signals.

The Q Value
Time (s)

0–0.3 0.3–0.7 0.7–1

The Q value of Signal 1 50 50 50
The Q value of Signal 2 50 30 20
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Figure 4. The two synthetic signals and their time-frequency entropy. (a) The two synthetic signals
with different Q values; (b) The time-frequency entropy of two synthetic signals.

The two synthetic signals and their time-frequency entropy, calculated by the proposed method,
are shown in Figure 4. In Figure 4b, the time-frequency entropy of signal 1 is stable but the time-
frequency entropy of signal 2 has two peaks when the Q value is changed. The black and green arrows
in Figure 4 shows that when the Q value turn 50 to 30 and 30 to 20, the time-frequency entropy of
signal 2 has increased clearly. Therefore, the entropy value will sharp variation in the attenuation.
It is also confirmed that the time-frequency entropy based on SSGST can be used for detecting an
abnormal attenuation phenomena of the seismic signals to predict the possibility of underground
hydrocarbon reservoirs.
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4. Field Data

4.1. The Time-Frequency Entropy Comparison

In this section, we apply the proposed method to field data, which is from Sichuan Basin, China,
to validate the precision of the proposed method in detecting the reservoir. The seismic data consists
of 261 traces with 426 sampling points and a sampling interval of 2 ms, the lateral interval is 20 m
(Figure 5). In this field data, the well A is a productive well and well B is a non-productive well.
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the proposed method well locates the distribution of the reservoir in time which is consistent with that
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the time-frequency entropy based on SSGST method has significantly distinguished that the entropy
value of well A is bigger than well B, but the results of time-frequency entropy based on GST are not
accurate enough.
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Therefore, the proposed method seems to be effective in reservoir detection and location.
These characteristics make this technique attractive for seismic data processing and interpretation.
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4.2. Hydrocarbon Reservoir Detection Performance Analysis with Different Signal-Noise Ratio (SNR)

To better understand the sensitivity of the proposed method to the noise level, we have added
three different levels of random Gaussian noises into the field data. The SNRs are 25 dB, 30 dB,
and 35 dB, respectively. Figure 7 shows the results obtained by original SSGST time-frequency entropy
method and the proposed method under different SNRs. All the results show that both of the two
methods can detect and locate the hydrocarbon in Figure 7.Entropy 2018, 20, x  7 of 9 
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time-frequency entropy based on SSGST under SNR 35; (b) The result of the proposed method under
SNR 35; (c) The result of original time-frequency entropy based on SSGST under SNR 30; (d) The result
of the proposed method under SNR 30; (e) The result of original time-frequency entropy based on
SSGST under SNR 25; and (f) The result of the proposed method under SNR 25.
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Especially, when the SNR reaches 25, the time-frequency entropy spectrum obtained by original
SSGST time-frequency entropy in Figure 7e shows that the noise has a heavy impact on entropy
calculation, and we cannot clearly distinguish between reservoir and non-reservoir area. However,
the proposed method effectively suppresses the random noises, accurately and heuristically identifies
the location between reservoir and non-reservoir.

Thus, the proposed method indeed effectively suppresses the effect of noises and ensure the
results more accuracy.

5. Conclusions

In this paper, we propose a novel high-precision time-frequency entropy based on SSGST for
reservoir detection. By calculating and analyzing the synthetic signals, it is verified that the proposed
method can recognize the change of attenuation. Besides, the results of field data confirm that not only
the location of the oil and gas layer obtained by the proposed method is the same as the real, but also
effectively suppresses the impact of random noises. Therefore, we can conclude that the time-frequency
entropy based on SSGST method can be a useful tool for reservoir detection. In practical application,
it is necessary to be combined with geological and log data for comprehensive analysis.

Supplementary Materials: The time-frequency entropy program in this paper is detailed in the supplementary
materials online at http://www.mdpi.com/1099-4300/20/6/428/s1.
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