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Abstract: In this paper, we propose criteria for the existence of memory of power-law type (PLT)
memory in economic processes. We give the criterion of existence of power-law long-range
dependence in time by using the analogy with the concept of the long-range alpha-interaction.
We also suggest the criterion of existence of PLT memory for frequency domain by using the concept
of non-integer dimensions. For an economic process, for which it is known that an endogenous
variable depends on an exogenous variable, the proposed criteria make it possible to identify the
presence of the PLT memory. The suggested criteria are illustrated in various examples. The use of
the proposed criteria allows apply the fractional calculus to construct dynamic models of economic
processes. These criteria can be also used to identify the linear integro-differential operators that can
be considered as fractional derivatives and integrals of non-integer orders.

Keywords: power-law memory; long memory; economic dynamics; multiplier with memory;
accelerator with memory; fractional derivative; fractional integral

1. Introduction

In models of economic processes, variables of two types are used. The first type includes
exogenous variables that are external to the considered model. The second type includes endogenous
variables that are internal to the model. It is possible to state that the separation of variables into
exogenous and endogenous ones is based on the causal relationship: the exogenous variable is the
cause (the action, input), and the endogenous variable is the consequence (the response, output). In an
economic process with memory there is an endogenous variable Y(t) at the time t, which depends on
the history of the change of the exogenous variable X(τ) at τ ∈ (−∞, t). This dependence is due to the
fact that people, which participate in the economic process, can remember the previous changes of
exogenous variable X(t) and the impact of these changes on the endogenous variable Y(t).

The long-range time dependencies have been empirically observed in economics [1–3]. For these
dependences the correlations between values of variables decay to zero slower than it can be expected
from independent variables or variables from classical Markov and autoregressive moving average
models [1–7]. An interpretation of these dependences between variables is that this process has
memory. This property significantly changes the statistical behavior of estimates and predictions in
models that take into account memory effects. This leads to the fact, that many of the theoretical
models, methods, and approaches, which are used for analyzing classical time series of the Markov and
autoregressive moving average processes, cannot be applied to describe processes with memory [1–9].

During the development of mathematics, new tools were created to describe processes with
memory. There are two main types of methods to analyze the behavior of time series, which describe
variables of processes with memory [1–3]. The first type is more related to the time-domain analysis
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such as the correlation analysis. The second type is more connected with an analysis in the frequency
domain such as the spectral analysis. Time series, which describe variables of the processes with
memory, are characterized by a statistically significant dependence between very distant observations.
This dependence is formalized by assuming that the autocorrelation function and spectral densities of
these time series decay very slowly, as a function of the time lag. Although there is a general consensus
that processes with memory manifest themselves in slowly decaying autocorrelation function and
spectral density, there is no universal formal definition of processes with memory [1–3]. A stationary
process with slowly decaying correlations and spectral density is usually called a process with long
memory in contrast to processes with summable correlations, which are also called processes with
short memory.

For the first time, the importance of long-range time dependence in economic data was recognized
by Clive W. J. Granger in his technical report [10] in 1964, and then in his article [11] in 1966 (see
also [12–14]). Granger showed that a number of spectral densities, which are estimated from economic
time series, have a similar power-law form. Clive W. J. Granger received the Nobel Memorial Prize
in Economic Sciences in 2003 “for methods of analyzing economic time series with common trends
(cointegration)”. One of the first who used the power law to describe the real economic processes were
Charles W. Cobb and Paul H. Douglas, who published the article [15] in 1928. At present time the
power laws are widely used in economics, including the Cobb-Douglas functions and other power
laws that are described by Xavier Gabaix in the reviews [16,17]. In our paper, we do not consider
the criteria for the appearance of power laws in the economy. The main attention is paid only to
processes with memory, fading of which has a power-law type. The memory of power-law type
will be described in the frequency domain for the exogenous and endogenous variables, between
which there is a causal relationship. In this paper, we propose criteria for the existence of memory
of power-law type (PLT) memory in economic processes. We suggest criteria for the presence of PLT
memory, which make it possible to use the fractional calculus for constructing mathematical models of
economic processes with memory. The main attention is paid to processes and models with continuous
time, which usually were not considered in standard approaches to economic processes with memory.
The standard approach [1–6] is based on the fractional differencing and integrating proposed by
Granger and Joyeux [14] in 1980, where the discrete time models are used. Note that the fractional
differencing and integrating, which are usually used in economics [4–6], are the Grunwald–Letnikov
fractional differences, which have been proposed more than hundred fifty years ago [8,9]. This fact
shows the importance of fractional calculus for modeling processes with memory. It also shows the
necessity of criteria for the existence of PLT memory.

2. Processes with Memory

We assume that an economic process with memory is characterized by the fact that there is an
endogenous variable Y(t) at the time t, which depends on the history of the change of the exogenous
variable X(τ) at τ ∈ (−∞, t) [18–20]. In this case, interrelations of these endogenous and exogenous
variables can be described by concepts of economic multiplier with memory or/and accelerator with
memory, which have been proposed in [21–24] and applied to different economic models [25–30].

Let us assume that the real functions Y(τ) and X(τ) are given and these functions describe the
endogenous variable and the exogenous variable for τ ∈ (−∞, t] of an economic process, respectively.
We also assume that it is known existence of dependence an endogenous variable on the exogenous
variable. We are interested in the possibility of determining the presence of memory in this process.
To formulate criteria of existence of memory in the frequency domain, we consider the Fourier
transform F of the given functions Y(τ) and X(τ), which we denote by Ỹ(ω) = F{Y(t)}(ω), and
X̃(ω) = F{X(t)}(ω). The Fourier transform will be defined by the equation:

X̃(ω) = F{X(t)}(ω) =
∫ +∞

−∞
X(t)·ei·ω·tdt, (1)
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where we use a positive sign in front i·ω·t as in [31] (p. 24) and [32] (p. 10), [33] (pp. 109–112).
The inverse Fourier transform F−1 is given by the formula

X(t) = F−1{X̃(ω)}(t) = 1
2π

∫ +∞

−∞
X̃(ω)·e−i·ω·tdω. (2)

The integrals in Equations (1) and (2) converge absolutely for functions X(t), X̃(ω) ∈ L1(R) and
in the norm of the space L2(R) for X(t), X̃(ω) ∈ L2(R).

In the frequency domain, we can define the function

M̃(ω) =
Ỹ(ω)

X̃(ω)
(3)

for frequencies ω ∈ R at which the function X̃(ω) is nonzero, X̃(ω) 6= 0. The function M̃(ω)

will be called the frequency memory function or the frequency response function. Fundamentally,
the frequency memory function is a mathematical representation of the relationship between the
exogenous and the endogenous variables. Here we consider the frequency memory function for single
exogenous variable X(t) and single endogenous variable Y(t).

Since the functions Y(τ) and X(τ) are real, we have the equalities X̃
∗
(ω) = X̃(−ω) and

Ỹ
∗
(ω) = Ỹ(−ω). This leads to the property M̃

∗
(ω) = M̃(−ω).

In the general case, the frequency dependence of M̃(ω) defines the memory function
M(t) = F−1{M̃(ω)}(t) that describes a non-local connection between the endogenous variable Y(τ)
and the exogenous variable X(τ) in time domain.

We assume that the memory function does not depend on the explicit form of the functions
of the exogenous and endogenous variables. Symbolically, we will write this in the form
M̃
(
ω, X̃(ω), Ỹ(ω)

)
= M̃(ω). The memory function depends on the type of considered economic

process. In other words, we will assume that the memory function characterizes the memory effects,
and it is independent of the behavior of the exogenous or endogenous variable. The memory function
only reveals properties of economic processes if it is known that the variable Y depends linearly on
the variable X. We also assume that the economic process under consideration is characterized by
the dependence of an endogenous variable Y on the change of the exogenous variable X. Using this
assumption, we propose criteria can be used to identify the memory of power-law type in economic
processes. These criteria allow us to say for which processes we should use more general economic
models base on fundamental concepts of multiplier and accelerator with memory [21–24].

Before we proceed to the formulation of the criterion for the existence of memory in the economic
process, we will explain the main aspects of the proposed approach by the simplest examples.

It is well-known that fractional derivatives and integrals of non-integer order can describe a
memory. Fractional derivatives and integrals of integer orders cannot describe a memory since
equations with these operators can be represented by differential equations of integer orders [34].
As an example, let us consider the fractional integral equation

Y(t) = m1·(Iα1
L;+X)(t) + m2·(Iα2

L;+X)(t), (4)

where α2 > α1 > 0 and IαL;+ is the left-sided Liouville integral of the order α > 0 with respect to
time variable, m1 and m2 are numerical coefficients. In economics, Equation (4) describes a linear
multiplier with memory [18,19,21–24]. Note that the terms with integrals of integer order do not
describe a memory, since by differentiating of this order we obtain a differential equation of integer
order. For example, for α2 = 1 and α1 is non-integer, differentiation of Equation (4) gives:

Y(t) = m1·(D1−α1
L;+ X)(t) + m2·X(t). (5)
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Therefore memory is described by first term of order α1. The following question arises: How we
can identify this memory that is described by non-integer α1, when α2 is integer (α2 = 1)? Using the
Fourier transform of the left-sided Liouville integral [32] (p. 90), we get

Ỹ(ω) = M̃(ω)·X̃(ω), (6)

where
M̃(ω) = m1·(−iω)−α1 + m2·(−iω)−α2 , (7)

(−iω)α = |ω|α· exp
(
−i·α·π· sgn(ω)

2

)
. (8)

This representation allows us to get the limits

α0 := lim
ω→0

ln
∣∣∣M̃(ω)

∣∣∣
ln|ω| = −α2, (9)

α∞ := lim
ω→∞

ln
∣∣∣M̃(ω)

∣∣∣
ln|ω| = −α1, (10)

i.e., α0 = −α2 = −1 and α∞ = −α1 is non-integer. As a result, we see that the limit with ω goes
to zero (ω→ 0) cannot identify this memory. We also can see that the limit with ω goes to infinity
(ω→ ∞ ) can be realized this identification. The limits (9) and (10), which allow us to identify the PLT
memory, can be used to formulate a criterion of existence of PLT memory for frequency domain. Using
the function M̃(ω), the existence of a memory can be connected with the existence of the limits (9) and
(10), i.e., with non-integer values of the parameters α0 and/or α∞.

Due to the symmetry of the behavior of the Liouville fractional integral, the memory (7) with
α2 = 1 and 0 < α1 < 1 can also be identified by another way as described in Section 4 by using the
Criterion of existence of the next-to-order values of memory and considering ω→ 0 . Let us consider
the limit

A0(α0) := lim
ω→0+

M̃(ω)

ωα0
. (11)

For the Function (7), Equation (11) with α0 = −α2 = −1 gives A0(α0) = m2·(−i)−α2 = i·m2.
Then we consider the next-to-order values of the limits:

α0,1 := lim
ω→0+

ln
∣∣∣M̃(ω)−A0(α0)·ωα0

∣∣∣
ln|ω| = −α1, (12)

The limits (9) and (10), which allow us to identify the PLT memory, can be used to formulate a
criterion of the next-to-order values of PLT memory fading parameters for frequency domain.

Note that in the considered Example (4), we can identify the memory by the next-to-order limit
(12) since the Fourier transform of the Liouville fractional integral has the symmetry of the behavior
(the same behavior when ω→ 0 and ω→ ∞ ), i.e., for Equations (4) and (7) with m2 = 0, we have:

M̃(ω) ∼ (−iω)−α1 ,for ω→ ∞, (13)

M̃(ω) ∼ (−iω)−α1 for ω→ 0 . (14)

However, when formulating the criterion for the existence of memory, we must also take into
account asymmetric cases. For example, In the Jonscher universal response phenomenon for the
branches of dielectric spectra [35–38] (see also [39–46]), the power-law behavior for ω→ ∞ should be
considered in addition to ω→ 0 to identify a memory because of asymmetric behavior.
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The power-law type of behavior of function M̃(ω), which describes complex susceptibility of
dielectric media, has been used by Jonscher [35–38] to formulate the “universal” response phenomenon,
when the behavior of dielectric spectra are described by the expressions:

M̃(ω)− M̃(0) ∼ −(i·ω)β,for ω→ 0 (ω� ωp), (15)

M̃(ω) ∼ (i·ω)−α for ω→ ∞ (ω� ωp), (16)

where α and β fall in the range (0; 1). The “universal” response is based on the experimental
observation of power laws at frequencies far from the peak frequency ωp of the imaginary part
M̃2(ω) of the function M̃(ω). The asymmetric behavior of the form (15) and (16) can be described [35]
by the function M̃(ω) with the imaginary part:

M̃2(ω) =
1

(ω/ωp)
α + (ω/ωp)

−β (17)

whereωp is the loss peak frequency. The real part of M̃(ω) is expresses through the imaginary part (14)
by the Kramers–Kronig relation [47–55]. The behavior of this memory function M̃(ω) is described by
(15) and (16). As a result, in the case β = 1 and non-integer value α > 0 of the PLT memory cannot be
identified by the limit ω→ 0 . For non-integer values of α and integer β > 0 the behavior at ω→ ∞
cannot be interpreted as a long memory, but it should be interpreted as a memory. This memory will
be called the power-law type memory (the PLT memory). This concept includes the long memory as a
special case.

In addition to application of the proposed criteria to describe processes with memory in natural
sciences, economic and finance, these criteria can be applied for pure mathematical purpose of
development of fractional calculus. It is known that the power-law memory function allows us the
use of fractional calculus to describe processes with memory. In recent years some different type
of new integral and differential operators are proposed. Some of these operators cannot be used to
describe a memory since it cannot be considered as non-local operators [34]. Note that memory can be
interpreted as a nonlocality is time. Therefore we can state “No memory. No fractional derivatives
and integrals” by analogy with [34]. In this connection, the question arises whether it is possible to
consider a wider class of functions than power-law function (we will call these functions as power-law
type), which can be used to describe a memory, and allows us to use the fractional calculus or its
generalization. The proposed criteria can be used to identify the linear integro-differential operators
that can be considered as fractional derivatives and integrals of non-integer order. It allows to propose
new type of fractional derivatives and integrals, and as a result this will allow expanding the area of
generalized fractional calculus [56,57].

3. Criteria of Existence of Power-Law Type Memory in Economic Process

In this section, we give the criterion of existence of a long-range dependence in time by using the
concept of the long-range alpha-interaction and the criterion of existence of PLT memory for frequency
domain by using the concept of non-integer dimensions.

In [58,59] and [60] (p. 166) the concept of the long-range alpha-interaction has been proposed.
This concept describes power-law non-locality in space. The concept of memory can be interpreted
as a non-locality in time. It allows us to use the concept of the long-range alpha-interaction [58–60]
(see also [61,62]) in order to formulate the following criterion of the memory of power-law type
(the PLT memory). The difference between these types of nonlocality is that we must take into account
the causality for the concept of nonlocality in time. The causality will be discussed in Section 5 of
this paper.
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Let us define the function:

M̃0(ω) = { M̃(ω)− M̃(0+),
M̃(ω)

if 0 <
∣∣∣M̃(0+)

∣∣∣ < ∞,

in other cases,
(18)

where M̃(ω) is defined by Equation (3) and

M̃(0+) = lim
ω→0+

M̃(ω). (19)

Using the memory function in the frequency domain (3) and the concept of the long-range
alpha-interaction, we can formulate the criterion of existence of long-range dependence in time. For an
economic process, for which it is known that an endogenous variable Y(t) depends on the exogenous
variable X(t), we can formulate the following criterion of the existence of the PLT memory.

3.1. Criterion of Existence of Long-Range Dependence in Time

Let for the considered economic process it is known that the endogenous variable Y(t) depends
on an exogenous variable X(t). This economic process is characterized by memory of the power-law
type if there exists a non-integer parameter α0 and there exists the finite limit

lim
ω→0+

M̃0(ω)

ωα0
= A0(α0), (20)

where 0 < |A0(α0)| < ∞ and M̃0(ω) is defined by Equation (18).
Similarly, we can consider the existence of a non-integer parameter α∞ and the finite limit at

ω→ ∞ in the form

lim
ω→∞

M̃∞(ω)

ωα∞
= A∞(α∞), (21)

where 0〈|A∞(α∞) | < ∞ and the function M̃∞(ω) is defined by the equation

M̃∞(ω) = { M̃(ω)− M̃∞

M̃(ω)

if 0 <
∣∣∣M̃∞

∣∣∣ < ∞,

in other cases,
(22)

and M̃∞ = lim
ω→∞

M̃(ω).

For economic processes, which are characterized by dependence of an endogenous variable Y(t)
on the exogenous variable X(t), we can formulate new criteria that allow us to take into account the
multi-parametric memory of power-law type. We propose a criterion of the presence of PLT memory,
which describes a certain type of nonlocality in time, by using some analogy with non-integer physical
dimension of space [60].

Using the Function (3), the existence of a memory can be connected with the existence of the finite
limits for (18) and (22), which are equal to parameters α0 and/or α∞.

3.2. Criterion of Existence of PLT Memory (for Frequency Domain)

Let for the considered economic process it is known that the endogenous variable Y(t) depends
on an exogenous variable X(t). In this economic process there is a memory of power-law type if at
least one of the limits

lim
ω→0

ln
∣∣∣M̃0(ω)

∣∣∣
ln|ω| = α0, (23)

lim
ω→∞

ln
∣∣∣M̃∞(ω)

∣∣∣
ln|ω| = α∞ (24)
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takes a non-integer value, where M̃0(ω) and M̃∞(ω) are defined by Equations (18) and (22), respectively.
The suggested criterion associates the presence of memory with parameters of nonlocality in time,

which can be interpreted as the fading parameters of PLT memory [18,19].
There is another interpretation of the parameters α0 and α∞. These parameters can be interpreted

as non-integer dimensions of time by analogy with the non-integer dimension of space (for example,
see [63–65] and [66] (pp. 62–87)). This “time dimensions” is a characteristic of set of histories.
This interpretation is based on the similarity of Equations (23), (24) and equations, which determine
the physical dimensions of the mass, charge and number of particles [60].

We note that any of the inequalities α∞ ≥ α0 or α∞ ≤ α can be realized. The parameter α∞ does
not need to be greater than the parameter α0, which can erroneously seem from the notation.

For the existence of PLT memory, it is necessary that at least one of the parameters has a non-integer
value. If there are both parameters α0 and α∞ are non-integer and α∞ 6= α0, then we have the
multi-parametric memory of power-law type.

Note that the integer values of the parameters (23) and (24) do not mean that there is no memory
of the power type in the economic process. For such conclusions, it is necessary to make sure that there
are no other parameters. To find new parameters we should consider new limits, when the power-law
dependences with α0 and α∞ are subtracted. For this purpose, we consider generalizations of the
suggested criteria. In the next section, proposed criteria will be generalized to take into account the
other parameters for the multi-parametric memory of power-law type.

4. Criteria of Multi-Parametric Memory of Power-Law Type

First, we consider a criterion for the existence of the next-to-order values of memory fading
parameters. It allows us to formulate the criterion that takes into account all possible parameters for
the multi-parametric memory of power-law type.

4.1. Criterion of Existence of the Next-to-Order Values of Memory Fading Parameters

In the economic process, for with it is known that an endogenous variable Y(t) depends on
exogenous variables X(t), there is a multi-parametric memory of power-law type if there are at least
two of the limits (23)–(24) and

lim
ω→0+

ln
∣∣∣M̃0(ω)−A0(α0)·ωα0

∣∣∣
ln|ω| = α0,1, (25)

lim
ω→∞

ln
∣∣∣M̃∞(ω)−A∞(α∞)·ωα∞

∣∣∣
ln|ω| = α∞,1 (26)

take a non-integer value, where A0(α0) and A∞(α∞) are defined by Equations (20) and (21).
Let us note that parameters α0,1 and α∞,1 define the following in the seniority of the smallest

α0 and the largest α∞, respectively. If all four parameters exist and α∞ > α0, then inequality
α∞ > α∞,1 ≥ α0,1 > α0 holds. Similarly, it is possible to determine all subsequent parameters of
extinction of multi-parametric memory of power-law type.

Then, we can consider the limits

lim
ω→0+

M̃0(ω)−A0(α0)·ωα0

ωα0,1
= A0,1(α0,1), (27)

lim
ω→0+

M̃∞(ω)−A∞(α∞)·ωα∞

ωα∞,1
= A∞,1(α∞,1). (28)
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Using these limits, we can define the parameters

lim
ω→0+

ln
∣∣∣M̃0(ω)−A0(α0)·ωα0 −A0,1(α0,1)·ωα0,1

∣∣∣
ln|ω| = α0,2, (29)

lim
ω→∞

ln
∣∣∣M̃∞(ω)−A∞(α∞)·ωα∞ −A∞,1(α∞,1)·ωα∞,1

∣∣∣
ln|ω| = α∞,2. (30)

Continuing by analogy, one can find all the memory parameters of the power type. It allows us to
formulate the following criterion of multi-parametric memory.

4.2. Criterion of Existence of Multi-Parametric Memory (for Frequency Domain)

In the economic process, for with it is known that an endogenous variable Y(t) depends on
exogenous variables X(t), there is a multi-parametric PLT memory if there are at least two of the limits

lim
ω→0+

ln
∣∣∣M̃0(ω)−∑m

k=0 A0,k(α0,k)·ωα0,k

∣∣∣
ln|ω| = α0,m+1, (31)

lim
ω→∞

ln
∣∣∣M̃∞(ω)−∑n

k=0 A∞,k(α∞,k)·ωα∞,k

∣∣∣
ln|ω| = α∞,n+1, (32)

where A0,k(α0,k) and A∞,k(α∞,k) are defined by the equations

A0,s(α0,q+1) = lim
ω→0+

M̃0(ω)−∑
q
k=0 A0,k(α0,k)·ωα0,k

ωα0,q
, (33)

A∞,s(α∞,p+1) = lim
ω→0+

M̃∞(ω)−∑
p
k=0 A∞,k(α∞,k)·ωα∞,k

ωα∞,p+1
, (34)

and we use the notations A0,0(α0,0) = A0(α0), A∞,0(α∞,0) = A∞(α∞) and α0,0 = α0, α∞,0 = α∞.
Numbers m and n run through all possible non-negative values, for which the parameters α0,m+1 and
α∞,n+1 are non-zero.

Let us suppose that there are only parameters α∞, α0 and there are no other parameters
(α0,k, α∞,k), k ≥ 1, k ∈ Z. In this case, the existence of parameters α∞, α0 can be interpreted as follows.

The existence of these parameters means the existence of equation, which describes the economic
accelerators and/or multipliers that relates the exogenous and endogenous variables. For non-integer
positive values of parameters α0 > 0 and α∞ > 0, we have the economic accelerator with
multi-parametric power-law memory. If parameters are equal to each other α0 = α∞ > 0 and
this value is positive non-integer, then we have an accelerator with one-parametric PLT memory.

For non-integer negative values of parameters (α0 < 0 and α∞ < 0), we have the economic
multiplier with multi-parametric power-law memory. If parameters are equal to each other
α0 = α∞ < 0 and this value is positive non-integer, then we have the multiplier with one-parametric
PLT memory [18–21].

If these parameters have non-integer values and different signs (α∞ > 0 > α0 or α0 > 0 > α∞),
then we have an accelerator-multiplier with PLT memory, that is, a combined effect of an accelerator
and a multiplier with PLT memory. To illustrate the described properties, we give the following Table 1.
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Table 1. Tables of interpretation of different signs and non-integer values of parameters α0 and α∞,
when there are only parameters α∞, α0 and there are no other parameters (α0,k, α∞,k ), k ≥ 1, k ∈ Z.

Sings Values Phenomenon (Equation) Memory

α∞ > 0;α0 > 0 non-integer accelerator with PLT memory multi-parametric

α∞ = α0 > 0 non-integer accelerator with PLT memory one-parametric

α∞ = 0;α0 > 0 or
α∞ > 0;α0 = 0 non-integer and integer accelerator with PLT memory and

without memory one-parametric

α∞ ∈ Z;α0 > 0 or
α∞ > 0;α0 ∈ Z non-integer and integer accelerator with PLT memory and

without memory one-parametric

α∞ = α0 = 1 integer accelerator without PLT memory no memory

α∞ = α0 = 0 zero multiplier without PLT memory no memory

α∞ > 0 > α0
α0 > 0 > α∞

non-integer accelerator-multiplier with PLT
memory multi-parametric

α0 < 0 ;α∞ < 0 non-integer multiplier with PLT memory multi-parametric

α∞ = α0 < 0 non-integer multiplier with PLT memory one-parametric

If both parameters are equal to one (α0 = α∞ = 1) and there are no other non-integer parameters,
then we have the phenomenon of the accelerator without PLT memory. If both parameters are equal to
zero (α0 = α∞ = 0) and there are no other non-integer parameters, then we have the phenomenon of
multiplier without PLT memory.

5. Causality Principle for Economic Processes with Memory

The separation of variables into exogenous and endogenous ones is based on the causal
relationship: the exogenous variable is the cause (the action), and the endogenous variable is the
consequence (the response). The exogenous and endogenous variables can also be described as input
and output. In the general case, the causal relationship assumes a finite rate of process and implies the
influence of some economic processes on others.

In general, we should be very careful to delimit the concept of causality, in order to distinguish it
from controllability and exogeneity [67–77].

The history of the concept of causality in economics is described by Hoover in the article “Causality
in economics and econometrics” [67], (see also [68,69]).

An important concept of causality was proposed by Granger in 1969 [70], (see also [13,71]).
The main assumption of Granger was that the future cannot be the cause of the present or the past.
This means that the cause must at least precede the effect. However, the very fact of precedence does
not say anything about the existence of a causal relationship. The importance of the fact that the
preceding values of the “cause” should have a perceptible influence on the future values of the “effect”
and, moreover, the past values of the “effect” did not have a significant effect on the future values of
the “cause”. The concept of the Granger causality is used in econometrics and time series analysis to
formalize the notion of a cause-effect relationship between time series [13,70,71]. The Granger causality
is necessary, but not sufficient, for a cause-effect relationship.

Clive Granger [71] (p. 330) proposes the following definition of causality that takes into account
the memory effect in the form of the past histories: a variable X(t) causes Y(t), if the probability of
Y(t) conditional on its own past history and the past history of X(t) (besides the set of the available
information) does not equal the probability of Y(t) conditional on its own past history alone. In the
economic literature this definition is called the Granger-causality, which is applied in econometrics.
The Granger-causality is formulated for the time domain.

The concept of causality often appears in discussion of the interpretation of a correlation coefficient
or regression, since an observed relationship does not allow us to say anything about causation between
the variables.
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Unfortunately, is no generally accepted procedure for testing for causality, partially, because of a
lack of the definition of this concept that can be universal and can be accepted by all.

In this section we describe the causality for economic processes with memory in the time and
frequency domains.

5.1. The Causality Principle for Memory: Time Domain

The function M̃(ω) can be considered as the Fourier transform M̃(ω) := F{M(t)}(ω) of a
function M(t). The function M(t)F−1{M̃(ω)}(t) can be interpreted as a response function. In linear
case, the response function describes how some time-dependent property Y(t) of an economic process
responds to an impulse impact X(t).

The principle of “strict causality” implies the following statement “no output can occur before the
input” [72]. Therefore, the response M(t− τ) must be zero for t < τ since a process cannot react to
the impact before it is applied. It can be shown (for instance, by invoking Titchmarsh’s theorem [78])
that this causality condition implies that the Fourier transform M̃(ω) of M(t) is analytic in the upper
half plane.

Let us consider the dependence of Y(t) from X(τ) that takes into account the memory in the
time domain. For example, this dependence, which takes into account the “strict causality”, can be
described [15,16,18,19] by the integral equation

Y(t) =
∫ t

−∞
M(t− τ)·X(τ)dτ, (35)

or the integro-differential equation

Y(t) =
dn

dtn

∫ t

−∞
M(t− τ)·X(τ)dτ, (36)

where M(t− τ) is the memory function that allows you to take into account the memory in
economic processes.

Suppose that an endogenous variable Y(t) at the time t depends on another (for example
exogenous) variable X(τ) at all other times τ by the linear relationship

Y(t) =
∫ +∞

−∞
R(t− τ)·X(τ)dτ, (37)

where R(t− τ) is a response function. For R(t− τ) = m·δ(t− τ), Equation (37) gives Y(t) = m·X(t)
that is the standard multiplier equation, where m is the multiplier coefficient.

From the convolution theorem, the Fourier transforms from time t to frequencyω of Equation (37)
gives the following relationship for frequency domain in the form

Ỹ(ω) = R̃(ω)·X̃(ω), (38)

where Ỹ(ω) = F{Y(t)}(ω), X̃(ω) = F{X(t)}(ω), and R̃(ω) = F{R(t)}(ω). Comparing
Expression (38) with the definition of the function M̃(ω) in Equation (3), we can see that the response
function can be expressed through the memory function.

Strict causality, which means that the past can determine the present, but the future cannot,
is expressed as R(t− τ) = 0 for τ > t. This allows us to represent the response function in the form

R(t− τ) = H(t− τ)·M(t− τ), (39)
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where H(t− τ) is the Heaviside step function that is defined as

H(t− τ) = { 1,
0,

t− τ > 0;
t− τ < 0.

(40)

The appearance of the Heaviside step function in the definition of the response function reminds
us that the endogenous variable Y(t) can only depend on the past values of the exogenous variable
X(τ), where X(τ) can be considered as an external impact on the process and Y(t) can be considered
as the response of the process to this impact. Therefore, (37) gives a causal relationship between the
endogenous variable Y(t) and the exogenous variable X(τ) in the form

Y(t) =
∫ t

−∞
M(t− τ)·X(τ)dτ. (41)

This equation can be considered as a generalized linear multiplier with memory.
Note that the response R(t− τ) must be zero for t < τ since a process cannot react to the impact

before it is applied. It can be shown (for instance, by invoking Titchmarsh’s theorem) that this causality
condition in the frequency domain implies that the Fourier transform M̃(ω) of M(t) is analytic in the
upper half plane.

5.2. The Causality Principle for Memory: Frequency Domain

To describe causality in the economics with memory, we will use the econophysics approach.
For economic processes with memory, the causality can be described by the Kramers–Kronig
relations [47–55]. Under suitable mathematical conditions, the principle of causality in the time
domain can be represented in the form of the Kramers–Kronig relations (the Hilbert transform pair)
by the Fourier transforms. The Kramers–Kronig relations represent the principle of causality in the
frequency domain. The Kramers–Kronig relations mean that the real part M̃1(ω) = Re[M̃(ω)] and
the imaginary parts M̃2(ω) = Im[M̃(ω)] of the memory function are not independent, and the full
function can be reconstructed given just one of its parts. In general, M̃(ω) is the complex function
M̃(ω) = M̃1(ω) + i·M̃2(ω), where function, where M̃1(ω) = Re[M̃(ω)] and M̃2(ω) = Im[M̃(ω)] are
real-valued functions.

Suppose the function M̃(ω) is analytic in the closed upper half-plane of frequencyω and vanishes
like 1/|ω| or faster as |ω| → ∞ . Slightly weaker conditions are also possible. The Kramers–Kronig
relations are given by:

M̃1(ω) =
1
π

P.V.
+∞∫
−∞

1
Ω−ωM̃2(Ω)dΩ, (42)

M̃2(ω) = − 1
π

P.V.
+∞∫
−∞

1
Ω−ωM̃1(Ω)dΩ, (43)

where P.V. denotes the Cauchy principal value. These relations are also called the dispersion relations.
They were first derived by Kramers (1927) and de L. Kronig (1926) in physics independently [47–49].
The real part of a response function describes how a system dissipates “energy”, since it is in phase
with the driving force. The Kramers–Kronig relations imply that the observation of the dissipative
response of a system is sufficient to determine its out-of-phase (reactive) response and vice versa.

In the Kramers–Kronig relations, the integrals run from −∞ to +∞, implying we know the
response at negative frequencies. In many casses, the positive frequency-response determines the
negative-frequency response because M̃(ω) is the Fourier transform of a real-valued function quantity
M(t). As a consequence, we have M̃(−ω) = M̃

∗
(ω). This means M̃1(ω) is an even function of

frequency (M̃1(−ω) = M̃1(ω)) and M̃2(ω) is odd (M̃2(−ω) = −M̃2(ω)).
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The Kramers–Kronig relations can be derived by two approaches, which use the Fourier
representation of the Heaviside step function and the freedom to define the memory function M(t− τ)
for t− τ < 0, respectively [50]. More traditional derivation of the Kramers–Kronig relations is usually
suggested for electrodynamics of continuous media (for example, see Section 7.10 of [51] (pp. 330–335)).
The traditional method of proving these relations is to continue M̃(ω) to complex frequencies and
then to exploit its analyticity in the upper half of the ω plane. Historical description of how the
Kramers–Kronig relations were first derived is proposed in [49].

In general, it is difficult to prove the equivalence between the Kramers–Kronig relations (KKR)
and the causality in time domain (CTD). If M̃(ω) is a square-integrable function, then the Titchmarsh
theorem [78] guarantees that KKR and CTD are equivalent. The square-integrability requirement
on M̃(ω) can be weakened. It can be shown that if M̃(ω) is bounded but Y(t) and X(τ) are
square-integrable functions, then KKR and CTD are equivalent [72]. Unfortunately, these conditions
are generally not satisfied. Therefore, we should consider R(t) and M(t) as generalized functions
(distributions) and not as classical functions.

The derivation of the Kramers–Kronig relations can be based on two well-known results [50].
The first is the Fourier transform of a convolution. The second is the fact that the Fourier transform of
the step function H(t) has the form

H̃(ω) = F{H(t)}(ω) =
∫ +∞

−∞
H(t)·e−i·ω·tdt = lim

ε→0+

i
ω+ iε

= P.V.
i
ω

+ πδ(ω). (44)

Because of causality, the response function R(t) must have the form R(t) = H(t)·M(t), where
R(t) = M(t) for t > 0. We have the freedom to choose the type of the memory function M(t) for t < 0.
The Fourier transform of the equation R(t) = H(t)·M(t) has the form

R̃(ω) =
1

2π
P.V.

+∞∫
−∞

i
Ω−ωM̃(Ω)dΩ +

1
2

M̃(ω). (45)

Then we can use the freedom to choose the memory function M(t) for t < 0. Considering the
memory function M(t) as the even and odd functions, we can get the Kramers–Kronig relations [49].

Setting the function M(t) as even (M(−t) = M(t)), we get that M̃(ω) is a purely real quantity
M̃
∗
(ω) = M̃(ω). Then Equation (45) gives M̃(ω) = 2·Re[R̃(ω)] that will be denoted as M̃1(ω).

Substitution of this expression to (45) gives

M̃2(ω) = − 1
π

P.V.
+∞∫
−∞

1
Ω−ωM̃1(Ω)dΩ. (46)

Setting the function M(t) as odd (M(−t) = −M(t)), we get that M̃(ω) is a purely imaginary
quantity M̃

∗
(ω) = M̃(ω). Then Equation (45) gives i·M̃(ω) = −2·Im[R̃(ω)] that will be denoted as

M̃2(ω). Substitution of this expression to (45) gives

M̃1(ω) =
1
π

P.V.
+∞∫
−∞

1
Ω−ωM̃2(Ω)dΩ. (47)

The memory function M̃(ω) is the complex function

M̃(ω) = M̃1(ω) + i·M̃2(ω), (48)

where M̃1(ω) = Re[M̃(ω)] and M̃2(ω) = Im[M̃(ω)] are real-valued functions.
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In this section, we limited our consideration of the causality principle only to its effect on the
property of the memory function for time and frequency domains. Note that the causality in economics
is also discussed in [73–77].

6. Examples: Multipliers and Accelerators with Power-Law Memory

Let us give examples of multipliers and accelerators with power-law memory by using the
fractional integrals and derivatives of non-integer orders [31–33]. For simplification, we will use
the Liouville fractional integrals and derivatives. Note that we can use the Marchaud fractional
derivative instead of the Liouville fractional derivative [31] (pp. 93–119). The Marchaud fractional
derivative is more convenient than the Liouville fractional derivative, since they allow more freedom
for the function X(t) at infinity [31] (p. 110). The multipliers and accelerators with memory, which are
described by other types of fractional derivatives and integrals, are considered in [18,19,21,22].

6.1. Multipliers with Power-Law Memory

The economic multiplier with power-law memory can be described [18,19,21,22] by the fractional
integral equation of the order α > 0 in the form

Y(t) = m(α)·(IαL;+X)(t), (49)

where m(α) is the multiplier coefficient, and IαL;+ is the left-sided Liouville integral of the order α > 0
with respect to time variable. This integral is defined in [60] (pp. 93–119), [62] (p. 87) by the equation

(IαL;+X)(t) :=
1

Γ(α)

∫ t

−∞

X(τ)dτ

(t− τ)1−α =
1

Γ(α)

∫ t

−∞
(t− τ)α−1·X(τ)dτ, (50)

where Γ(α) is the Gamma function. The Liouville integral (50) is a generalization of the standard
integration [31–33]. In order to have the correct dimensions of economic quantities, we will use the
dimensionless time variable t.

In the equations of multipliers with power-law memory, which are discussed above, the power-law
fading is characterized by one parameter α ≥ 0 only. In economic models we can take into account
the presence of different types of memory fading, which characterize the different types of economic
agents [18,19,21]. In the simplest multi-parametric case, the multiplier with fading memory can be
considered as a sum of multipliers with one-parametric memory fading. For example, we can use the
equation of the linear multiplier with N-parametric power-law memory [21,22] in the form:

Y(t) =
N

∑
k=1

mk(α)·(I
αk
L;0+X)(t), (51)

where αN > . . . > α1 > 0, and mk(α) (k = 1, 2, . . . N) are numerical coefficients. Using the memory
with multi-parametric power-law fading, we can consider economic models that allow us to describe
the memory effects in economy with different type of economic agents.

The Fourier transform (1) of the Liouville fractional integral (50) has the power-law form (see [31]
(p. 137) and [32] (p. 90)) that is given by equation

F{IαL;+X(t)}(ω) = (−iω)−α·F{X(t)}(ω), (52)

where we use a positive sign in front i·ω·t in the Fourier transform (1) and

(−iω)α = |ω|α· exp (−i·α·π· sgn(ω)

2
). (53)
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Forω > 0, Equation (53) has the form

(−iω)α = ωα·(cos (
πα

2
)− i· sin (

πα

2
)). (54)

Using (52), the Fourier transform of Equation (49) takes the form

Ỹ(ω) = m(α)·(−iω)−α·X̃(ω), (55)

where Ỹ(ω) = F{Y(t)}(ω) and X̃(ω) = F{X(t)}(ω). As a result, the memory function in the
frequency domain has the form M̃(ω) = m(α)·(−iω)−α.

Equation (55) allows us to state that the Fourier transform of the multiplier with memory has the
power-law form exactly.

In the frequency domain, the linear multiplier with N-parametric power-law memory has the form

Ỹ(ω) =
N

∑
k=1

mk(α)·(−iω)−αk ·X̃(ω), (56)

where αN > . . . > α1 > 0, and mk(α) (k = 1, 2, . . . N) are numerical coefficients. As a result, we get

M̃(ω) =
Ỹ(ω)

X̃(ω)
=

N

∑
k=1

mk(α)·(−iω)−αk , (57)

where −αN < . . . < −α1 < 0. Using that M̃0(ω) = M̃(ω), it is easy to get the limits

lim
ω→0

ln
∣∣∣M̃0(ω)

∣∣∣
ln|ω| = −αN, (58)

lim
ω→∞

ln
∣∣∣M̃∞(ω)

∣∣∣
ln|ω| = −α1. (59)

This means that α0 = −αN and α∞ = −α1, and we have a multiplier with multi-parametric
PLT memory.

6.2. Accelerators with Power-Law Memory

The economic accelerator with one-parametric power-law memory [18,19,21,22] can be described
by the fractional differential equation of the order α > 0 in the form

Y(t) = a(α)·(DαL;+X)(t), (60)

where a(α) is the accelerator coefficient, and DαL;+ is the left-sided Liouville fractional derivative
integral of the order α>0 with respect to time variable, which is defined [31] (pp. 93–119), [32] (p. 87)
by the equation

(DαL;+X)(t) :=
1

Γ(n− α)
dn

dtn

∫ t

−∞

X(τ)dτ

(t− τ)α−n+1 =
1

Γ(n− α)
dn

dtn

∫ t

−∞
(t− τ)n−α−1·X(τ)dτ, (61)

where n = [α] + 1 and τ < t. Here function X(τ) must have the derivatives of integer orders up to the
(n − 1) order, which are absolutely continuous functions on the interval (−∞, t].

Accelerator Equation (60) contains the standard equation of the accelerator and the multiplier,
as special cases. For example, using the property (D1

L;+X)(t) = X(1)(t) of the Liouville fractional
derivative (see Equation (2.3.5) of [32] (p. 87)). Equation (60) with α = 1 gives equation
Y(t) = a(1)·X(1)(t) that describes the standard accelerator. Using the property (D0

L:+X)(t) = X(t)
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of the Liouville fractional derivative (see Equation (2.3.5) of [32] (p. 87)), Equation (60) with α = 0 can
be written as Y(t) = a(0)·X(t), that is a standard equation of multiplier. As a result, the accelerator with
memory (60) generalizes the standard economic concepts of the accelerator and the multiplier [21,22].

In the simplest linear accelerator with power-law memory, the power-law fading is characterized
by one parameter α only. In general, different types of economic agents can be characterized by
different types of memory fading. In this case, we can take into account N parameters of memory
fading by using the equation

Y(t) =
N

∑
k=1

ak(αk)·(D
αk
L;+X)(t), (62)

where ak(αk) are numerical coefficients and αN > . . . > α1 > 0. The use of the accelerators with
multi-parametric power-law memory allows us to describe the memory effects in economics with
different types of economic agents.

It should be emphasized that the Fourier transform of the Liouville fractional integral and
derivative has the power-law form (see [31] (p. 137) and [32] (p. 90). The Fourier transform of the
Liouville fractional derivative (61) is represented by the expression

F{DαL;+X(t)}(ω) = (−iω)α·F{X(t)}(ω), (63)

where

(−iω)α = |ω|α· exp (−i·α·π· sgn(ω)

2
). (64)

Using (63), we get the Fourier transform of the accelerator with memory (60) in the form

Ỹ(ω) = a(α)·(+iω)α·X̃(ω). (65)

where Ỹ(ω) = F{Y(t)}(ω) and X̃(ω) = F{X(t)}(ω). Equation (65) allows us to state that the Fourier
transform of the accelerator with memory has the power-law form exactly. As a result, the memory
function in the frequency domain has the form M̃(ω) = a(α)·(iω)α.

In the frequency domain, the accelerator with N-parameter memory has the form

Ỹ(ω) =
N

∑
k=1

ak(α)·(iω)αk ·X̃(ω), (66)

where ak(α) (k = 1, 2, . . . N) are numerical coefficients and αN > . . . > α1 > 0. As a result, we get

M̃(ω) =
Ỹ(ω)

X̃(ω)
=

N

∑
k=1

ak(α)·(iω)αk . (67)

Using that M̃0(ω) = M̃(ω) and αN > . . . > α1 > 0, we get

lim
ω→0

ln
∣∣∣M̃0(ω)

∣∣∣
ln|ω| = α1, (68)

lim
ω→∞

ln
∣∣∣M̃∞(ω)

∣∣∣
ln|ω| = αN. (69)

This means that α0 = α1 and α∞ = αN, where α∞ > α0. This proves that we have accelerator
with multi-parametric PLT memory.
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6.3. Generalized Accelerators with Power-Law Memory

We can consider the generalized accelerator with multi-parametric power-law memory that is
defined by the equation

m

∑
l=0

bl(β)·(D
βl
L;+Y)(t) =

n

∑
k=0

ak(α)·(D
αk
L;+X)(t), (70)

where ak(αk), bl(βl) are numerical coefficients and αn > . . . > α1 > α0 = 0, βm > . . . > β1 > β0 = 0.
In the frequency domain, this generalized accelerator with memory has the form

m

∑
l=0

bl(β)·(iω)βl ·Ỹ(ω) =
n

∑
k=0

ak(α)·(iω)αk ·X̃(ω). (71)

As a result, we get

M̃(ω) =
Ỹ(ω)

X̃(ω)
=

∑n
k=0 ak(α)·(iω)αk

∑m
l=0 bl(β)·(iω)βl

. (72)

Using M̃0(ω) = M̃(ω)− M̃(0) = M̃(ω)− a0(α)/b0(β) for the case a0(α) 6= 0 and b0(β) 6= 0,
we get

lim
ω→0

ln
∣∣∣M̃0(ω)

∣∣∣
ln|ω| = α1 − β1. (73)

Equation (73) means that α0 = α1 − β1. This proves that we have accelerator with
multi-parametric PLT memory if the parameter α0 = α1 − β1 takes non-integer value.

The limit ω→ ∞ gives

lim
ω→∞

ln
∣∣∣M̃∞(ω)

∣∣∣
ln|ω| = αn − βm. (74)

Equation (74) means that α∞ = αn − βm. In this case, we have the multiplier with
multi-parametric PLT memory for the case αn − βm < 0 and the accelerator with PLT memory
for the case αn − βm > 0 if the parameter α∞ = αn − βm takes non-integer values.

7. Examples: Generalized Memory Functions of Power-Law Type

Using the econophysics approach, we consider the memory function, which cannot be considered
as power-law memory exactly. This function describes memory of the power-law type. This example
of the memory function we take from physics, more precisely from electrodynamics, but it can be used
to describe economic processes with memory.

In electrodynamics of dielectric media, the analog of exogenous variable X(t) is the electric field
→
E(t,

→
r ), the analog of endogenous variable Y(t) is the polarization density

→
P(t,

→
r ), and the analog of

the response (memory) function M(t) is the dielectric susceptibility χ(t). The dielectric susceptibility
of most materials follows a fractional power-law frequency dependence that is called the universal
relaxation law or “universal” response [35–41] (see also [42–46]).

The power-law type of behavior is confirmed in different measurements realized by
Jonscher [35–38] for a wide class of media. Jonscher formulated the “universal” response phenomenon,
when the branches of dielectric spectra (expressed in the form of complex susceptibility) are described
by the expressions in the form:

M̃(ω)− M̃(0) ∼ −(i·ω)β, for ω→ 0 (ω� ωp), where 0 < β = m < 1, (75)

M̃(ω) ∼ (i·ω)−α for ω→ ∞ (ω� ωp), where 0 < α = 1− n < 1. (76)
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The parameter β = m for ω→ 0 (ω� ωp), and the parameter α = 1 − n for
ω→ ∞ (ω� ωp), where α and β fall in the range (0; 1). The law is based on the experimental
observation of power laws at frequencies far from the peak frequency of the imaginary part M̃2(ω) of
the frequency dependent response (memory) function M̃(ω), the susceptibility. A general (“universal”)
rule of frequency dependence of the response (memory) function is described by fractional power laws.

The Jonscher equation [35] has two shape parameters and is formulated for the imaginary part
M̃2(ω) in the form

M̃2(ω) =
1

(ω/ωp)
α + (ω/ωp)

−β , (77)

whereωp is the loss peak frequency. The behavior of Function (77) is described by (75) and (76).
A purely empirical analytical expression, which is convenient for representing the generalized

loss peaks, was proposed by Havriliak and Negami [42] in 1967 and is given by

M̃(ω) =
1

(1 + (i·ω/ωp)
α)
γ (78)

where α = m and γ = (1− n)/m, where ωp is the loss peak frequency. The Havriliak–Negami
equation [71] also has two shape parameters but, in contrast to the Jonscher equation, it is formulated
directly for the complex function M̃(ω). The widely used Havriliak–Negami equation [71] with two
shape parameters describes most observed responses. For γ = 1 the Havriliak–Negami equation
reduces to the Cole–Cole equation, for α = 1 to the Cole–Davidson equation.

The Havriliak–Negami Function (78) has the correct asymptotic behavior for ω→ 0 and
ω→ ∞. This function is actively used to approximate the experimental data in electrodynamics.
A comprehensive presentation of this empirical function and the determination of the parameters is
given in [72].

As a result, using (75) and (76), we get

lim
ω→0

ln
∣∣∣M̃0(ω)

∣∣∣
ln|ω| = β, (79)

lim
ω→∞

ln
∣∣∣M̃∞(ω)

∣∣∣
ln|ω| = α. (80)

This means that α0 = β and α∞ = α. This proves that we have accelerator with multi-parametric
PLT memory.

In the time domain, the Havriliak–Negami function (the corresponding time-domain relaxation
function) can be represented through the H-function [42] or three parameters Mittag–Leffler
function [75] (p. 223) by the equation

M(t) = 1− (ωp·t)α·γ·Eγα,α·γ+1[−(ωp·t)α], (81)

where Eγα,β[z] is the three parameters Mittag–Leffler function (for example, see [32] (p. 45), [79]
(pp. 97–126)) that is defined by expression

Eγα,β[z] :=
∞

∑
k=0

Γ(γ+ k)
Γ(γ)·Γ(k + 1)

· zk

Γ(α·k + β)
, (82)
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where α > 0, and β, γ are arbitrary real or complex numbers. The three-parametric Mittag–Leffler
function can be considered as a special case of the H-function by the equation

Eγα,β[z] =
1

Γ(γ)
·H1 1

1 2

[
−z

∣∣∣∣∣ (1− γ, 1)
(0, 1)(1− β,α)

]
. (83)

For details see [32], (p. 67) and [79] (p. 105).
The memory Function (83) can be used to describe economic processes with memory that is

characterized by the frequency behavior in the form (75) and (76).

8. Examples: ARFIMA Models and the Grunwald–Letnikov Fractional Difference

In economics, the memory was first related to fractional differencing and integrating by C.W.J.
Granger, R. Joyeux [14], and Hosking, J.R.M. [80] by using the discrete time approach for models with
t ∈ Z. Granger and Joyeux, and Hosking independently propose the so-called autoregressive fractional
integrated moving average models (ARFIMA models). The difference operator used in this model is

∆d := (1− L)d, (84)

where L is the lag operator LX(t) = X(t− 1), and d is the order of the fractional differencing
(integrating) [14,80], which need not be an integer. In papers [8,9] we noted that the operator (84) is the
difference of fractional (integer or non-integer) order, which is called the Grunwald–Letnikov fractional
difference of the order d with the unit step T = 1 (for example, see Section 20 of [31] (pp. 371–387)
and [32] (pp. 121–123), [33] (pp. 43–62)). The Grunwald–Letnikov fractional difference ∆αT of order α
with the step T is defined by the equation

∆αT X(t) := (1− LT)
αX(t) =

∞

∑
m=0

(−1)m·( d
m

)·X(t−m·T), (85)

where LTX(t) = X(t− T) is the fixed-time delay operator and the time-constant T is any given positive
value. The series (85) convergences absolutely and uniformly for each α > 0 and for every bounded
function X(t). As a result, the description of the ARFIMA models is based on the operators that are the
well-known Grunwald–Letnikov fractional differences (85) of the order α = d. Note that the difference
(85) can be used for continuous time models, where t ∈ R.

The expression (1− L)d can be defined by the series expansion, [31] (p. 371), in the form

(1− LT)
d :=

∞

∑
m=0

(−1)m·( d
m

)·Lm
T , (86)

where (
d
m

) are the generalized binomial coefficients (see Equation (1.50) of [31] (p. 14)), that are

defined by the equation

(
d
m

) :=
Γ(d + 1)

Γ(d−m + 1)·Γ(m + 1)
, (87)

where Γ(z) is the Euler gamma function.

Using Equation (1.48) of [31] (p. 14), the binomial coefficients (
d
m

) can be written in the form

(
d
m

) :=
(−1)m−1·d·Γ(m− d)

Γ(1− d)·Γ(m + 1)
. (88)
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Using Expression (88), Equation (86) can be represented in the following form

(1− LT)
d =

∞

∑
m=0

Γ(m− d)
Γ(−d)·Γ(m + 1)

·Lm
T , (89)

which is usually used in the econometric papers on long memory and time series.
As a result, Equation (86) is the fractional difference equation. Equation (86) can be generalized

for the continuous time case by using the fractional difference equation

Y(t) = a(α)·∆αT X(t). (90)

It should be noted that the Grunwald–Letnikov fractional difference (86) may converge for α < 0,
if Y(t) has a “good” decrease at infinity [31] (p. 372). For example, we can use the functions X(t) such
that |X(t)| ≤ c·(1 + |t|)−µ, where µ > |α|. This allows us to use (10) as a discrete fractional integration
in the non-periodic case.

In the non-periodic case the Fourier transform F of ∆αT y(t) is given, (see Equation (20.3) of [31]
(p. 373), by the equation

F{∆αT X(t)}(ω) = (1− exp (iωT))αF{X(t)}(ω), (91)

provided that X(t) is in the function space L1(R).
Note that the Grunwald–Letnikov fractional difference ∆αT of the order α cannot be considered as an

exact fractional difference [8,9] (see also [23,61,62]), since the Fourier transforms of the Grunwald–Letnikov
fractional differences are not the power law, i.e., F{∆αT X(t)}(ω) 6= (iωT)αF{X(t)}(ω).

In the simplest linear accelerator with the PLT memory, the power-law fading is characterized by
the one parameter α > 0 only and it has the form

Y(t) = a(α)·∆αT X(t), (92)

where a(α) is numerical coefficient. In the frequency domain, the accelerator with memory has
the form

Ỹ(ω) = a(α)·(1− exp (iωT))α·X̃(ω), (93)

where and ak(α) (k = 1, 2, . . . N) are numerical coefficients and αN > . . . > α1 > 0. As a result,
we get

M̃(ω) =
Ỹ(ω)

X̃(ω)
= a(α)·(1− exp (iωT))α. (94)

Using that M̃0(ω) = M̃(ω) and α > 0, we get

lim
ω→0

ln
∣∣∣M̃0(ω)

∣∣∣
ln|ω| = α, (95)

lim
ω→∞

ln
∣∣∣M̃∞(ω)

∣∣∣
ln|ω| = 0. (96)

Equations (95) and (96) mean that α0 = α and α∞ = 0. Note that this is an example, for which
α∞ < α0. We prove that we have accelerator with PLT memory.

9. Conclusions

In this paper, the criteria for the existence of memory of power-law type in economic processes are
proposed. Implementation of the proposed criteria for dependencies of endogenous and exogenous
variables in an economic process allows use of fractional calculus for the construction of dynamic
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models of the economic process. The proposed criteria can be important for specifying the class of
differential and integral operators that can be used to describe economic processes with memory
of power-law type. As a result, the suggested approach can be used for constructing models of
real financial and economic processes, [81–89] and [19,25–30,89–95], in which memory effects are
manifested. Note that phenomenological economic process are described by computer simulation of
the economies of Spain, Portugal, France, Italy are presented by I. Tejado, D. Valerio, E. Perez, and
N. Valerio in the works [89–92].

An important direction in the development of economic models with memory is the construction
of models, in which the economic agents are represented as a self-organizing set of interacting
agents with memory. Note that the power-law long-range correlations can be connected with critical
phenomena and self-organization processes in natural sciences [96,97].

In papers [19,25,94], we prove that the rates of technological growth with PLT memory (which
is a generalization of the Harrod’s “warranted” rate of growth [98], (p. 67)) do not coincide with the
growth rates λ of standard models without memory. The rate of technological growth with memory
is equal to the value λeff(α) := λ1/α. For the parameter α = 1 we have the standard rate of growth
without memory λeff(1) = λ. We also prove [19,25,95] that the account of PLT memory can significantly
change the technological growth rates in the macroeconomic model. For example, the memory effect
can give a growth instead of decreasing and decline. The effects of PLT memory with α >1 can lead to
economic growth instead of a recession economy. The PLT memory can also lead to significant change
in growth rate. For example, for α = 0.1 and λ = 2, the rate of technological growth with memory
(α = 0.1) is equal to λeff(0.1) = 1024 instead of λeff(1) = λ = 2 for the standard model without
memory (α = 1), that is, 512 times more. This indicates that taking into account the PLT memory in
the macroeconomic model can change the rate of technological growth by several orders of magnitude.
Using the principle of domination change, which is proposed in [23] for intersectoral models, we
can state that the inequality λ1 < λ2, of the standard two sectoral model can leads to the inequality
λ1,eff(α1) > λ2,eff(α2) of the model with power-law sectoral memory. For example, λ1 = 2 and λ2 = 3
can lead to λ1,eff(α1) = 1024 and λ2,eff(α2) =

3
√

9 ≈ 2.08 for the memory parameter α1 = 0.1, α2 = 1.5.
This fact allows us to use adiabatic approximation to intersectoral model with memory [25,94] and
to interpret the memory fading parameter as an order parameter described in [99], (pp. 191–200).
This fact can be used to construct economic models with self–organizing and memory as a union of the
proposed approach to economic processes with memory and the synergetic economics [100,101].

In addition to applications of the proposed criteria to identify the presence of the PLT memory
in processes, for which dependent variables are known, these criteria can be used to check whether
linear integro-differential operators are fractional derivatives and integrals of non-integer orders. It is
known that the wide class of PLT memory function allows the use of fractional calculus to describe
processes with memory. In recent years some different type of new integral and differential operators,
which do not relate to the fractional calculus, are suggested. Some of these operators cannot be used
to describe a memory since it cannot be considered as non-local operators [34]. The memory can be
interpreted as a nonlocality in time, and therefore we can state “No memory. No fractional derivatives
and integrals”. Because of this, the question arises about the possibility of building a type of functions,
which is broader than power-law functions, to describe a memory, and apply the fractional calculus
or its generalization. We call these functions as functions of power-law type. Therefore the proposed
criteria can be applied to develop the fractional calculus. The proposed criteria can be used to identify
the linear integro-differential operators that can be considered as fractional derivatives and integrals of
non-integer order. It allows to propose new types of fractional derivatives and integrals of non-integer
orders, and this may lead to an expansion of the area of generalized fractional calculus [56,57] and its
possible application.
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