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Abstract: In this work, three models based on Artificial Neural Network (ANN) were developed to
describe the behavior for the inhibition corrosion of bronze in 3.5% NaCl + 0.1 M Na2SO4, using the
experimental data of Electrochemical Impedance Spectroscopy (EIS). The database was divided into
training, validation, and test sets randomly. The parameters process used as the inputs of the ANN
models were frequency, temperature, and inhibitor concentration. The outputs for each ANN model
and the components in the EIS spectrum (Zre, Zim, and Zmod) were predicted. The transfer functions
used for the learning process were the hyperbolic tangent sigmoid in the hidden layer and linear in
the output layer, while the Levenberg–Marquardt algorithm was applied to determine the optimum
values of the weights and biases. The statistical analysis of the results revealed that ANN models for
Zre, Zim, and Zmod can successfully predict the inhibition corrosion behavior of bronze in different
conditions, where what was considered included variability in temperature, frequency, and inhibitor
concentration. In addition, these three input parameters were keys to describe the behavior according
to a sensitivity analysis.

Keywords: corrosion; bronze; ketoconazole; Electrochemical Impedance Spectroscopy (EIS); Artificial
Neural Network (ANN)

1. Introduction

Copper and alloys use are very common in the industry due to their multiple properties such as
high electrical and thermal conductivities, mechanical workability, and corrosion resistance. One of
the principal copper alloys is represented by bronze that forms a protective layer when it is exposed to
the environment. However, the environmental pollutants are more aggressive and it is necessary to
increase protection [1,2].

In order to decrease the effects of corrosion, organic inhibitors offer a good alternative. They are a
practical and economically feasible strategy to attenuate the economic impact that is generated by the
structural damage of material loss, and can contribute to the preservation of equipment and structures
in optimal conditions [3,4]. The characteristics of organic compounds with the potential to protect
metals from corrosion contain heteroatoms such as nitrogen, oxygen, sulfur, phosphorous or π bonds,
which act as active centers to adsorb on the metal surface [5–8].
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Recently, pharmaceutical drugs have attracted special attention given that they share a similar
characteristic in their chemical structure. The azole group and derivatives have been used widely to
protect copper and alloys. According to Antonijevic and Petrovic (2015) [9], the copper atom presents
vacant d orbitals that form bonds with heteroatoms that donate electrons or generate an interaction
with rings containing conjugated bonds, π electrons. The complex forms a protective film on the
metallic surface that blocks aggressive ions [10–12].

Based on previous research, the electrochemical behavior of bronze was investigated in a corrosive
electrolyte (3.5% NaCl + 0.1 M Na2SO4) in the presence and absence of ketoconazole as a corrosion
inhibitor at 25, 40, and 60 ◦C. The electrochemical evidence exhibited that ketoconazole inhibits the
corrosion of the bronze, forming a protective layer with its conjugated bonds and nitrogen atoms that
decrease both the charge transfer and the diffusion of aggressive species towards the metal surface.
Hence, the ketoconazole acts as an adequate mixed type corrosion inhibitor [11].

Nowadays, it is necessary to develop other alternatives to better understand corrosion phenomena,
reduce time, the number of experiments, as well as control the process. ANN models represent a good
option to describe corrosion behavior [12,13]. This kind of a model is based on the biological functions
of the brain where connections of neurons form a network. The prediction performance depends on
a learning stage and corresponds to the correlation of the inputs and outputs of the model [14,15].
Some works have already demonstrated the efficiency of these models in corrosion systems using
different conditions. For example, in the prediction of corrosion inhibition in pipeline steel [16–18],
the resistance of dental metallic [19], to determine inhibitor efficiency applied in aluminium [20],
and others [21–28].

Therefore, the present work aims to develop three ANN models based on the experimental
data of EIS. These models are used to describe the behavior of the corrosion process of bronze
with ketoconazole as an inhibitor and determine the different effects of the critical parameters,
such as concentration, temperature, and frequency of the inhibitor in the EIS spectrum. Consequently,
these models will be able to determine the corrosion in real time, decreasing the time and cost of
experimentation for other conditions of the same system of bronze/electrolyte.

2. Experimental

The experimental database was prepared with the results obtained in EIS at 24 h, the bronze was
exposed to the corrosive electrolyte (3.5% NaCl + 0.1 M Na2SO4) at 25, 40, and 60 ◦C with inhibitor
concentrations of 0, 5, 10, 25, 50, and 100 ppm. All electrochemical measurements were performed in a
typical three-compartment glass cell using a calomel electrode and graphite as a reference and counter
electrode, respectively [11].

EIS is widely used for the characterization of film inhibitor protection on the metal surface and
to understand the physicochemical properties of the system mechanism reactions. This technique
consists of applying low voltage as a perturbation signal allowing the measurement of the current
response at a different frequency to develop the EIS diagram [27,29,30]. EIS spectrum classification is
a Nyquist and Bode diagram; the first one contains Zre (Ω·cm2) and Zim (Ω·cm2); the second Zmod
respect to frequency (Hz).

3. Artificial Neural Network Methodology

3.1. Database Preparation

The database was composed by three inputs at the ANN: Temperature (◦C), inhibitor concentration
(ppm), and frequency (Hz). The outputs for each model were represented by Zre (Ω·cm2), Zim (Ω·cm2)
and Zmod (Ω·cm2). Table 1 shows the interval work for each input and output for the ANN model.
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Table 1. Experimental intervals used to acquire the electrochemical impedance spectroscopy (EIS)
values Input.

Variable Interval Units

Input
Frequency (f) 0.01–100,000 Hz

Temperature (T) 25, 40 and 60 ◦C
Concentration (X) 0, 5, 10, 25, 50 and 100 ppm

Output
Zre 2.43–30,730.92 Ω·cm2

Zim 0.06–14,635.77 Ω·cm2

Zmod 2.54–34,028.29 Ω·cm2

3.2. Normalization Input Data

A satisfactory normalization is one of the most important aspects of the training process,
which represents a direct influence on the model and offers benefits such as suitable results and
a considerable decrease in calculation time [31]; because of that, all samples were normalized in the
range of 0 to 1. The input database xi,Real (from the training, validation, and test sets) were scaled to a
new normalized value xi,Norm using Equation (1) [32,33]:

xi,Norm = 0.8
(

xi,Real − xmin

xmax − xmin

)
+ 0.1 (1)

3.3. Development of ANN Models

Matlab® software (R2015b, Mathworks®, Natick, MA, USA) was used for the development of the
three models, evaluating different combinations of activation functions and the number of neurons
was increased until the best correlation between input and output variables was achieved. The training
process was purposed to minimize the prediction error of the ANN through the different connections
between weights and biases; it was possible using the hyperbolic tangent sigmoid transfer function in
the hidden layer and linear transfer function in the output layer.

The Levenberg–Marquardt algorithm was used to determine the optimum values of the weights
and biases using two parameters of the Mean Square Error (MSE) and the Coefficient of determination
(R2). The database was randomly divided into training (60%), test subsets (20%), and validation (20%).
Remarking that the last percentage corresponds to new data meaning than the validation values were
not used during training. In order to obtain a good performance model and the optimum architecture,
it was necessary to decrease differences between experimental and simulated values, increasing the
number of neurons in the hidden layer gradually and determining MSE and R2 at the same time to find
the minimum value for MSE and maximum for R2, (Figure 1); when the MSE increased, the training
was stopped because at this moment its generate overfitting in ANN and the performance associated
to R2 value could not improve, such as in Figure 2, where the plot represents the R2 and MSE function
of the number of neurons in the hidden layer for each ANN model.
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Figure 2. Mean Square Error (MSE) and Coefficient of determination (R2) in function of neurons
number for each ANN model (a) Zre; (b) Zim and (c) Zmod.

3.4. Statistical Analysis of Experimental and Predicted Data

The MSE parameter is commonly used to quantify the differences between the experimental and
simulated values of the developed models. The R2 presents the strength of the linear proportion of
variability in a dataset, and is the most often seen number between 0 and 1, and R2 near to 1 indicates
that a regression line fits that data well [32]. Furthermore, the intercept-slope test (slope = 1 and
intercept = 0) was achieved to validate the linearity and exactitude model [34].
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The results obtained with ANN models were compared with the experimental data. The statistical
test parameters are describing in the following equations:

MSE = 1
N

n
∑

i=1

(
Psim(i) − Pexp (i)

)2
(2)

R2 = 1− ∑n
i=1(Pexp(i)−Psim(i))

2

∑n
i=1(Pexp(i)−Pexp(i))

2 (3)

3.5. Sensitivity Analysis

Finally, the sensitivity analysis was applied to find the level of impact of frequency, temperature,
concentration as input variables in the modeling output variable can be found through the neural
weight matrix. The equation required to carry out this analysis is known as the Garson equation based
on the partitioning of connection weights:

Ij =

∑
m=Nh
m=1


∣∣∣∣Wih

jm

∣∣∣∣
∑Ni

k=1

∣∣∣∣wih
jm

∣∣∣∣× Who
mn


∑

k=Ni
m=1

{
Wih

km
∑Nh

k=1|wih
km|
× Who

mn

} (4)

where Ij is the relative importance of the frequency, temperature and concentration on the Zre, Zim and
Zmod, Ni and Nh are the quantity of input and hidden neurons, respectively; W are connection weights,
the superscripts ”I”, “h” and “o” refer to input, hidden and output layers, respectively; and subscripts
“k”, “m” and “n” refer to input, hidden and output neurons, respectively [35].

4. Results and Discussion

4.1. ANN Model

As mentioned earlier, an ANN training was used to predict the corrosion inhibition behavior for
bronze in 3.5% M NaCl + 0.1 M Na2SO4 solution with the EIS database at 24 h of exposure to electrolyte;
finding that the best architectures were Zre (3:8:1), Zim (3:16:1) and Zmod (3:16:1) (see Figure 2) given
that when the number of neurons is major to the values mentioned for each model, the coefficient R2

decreases and the MSE is major then the performance model was lower. All ANN models developed
are described by the following equation:

Zb =
S
∑

s=1
Wo(1, j)×

(
2

1+exp(−2×(∑K
k=1(Wi(j,k)× xi,Norm(k))+b1(j)))

− 1
)
+ b2 (5)

where Zb = Zre, Zim, and Zmod, S is the number of neurons in the hidden layer (S = 8, 16, 16), k is the
number of neurons in the input layer (K = 3), W are weights and b the biases. The Tables 2–4 list the
obtained parameters (Wi, Wo, b1, and b2) used for each ANN model; where Wi represent weights in
the hidden layer, W0 weights of the output layer; while b1 and b2 correspond to biases values in the
hidden and output layer in the same order.

According to statistical analysis, the R2 value is reasonably high, which indicates the predictive
power of the models (see Figure 3) for Zre 0.9875, 0.9944 correspond to Zim, and finally 0.9876 for
Zmod (Table 5). In order to validate the ANN models, the intercept-slope test with 99% confidence was
applied to demonstrate the linearity model, as mentioned before. The results are shown in Table 5,
which indicates that the model is adequate to describe the behavior for inhibition corrosion of bronze
considering that the slope = 1 and intercept = 0.

In addition, the comparison between the experimental and simulated results was possible plotting
the spectrum EIS at the different temperatures (25, 40 and 60 ◦C) including inhibitor concentrations
(0, 5, 10, 25, 50 and 100 ppm); the results obtained shows high correlation in Figure 4.
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Table 2. Weights values (Wo, Wi) and biases (b1 and b2) for Zre model (3:8:1).

Number of
Neurons (S)

Weigths Bias

Hidden Layer (S = 8, K = 3), Wi = (S, K) Output Layer (l = 1)

b1 (S) b2 (l = 1)Temperature
(K = 2)

Concentration
(K = 3)

Frequency
(K = 1) Wo (S)

1 −33.646 −20.438 0.787 −2747.15 38.4 3852.324
2 −0.083 −0.218 −14,401.331 10,146.758 1440 -
3 −35.456 20.288 −0.783 2747.545 9.26 -
4 29.495 212.895 237.096 3870.101 −43.1 -
5 −0.084 −0.222 −14,575.934 −3403.786 1460 -
6 −3.519 20.429 −0.783 −2747.269 −4.93 -
7 0.285 −0.118 −184.512 978.928 14.4 -
8 −55.035 −20.405 0.783 −2747.447 10.8 -

Table 3. Weights values (Wo, Wi) and biases (b1 and b2) for Zim model (3:16:1).

Number of
Neurons (S)

Weigths Bias

Hidden Layer (S = 16, K = 3), Wi = (S, K) Output Layer (l = 1)

b1 (S) b2 (l = 1)Temperature
(K = 2)

Concentration
(K = 3)

Frequency
(K = 1) Wo (S)

1 6.614 −23.974 0 −764.894 −3.78 650.218
2 −0.036 −0.011 9166.232 −1805.728 −915 -
3 −0.191 0.322 21.357 −102.331 0.665 -
4 −332.336 −192.892 0.786 −363.086 329 -
5 −135.744 −142.424 0.003 650.751 142 -
6 1302.857 1486.882 361.305 368.812 −1950 -
7 −1.379 −4.616 −188.514 247.849 16.9 -
8 236.332 −946.128 93.239 97.318 173 -
9 11.089 −9.867 −0.003 −585.071 0.621 -

10 6.134 −3.169 −0.371 −21.576 0.216 -
11 −14.635 −17.402 −0.018 −291.533 10.9 -
12 −0.316 0.135 −262.205 187.906 23.3 -
13 −0.042 −0.012 9380.565 629.753 −937 -
14 −4.066 2.754 0.02 −396.08 −0.54 -
15 5.255 −17.41 −0.015 287.948 2.15 -
16 1.68 3.64 169.097 510.83 −14.6 -

Table 4. Weights values (Wo, Wi) and biases (b1 and b2) for Zmod model (3:16:1).

Number of
Neurons (S)

Weigths Bias

Hidden Layer (S = 16, K = 3), Wi = (S, K) Output Layer (l = 1)

b1 (S) b2 (l = 1)Temperature
(K = 2)

Concentration
(K = 3)

Frequency
(K = 1) Wo (S)

1 −33.176 17.960 0.012 −547.000 −17.189 552.201
2 3.805 −69.199 1271.784 527.000 −61.965 -
3 0.083 1.466 251.299 −107.000 −22.409 -
4 −0.018 −0.092 −6863.647 −1800.000 685.730 -
5 −0.944 25.642 −0.678 −235.000 −7.706 -
6 −22.081 −11.516 0.534 −49.100 23.759 -
7 −0.017 −0.100 −7271.011 654.000 726.734 -
8 −33.898 −11.118 0.529 49.200 34.268 -
9 −0.940 21.966 −0.679 236.000 −6.602 -

10 −0.601 −0.365 37.056 −168.000 0.104 -
11 4.029 145.354 114.095 547.000 −22.550 -
12 −17.393 −10.582 15.370 0.084 8.632 -
13 20.647 −2.031 1124.730 −117.000 −110.286 -
14 −272.457 −176.891 278.738 −0.078 123.102 -
15 −0.020 −0.083 −6356.422 2930.000 634.291 -
16 −1982.569 417.592 −660.569 0.112 735.831 -
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Table 5. Results of statistical analysis with intercept-slope test.

Output Variable Architecture R2 MSE
Intercept Slope Test

amin amax bmax bmin

Zre 3:8:1 0.9875 0.00659 0.0251 −0.0079 1.0049 0.9862
Zim 3:16:1 0.9944 0.00475 0.0186 −0.0013 1.0002 0.9878

Zmod 3:16:1 0.9876 0.00686 0.0198 −0.0059 1.0009 0.9873
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4.2. Sensitive Analysis of Input Variables

On the other hand, the sensitive analysis presented the same order of relative importance for
the three ANN models. According to the results in Figure 5, the concentration represented the major
relative importance followed by temperature and finally, the lowest percentage corresponded to
the frequency in all cases; then the correct concentration measure could be considered as a critical
parameter in the EIS test.
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5. Conclusions

Three ANN models were developed and validated satisfactorily to describe the behavior for the
inhibition corrosion of bronze in 3.5% NaCl + 0.1 M Na2SO4 indicating coefficients of determination
equivalent to R2 = 0.9875, 0.9944, and 0.9876, for Zre, Zim, and Zmod respectively. Additionally, the
models achieved the intercept-slope test requirements.

The optimal architecture for Zre model was obtained with (3:8:1) neurons, whereas for Zim and
Zmod (3:16:1) neurons were used in the (input: hidden: output) layer respectively.

The sensitivity analysis revealed that, for the three ANN models, the variable with the greatest
influence on the impedance response was the inhibitor concentration, followed by the temperature
and the frequency.

Therefore, the three proposed ANN models can be used to estimate the variables involved in the
EIS spectrum in a wide range of conditions extrapolating to other conditions of the same system of
bronze/electrolyte.
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