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Abstract: Measuring the consensus for a group of ordinal-type responses is of practical importance 

in decision making. Many consensus measures appear in the literature, but they sometimes provide 

inconsistent results. Therefore, it is crucial to compare these consensus measures, and analyze their 

relationships. In this study, we targeted five consensus measures: Φ𝑒 (from entropy), Φ1 (from 

absolute deviation), Φ2  (from variance), Φ3  (from skewness), and Φ𝑚𝑣  (from conditional 

probability). We generated 316,251 probability distributions, and analyzed the relationships among 

their consensus values. Our results showed that Φ1, Φ𝑒 , Φ2, and Φ3 tended to provide consistent 

results, and the ordering Φ1 ≤ Φ𝑒 ≤ Φ2 ≤ Φ3 held at a high probability. Although Φ𝑚𝑣  had a 

positive correlation with Φ1, Φ𝑒 , Φ2, and Φ3, it had a much lower tolerance for even a small 

proportion of extreme opposite opinions than Φ1, Φ𝑒 , Φ2, and Φ3 did. 
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1. Introduction 

A consensus measure quantifies the consensus in ratings of a target. It provides fundamental 

implications of the group’s decision. For example, it can reveal whether the opinions of the group’s 

members are converging during a successive voting process [1], or whether averaging the members’ 

ratings to the group level is appropriate [2]. Because of its practicality, the problem of measuring 

consensus has received much attention, both in academic and applied research [3]. 

Many consensus measures appear in the literature. Most of them are derived from the deviation 

of individual ratings from the mean [3,4], while some are based on the extension of entropy [1], or 

the application of conditional probability [5]. Because consensus measures intend to quantify 

consensus, one tends to assume that similar conclusions can be drawn using different consensus 

measures. Although this assumption usually holds, it is still possible that a set of ratings which 

receives the lowest consensus score using one consensus measure may get a very high consensus 

score using another consensus measure (see Table 9). It is reasonable that using different consensus 

measures might lead to different conclusions because they are built on different theoretical concepts. 

For example, let A1 and A2 denote two sets of ratings collected at time t1 and t2, t1 < t2. Using one 

consensus measure might conclude that the consensus of A1 is smaller than that of A2 (i.e., the group 

members’ opinions are converging), but using another consensus measure might yield the opposite 

conclusion. Therefore, it is crucial to compare these consensus measures in more detail so that one 

can adequately interpret the meanings of the consensus values. 

The objective of this study was to analyze the relationships among different consensus 

measures so that one can adequately utilize these consensus measures going forward. We first 

reviewed five consensus measures, and their properties. Then, we took a numerical analysis 

approach to comparing these consensus measures. This approach proceeded by generating a large 
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number of possible rating distributions, and calculating their consensus scores using each consensus 

measure. Then, these consensus scores were analyzed to reveal the relationships among these 

consensus measures. Finally, we discussed how to interpret these consensus scores, and how to 

select a suitable consensus measure. 

2. Review of Consensus Measures 

2.1. Basic Properties of a Consensus Measure 

In this paper, we assumed that a rating was an integer in 𝑋 = {1, 2, … , 𝑛}. For Likert-type scale 

responses, n = 5 or 7 is often used. Then, the ratings of all group members can be described as a 

probability distribution 𝑝(𝑥) over X. Let 𝑝𝑖  denote the probability 𝑝(𝑥 = 𝑖) of getting a rating i. 

Then, 

𝑝𝑖 ≥ 0, for i = 1 to n, (1) 

∑ 𝑝𝑖
𝑛
𝑖=1 = 1, (2) 

mean 𝑚(𝑝) = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1 , (3) 

variance 𝑉(𝑝) = ∑ 𝑝𝑖(𝑖 − 𝑚(𝑝))
2𝑛

𝑖=1 . (4) 

Notably, the rating data are ordinal, and thus, calculating the mean or variance of 𝑝(𝑥) is 

inappropriate. However, mean, variance, or a combination of both was used intensively in the 

literature to design consensus measures for ordinal attributes. 

Let Φ denote a consensus measure, and Φ(𝑝) denote the consensus score of 𝑝(𝑥), based on Φ. 

It is common to restrict the range of Φ(𝑝) between zero and one. This restriction also facilitates 

comparing different consensus measures. Thus, 0 ≤ Φ(𝑝) ≤ 1 , and Φ(𝑝) = 1  and Φ(𝑝) = 0 

indicate the maximum and minimum consensus scores, respectively [5]. In this paper, we divided 

the consensus measures into three categories, as described in the three subsections below. 

2.2. Deviation-Based Consensus Measures 

Deviation-based consensus measures use the absolute deviation of individual ratings from their 

mean to measure the consensus. They mainly differ in the power of the absolute deviation. In the 

literature, power = 1 or 2 was used to measure consensus. In this study, we extended the power to 3. 

The average deviation (𝐴𝐷) [6] is the average difference between each rating and the mean, as 

shown in Equation (5). It is a measure of variability, and its range is between 0 and 
𝑛−1

2
, as proven in 

Corollary 1. Based on 𝐴𝐷, we can design a consensus measure Φ1(𝑝) such that 0 ≤ Φ1(𝑝) ≤ 1 (see 

Definition 1). 

𝐴𝐷(𝑝) =  ∑ 𝑝𝑖|𝑖 − 𝑚(𝑝)|

𝑛

𝑖=1

. (5) 

Corollary 1. Given a probability distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛}, 0 ≤ 𝐴𝐷(𝑝) ≤
𝑛−1

2
 holds. 

Proof. See Appendix A. □ 

Definition 1. Consensus measure Φ1(𝑝) = 1 −
𝐴𝐷(𝑝)

(𝑛−1)/2
. 

Similar to 𝐴𝐷, variance (𝑉) is also a measure of variability, and is defined as the average of the 

squared difference between each rating and the mean, as shown in Equation (4). Its range is between 

0 and (
𝑛−1

2
)

2

, as proven in Corollary 2. Elzinga et al. [4] designed a consensus measure Φ2(𝑝) based 

on 𝑉 (see Definition 2). 
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Corollary 2. Given a probability distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛}, 0 ≤ 𝑉(𝑝) ≤ (
𝑛−1

2
)

2

 holds. 

Proof. See Appendix B. □ 

Definition 2. Consensus measure Φ2(𝑝) = 1 −
𝑉(𝑝)

((𝑛−1)/2)2 [4]. 

Notably, 𝐴𝐷 uses the absolute difference between each rating and the mean, while variance 

uses the squared difference between each rating and the mean. We can raise the power of the 

absolute difference to three, and design a new consensus measure Φ3(𝑝) as follows: let 𝑆 denote 

the average of the cubed absolute difference between each rating and the mean, as shown in 

Equation (6). The range of 𝑆 is between 0 and (
𝑛−1

2
)

3

, as proven in Corollary 3. A consensus 

measure Φ3(𝑝) based on 𝑆 is shown in Definition 3. 

𝑆(𝑝) =  ∑ 𝑝𝑖|𝑖 − 𝑚|3𝑛
𝑖=1 . (6) 

Corollary 3. Given a probability distribution 𝑝(𝑥) over 𝑋 = {1, 2, . . ., 𝑛}, 0 ≤ 𝑆(𝑝) ≤ (
𝑛−1

2
)

3

 holds. 

Proof. See Appendix C. □ 

Definition 3. Consensus measure Φ3(𝑝) = 1 −
𝑆(𝑝)

((𝑛−1)/2)3. 

The maximum values of Φ1(𝑝), Φ2(𝑝), and Φ3(𝑝) all occur when 𝑝𝑘 = 1 for some 𝑘 ∈ 𝑋 and 

𝑝𝑖∈𝑋\{𝑘} = 0. The minimum values of Φ1(𝑝), Φ2(𝑝), and Φ3(𝑝) all occur when 𝑝1 = 𝑝𝑛 = 0.5, and 

𝑝𝑖∈𝑋\{1,𝑛} = 0. Please see the proofs of Corollaries 1, 2, and 3 in Appendices A, B, and C, respectively, 

for details. 

Essentially, in Φ1(𝑝), Φ2(𝑝), and Φ3(𝑝), raising the power of the absolute deviation increases 

the impact of those ratings further from the mean. An example is given below. 

Example 1. Given a probability distribution 𝑝(𝑥)  over 𝑋 = {1, 2, 3, 4, 5}  where 𝑝𝑖∈𝑋 = 0.2 , a (less 

consensus) probability distribution 𝑞(𝑥) with more probabilities further from the mean is generated from 

𝑝(𝑥) by shifting 0.05 probability at 𝑥 = 4 to 𝑥 = 5, i.e., 𝑞1 = 𝑞2 = 𝑞3 = 0.2, 𝑞4 = 0.15, and 𝑞5 = 0.25. 

Table 1 shows 𝐴𝐷, 𝑉, 𝑆, Φ1, Φ2, and Φ3 of 𝑝(𝑥) and 𝑞(𝑥). The last row of Table 1 indicates that from 𝑝 

to 𝑞, the consensus is reduced by 0.03 with Φ1, 0.03688 with Φ2, and 0.04211 with Φ3. That is, the impact 

of increasing the probability further from the mean is greatest in Φ3, less in Φ2, and least in Φ1. 

Table 1. From 𝑝(𝑥) to 𝑞(𝑥), consensus score reduces the most in Φ3, less in Φ2, and least in Φ1. 

 𝑨𝑫 𝑽 𝑺 𝚽𝟏 𝚽𝟐 𝚽𝟑 

𝑝(𝑥) 1.2 2 3.6 0.4 0.5 0.55 

𝑞(𝑥) 1.26 2.1475 3.9369 0.37 0.463125 0.507888 

Φ(𝑝) − Φ(𝑞) - - - 0.03 0.03688 0.04211 

2.3. Conditional-Probability-Based Consensus Measure 

Corollary 2 shows that the range of variance 𝑉 is between 0 and (
𝑛−1

2
)

2

, and the consensus 

measure Φ2 is constructed based on this range. However, the range of 𝑉 is a function of the mean 

𝑚. Specifically, for a given value of 𝑚, the range of 𝑉 is between (𝑚 − ⌊𝑚⌋)(⌊𝑚⌋ + 1 − 𝑚) and 

(𝑚 − 1)(𝑛 − 𝑚), where ⌊𝑚⌋ is the greatest integer ≤ 𝑛. The size of this range is small as the value of 

𝑚 approaches either end of the interval [1, 𝑛], and is large as the value of 𝑚 approaches the center 

of the interval [1, 𝑛]. Thus, Akiyama et al. [5] proposed a new consensus measure via the conditional 
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probability 𝑝(𝑉|𝑚). Because this consensus measure is calculated using both 𝑚 and 𝑉, we denoted 

it as Φ𝑚𝑣(𝑝)  in this paper. Figure 1 shows the steps to calculate Φ𝑚𝑣(𝑝)  for a probability 

distribution 𝑝(𝑥) over 𝑋 = {1, 2, 3, 4, 5}. 

Input: 𝑚 and 𝑉 of a probability distribution 𝑝(𝑥) over 𝑋 = {1,2,3,4,5} 

Output: Φ𝑚𝑣 of 𝑝(𝑥) 

1. If 𝑚 > 3, then 𝑚 = 6 − 𝑚;   

2. If 𝑚 = 1, then Φ𝑚𝑣 = 1; 

3. Else {    // 1 < 𝑚 ≤ 3 

4.    𝑢 =
𝑚−1

2
;  𝑤 = max(𝑚 − 2, 0) ;  𝜏 =

𝑉+𝑚2−3𝑚+2

2
;   𝐷 = 2𝑢3 − 𝑤3;   

5.    If 𝑤 ≤ 𝜏 ≤ 𝑢, then G1 =
𝜏3

3
; 

6.    Else if 𝑢 ≤ 𝜏 ≤ 2𝑢, then G1 =
𝜏3

3
− (𝜏 − 𝑢)3; 

7.    Else G1 = 2𝑢3 +
(𝜏−3𝑢)3

3
; 

8.    If 𝑤 ≤ 𝜏 ≤
3𝑤

2
, then G2 =

𝜏3

3
− 2(𝜏 − 𝑤)3; 

9.    Else if 
3𝑤

2
≤ 𝜏 ≤ 2𝑤, then G2 = 𝑤3 + (𝜏 − 2𝑤)3; 

10.    Else G2 = 𝑤3; 

11.    Φ𝑚𝑣 = 1 −
G1−G2

𝐷
; 

12. } 

Figure 1. Steps to calculate Φ𝑚𝑣(𝑝) for a probability distribution 𝑝(𝑥) (revised from Reference [5]). 

Table 2 shows some examples of the probability distribution 𝑝(𝑥) with Φ𝑚𝑣(𝑝) = 1 or 0. 

Unlike Φ1, Φ2, and Φ3, Φ𝑚𝑣(𝑝) = 1 not only occurs when 𝑝𝑘 = 1 for some 𝑘 ∈ 𝑋, and 𝑝𝑖∈𝑋\{𝑘} = 0, 

but also occurs in many other cases. The first four examples in Table 2 show that the maximum value 

of Φ𝑚𝑣(𝑝) occurs when all probabilities are distributed on one side, and none on the other side of 𝑥. 

Similarly, Φ𝑚𝑣(𝑝) = 0 not only happens when 𝑝1 = 𝑝𝑛 = 0.5, and 𝑝𝑖∈𝑋\{1,𝑛} = 0, but also occurs in 

many other cases. The last three examples in Table 2 show that a small proportion of extreme 

opposite opinions can drag Φ𝑚𝑣(𝑝) to zero. 

Table 2. Some examples of the probability distribution 𝑝(𝑥) satisfying Φ𝑚𝑣(𝑝) = 1 or 0. 

𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟓 𝚽𝒎𝒗(𝒑) 

1 0 0 0 0 1 

0.75 0.25 0 0 0 1 

0.50 0.50 0 0 0 1 

0 0.96 0.40 0 0 1 

0.50 0 0 0 0.50 0 

0.90 0 0 0 0.10 0 

0.96 0 0 0 0.04 0 

0.98 0 0 0 0.02 0 

2.4. Entropy-Based Consensus Measure 

In the literature, the Shannon entropy equation and its extensions were used to quantify the 

diversity of a probability distribution [7]. Given a probability distribution 𝑝(𝑥) , the Shannon 

entropy of 𝑝(𝑥) is − ∑ 𝑝𝑖 ln(𝑝𝑖)
𝑛
𝑖=1  where 𝑛 is the number of possible values of 𝑥, and 𝑝𝑖  denotes 

the probability of 𝑥 = 𝑖. Because diversity appears to be the opposite concept of consensus, and the 

range of the Shannon entropy is between 0 and ln(𝑛), a consensus measure between 0 and 1 based 

on the Shannon entropy equation can be defined as follows [1,8]: 
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Φ = 1 +
∑ 𝑝𝑖 ln(𝑝𝑖)𝑛

𝑖=1

ln(𝑛)
. (7) 

Notably, the Shannon entropy equation treats the variable 𝑥 as a nominal variable, and not as 

an ordinal variable; thus, the Shannon entropy equation and Equation (7) are inappropriate for 

quantifying the consensus of ordinal data, such as Likert-type scale responses. To resolve this 

problem, Tastle and Wierman [1,8] extended the Shannon entropy equation to define a new 

consensus measure, denoted as Φ𝑒 in this paper, as follows: 

Φ𝑒 = 1 + ∑ 𝑝𝑖 log2(1 −
|𝑖−𝑚|

𝑛−1
)𝑛

𝑖=1 , (8) 

where 𝑚 is the mean of 𝑝(𝑥), as defined in Equation (3). Similar to Φ1(𝑝), Φ2(𝑝), and Φ3(𝑝), the 

maximum value of Φ𝑒(𝑝) only occurs when 𝑝𝑘 = 1 for some 𝑘 ∈ 𝑋, and 𝑝𝑖∈𝑋\{𝑘} = 0; the minimum 

value of Φ𝑒(𝑝) only occurs when 𝑝1 = 𝑝𝑛 = 0.5, and 𝑝𝑖∈𝑋\{1,𝑛} = 0. 

3. Experimental Study 

3.1. Experiment Setup 

Given a probability distribution, the five consensus measures reviewed in Section 2 often 

yielded different consensus scores, and sometimes the differences among these scores were 

substantial, and led to opposite conclusions. This phenomenon makes it difficult to interpret the 

meaning of these scores. In this study, we performed a numerical experiment to analyze the 

relationships among these five consensus measures. 

This experiment used the probability distribution 𝑝(𝑥)  over 𝑋 = {1, 2, 3, 4, 5} , which is 

common for Likert-type scale data. Specifically, we wrote a small computer program containing a 

five-level for loop to generate 316,251 probability distributions, where the i-th level of the for loop 

changed the value of 𝑝𝑖  from 0 to 1 with a step size of 0.2, and cases not satisfying ∑ 𝑝𝑖
5
𝑖=1 = 1 

were skipped. Thus, these 316,251 probability distributions covered all of the possible probability 

distributions of 𝑝(𝑥) satisfying 𝑝𝑖 ∈ {0, 0.2, 0.4, … , 0.98, 1} for 𝑖 = 1 to 5, and ∑ 𝑝𝑖
5
𝑖=1 = 1. Then, the 

consensus scores of each generated probability distribution were calculated and compared to study 

the relationships among the five consensus measures. Table 3 shows the distribution of the mean 

values of the 316,251 probability distributions. Most of the generated probability distributions had 

mean values between 2 and 4. 

Table 3. The distribution of the mean values of the 316,251 generated probability distributions. 

Range of Mean 𝟏 ≤ 𝒎 ≤ 𝟐 𝟐 < 𝒎 ≤ 𝟑 𝟑 < 𝒎 ≤ 𝟒 𝟒 < 𝒎 ≤ 𝟓 

Number of probability distributions 16,390 143,747 140,878 15,236 

Probability 5.18% 45.45% 44.55% 4.82% 

3.2. Correlation 

Table 4 shows the Kendall rank correlation coefficients between any two consensus measures. 

As expected, the results reflected higher than 0.887 correlation between any two consensus 

measures. That is, if a probability distribution A is ranked higher than another probability 

distribution B based on one consensus measure, it is very likely that A is also ranked higher than B 

based on another consensus measure. Let τ(Φ𝑖 , Φ𝑗) denote the Kendall rank correlation coefficient 

between Φ𝑖 and Φ𝑗. According to Table 4, the lowest correlation occurred at τ(Φ1, Φ3), and the 

highest occurs at τ(Φ1, Φ𝑒) . Specifically, τ(Φ1, Φ𝑒) > τ(Φ2, Φ𝑒) > τ(Φ3, Φ𝑚𝑣) > τ(Φ2, Φ𝑚𝑣) >

τ(Φ2, Φ3) > τ(Φ1, Φ2) > τ(Φ𝑒 , Φ𝑚𝑣) > τ(Φ𝑒 , Φ3) > τ(Φ1, Φ𝑚𝑣) > τ(Φ1, Φ3). 

According to Table 3, only 5.18% and 4.82% of the 316,251 generated probability distributions 

had their mean values in the intervals [1, 2] and (4, 5], respectively. To check whether high 

correlation still existed for probability distributions with small or large mean values, we calculated 

the Kendall rank correlation coefficients using both subsets of probability distributions, and the 

results are shown in Tables 5 and 6. Every value in Tables 5 and 6 was smaller than its corresponding 
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value in Table 4. Particularly, τ(Φ1, Φ3) dropped from 0.887252 in Table 4 to 0.774093 in Table 5, 

and 0.772132 in Table 6; τ(Φ1, Φ𝑚𝑣) dropped from 0.925708 in Table 4 to 0.785614 in Table 5, and 

0.776873 in Table 6. 

Table 4. Kendall rank correlation coefficients between consensus measures using all 316,251 

probability distributions. 

 𝚽𝟏 𝚽𝒆 𝚽𝟐 𝚽𝟑 𝚽𝒎𝒗 

Φ1 1 0.990202 0.967755 0.887252 0.925708 

Φ𝑒 0.990202 1 0.99008 0.940635 0.964478 

Φ2 0.967755 0.99008 1 0.969419 0.970876 

Φ3 0.887252 0.940635 0.969419 1 0.974605 

Φ𝑚𝑣  0.925708 0.964478 0.970876 0.974605 1 

Table 5. Kendall rank correlation coefficients between consensus measures using the 16,390 

probability distributions where 1 ≤ 𝑚 ≤ 2. 

 𝚽𝟏 𝚽𝒆 𝚽𝟐 𝚽𝟑 𝚽𝒎𝒗 

Φ1 1 0.967110 0.930117 0.774093 0.785614 

Φ𝑒 0.967110 1 0.985489 0.904147 0.891701 

Φ2 0.930117 0.985489 1 0.942186 0.900688 

Φ3 0.774093 0.904147 0.942186 1 0.940492 

Φ𝑚𝑣  0.785614 0.891701 0.900688 0.940492 1 

Table 6. Kendall rank correlation coefficients between consensus measures using the 15,236 

probability distributions where 4 < 𝑚 ≤ 5. 

 𝚽𝟏 𝚽𝒆 𝚽𝟐 𝚽𝟑 𝚽𝒎𝒗 

Φ1 1 0.965686 0.930352 0.772132 0.776873 

Φ𝑒 0.965686 1 0.986604 0.905085 0.886878 

Φ2 0.930352 0.986604 1 0.941809 0.897223 

Φ3 0.772132 0.905085 0.941809 1 0.939574 

Φ𝑚𝑣  0.776873 0.886878 0.897223 0.939574 1 

3.3. Range of Difference 

Although Table 4 shows that a positive correlation existed between any two consensus 

measures of the 316,251 generated probability distributions, some of the generated probability 

distributions did not follow this general trend. In this section, we calculated the range of differences 

between two consensus measures to show that this difference was usually small, but was sometimes 

very big. 

Table 7 shows the mean differences between any two consensus measures of the 316,251 

generated probability distributions. All of the mean differences were small (<0.167), where the 

largest mean difference occurred between Φ1 and Φ3, and the smallest mean difference occurred 

between Φ1 and Φ𝑒. The results were consistent with Table 4, where the smallest and the largest 

correlation coefficients were R(Φ1, Φ3) and R(Φ1, Φ𝑒), respectively. 

Table 8 shows the maximum difference between any two consensus measures of the 316,251 

generated probability distributions. Some of the maximum differences were very large. For example, 

the maximum difference between Φ𝑚𝑣  and other consensus measures was larger than 0.84. 

Notably, all of the correlation coefficients between Φ𝑚𝑣  and the other consensus measures were 

greater than 0.92 (see Table 4), and the mean difference between Φ𝑚𝑣  and the other consensus 

measures was less than 0.16 (see Table 7). Thus, it is reasonable to infer that, although for most 

probability distributions, the difference between Φ𝑚𝑣  and the other consensus measures was not 

large, but for some probability distributions, this difference could be huge. Therefore, it is important 



Entropy 2018, 20, 408 7 of 22 

 

to understand for which kinds of probability distributions does such a big difference between 

various consensus measures occur. 

Table 7. Mean differences between any two consensus measures. 

 𝚽𝟏 𝚽𝒆 𝚽𝟐 𝚽𝟑 𝚽𝒎𝒗 

Φ1 0 0.0381011 0.1258246 0.16606489 0.15698299 

Φ𝑒 0.0381011 0 0.0895491 0.1281988 0.1429986 

Φ2 0.1258246 0.0895491 0 0.0491733 0.14278058 

Φ3 0.16606489 0.1281988 0.0491733 0 0.149693 

Φ𝑚𝑣  0.15698299 0.1429986 0.14278058 0.149693 0 

Table 8. Maximum differences between two consensus measures. 

 𝚽𝟏 𝚽𝒆 𝚽𝟐 𝚽𝟑 𝚽𝒎𝒗 

Φ1 0 0.108996 0.25 0.375 0.9216 

Φ𝑒 0.108996 0 0.165037 0.290037 0.858559 

Φ2 0.25 0.165037 0 0.249661 0.9216 

Φ3 0.375 0.290037 0.249661 0 0.849347 

Φ𝑚𝑣  0.9216 0.858559 0.9216 0.849347 0 

The first four examples in Table 9 show some of the generated probability distributions where 

the maximum differences between two consensus measures occurred. Example 1 had a large 

proportion (98%) of probability at 𝑥 = 1, thus rendering high consensus scores using Φ1, Φ𝑒 , Φ2, 

and Φ3. However, this large proportion of probability at 𝑥 = 1 also made values of 𝑚 close to 1, 

where 𝑚 was the mean of the probability distribution. As discussed in Section 2.3, the range of 

variance is small when 𝑚 approaches either end of the interval [0, 1]. Thus, for values of 𝑚 close to 1, 

the range of variance was small, making Φ𝑚𝑣  very sensitive to even a small proportion of 

probability at the opposite end of 𝑥 (2% at 𝑥 = 5 in this example). As a result, Example 1 yielded 

Φ𝑚𝑣 = 0. This example was also one of the probability distributions among the 316,251 generated 

probability distributions that had the maximum difference (in Table 8) between Φ𝑚𝑣  and other 

consensus measures. 

Table 9. Some examples of the probability distribution 𝑝(𝑥), and their consensus scores. 

Example 

Number 
𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟓 𝚽𝟏 𝚽𝒆 𝚽𝟐 𝚽𝟑 𝚽𝒎𝒗 

1 0.98 0 0 0 0.02 0.9216 0.858559 0.9216 0.849347 0 

2 0.90 0 0 0 0.10 0.64 0.531004 0.64 0.4096 0 

3 0.86 0 0 0 0.14 0.5184 0.415761 0.5184 0.268739 0 

4 0 0 0.50 0 0.50 0.5 0.584963 0.75 0.875 0.833333 

5 0.02 0 0 0.16 0.82 0.8032 0.796982 0.8944 0.85691 0.833333 

6 0.98 0 0.02 0 0 0.9608 0.966392 0.9804 0.981168 0.833333 

7 0.98 0 0 0.02 0 0.9412 0.940313 0.9559 0.936443 0.166667 

8 0. 0.96 0 0 0.04 0.8848 0.884354 0.9136 0.880353 0.99176 

Examples 2 and 3 in Table 9 were similar to Example 1, where a large proportion of probability 

occurred at 𝑥 = 1, and a small proportion of probability occurred at 𝑥 = 5. The values of Φ𝑚𝑣  

remained 0 for Examples 2 and 3. However, the difference between 𝑝1 and 𝑝5 decreased from 

Example 1 through to Example 3, making Φ1, Φ𝑒 , Φ2, and Φ3 smaller for Examples 2 and 3 than for 

Example 1. Notably, Example 2 was one of the probability distributions that had the maximum 

difference (in Table 8) between Φ1 and Φ𝑒; Example 3 was one of the probability distributions that 

had the maximum difference between Φ2 and Φ3. 
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Example 4 had 𝑝3 = 𝑝5 = 0.5, and yielded the maximum difference (in Table 8) between Φ1 

and Φ2, between Φ1 and Φ3, between Φ𝑒 and Φ2, and between Φ𝑒 and Φ3. Suppose that the first 

four examples in Table 9 describe the voting results at four different stages during a successive 

voting process. From Example 1 through to Example 4, the value of Φ1 decreased, indicating the 

group’s consensus was diverging. However, using Φ𝑚𝑣  concluded the opposite. For Φ𝑒, Φ2, and 

Φ3, the consensus first decreased (from Example 1 through to Example 3), and then increased (from 

Example 4 onward). However, the differences between the consensus values in Examples 1 and 4 

were 0.273596 with Φ𝑒, 0.1716 with Φ2, and −0.02565 with Φ3. Thus, using different consensus 

measures could lead to different conclusions. 

A small change in the probability distribution could result in a different impact on different 

consensus measures. Consider Examples 1, 7, and 6. They differed by moving a small proportion 

(2%) of probability from 𝑥 = 5, to 𝑥 = 4, and to 𝑥 = 3, respectively. Although they were similar 

probability distributions, the value of Φ𝑚𝑣  was 0 in Example 1, and gradually increased to 

0.166667 in Example 7, but quickly increased to 0.833333 in Example 6. However, the values of 

Φ1, Φ𝑒 , Φ2, and Φ3 did not change much among these three examples. Notably, the proportion of 

probabilities further from the mean had a greater negative impact on Φ3, than on Φ2 and Φ1. 

Thus, by moving 2% of probability from 𝑥 = 5 to 𝑥 = 4 (i.e., moving closer to the mean), the 

ordering of Φ1, Φ2 , and Φ3  changed from Φ3 < Φ2 = Φ1  in Example 1 to Φ3 < Φ1 < Φ2  in 

Example 7. Then, by moving 2% of probability from 𝑥 = 4 to 𝑥 = 5, the ordering of Φ1, Φ2, and 

Φ3 changed to Φ1 < Φ2 < Φ3 in Example 6. 

The ordering of the values of these consensus measures depended on the probability 

distribution. For Examples 4, 5, and 6, the value of Φ𝑚𝑣  was the same, but Φ1 < Φ𝑒 < Φ2 < Φ𝑚𝑣 <

Φ3 held in Example 4, Φ𝑒 < Φ1 < Φ𝑚𝑣 < Φ3 < Φ2 held in Example 5, and Φ𝑚𝑣 < Φ1 < Φ𝑒 < Φ2 <

Φ3  held in Example 6. In Example 7, Φ𝑚𝑣  was the smallest among all consensus measures; 

however, in Example 8, Φ𝑚𝑣  was the greatest. 

3.4. Ordering 

From the examples in Table 9, it appeared that no fixed ordering existed among the consensus 

scores calculated using different consensus measures. Figure 2 shows the distributions of consensus 

scores of the 316,251 probability distributions generated in this experiment. The distributions of 

consensus scores based on Φ1, Φ𝑒 , Φ2, and Φ3  were similar, but were very different from the 

distribution of consensus scores based on Φ𝑚𝑣 . For the consensus values close to 1, the ordering of 

the probabilities among Φ1, Φ𝑒 , Φ2, and Φ3 was Φ1 < Φ𝑒 < Φ2 < Φ3, but for the consensus values 

close to 0, the ordering of the probabilities became Φ1 ≥ Φ𝑒 ≥ Φ2 ≥ Φ3. 

In Table 10, we compared the consensus scores of the 316,251 generated probability 

distributions, and calculated the probabilities of scores based on one consensus measure being less 

than or equal to scores based on another consensus measure. According to Table 10, Φ1 ≤ Φ2 and 

Φ𝑒 ≤ Φ2 always held, while Φ2 ≤ Φ3, Φ𝑒 ≤ Φ3, Φ1 ≤ Φ3, and Φ1 ≤ Φ𝑒  also held at very high 

probabilities. Thus, Φ1 ≤ Φ𝑒 ≤ Φ2 ≤ Φ3 was the most probable ordering among the scores based 

on these four consensus measures. The orderings between Φ𝑚𝑣 , and Φ1 or Φ𝑒 were not apparent, 

where Φ1 ≤ Φ𝑚𝑣  and Φ𝑒 ≤ Φ𝑚𝑣  only held at 58.12% and 52.04% probabilities, respectively. 

Finally, Φ2 > Φ𝑚𝑣  and Φ3 > Φ𝑚𝑣  were likely to occur because Φ2 ≤ Φ𝑚𝑣  and Φ3 ≤ Φ𝑚𝑣 held at 

36.84% and 28.01% probabilities, respectively. 
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Figure 2. Distributions of consensus scores based on different consensus measures. 

Table 10. The probability of scores based on one consensus measure to be equal to or less than scores 

based on another consensus measure for the 316,251 generated probability distributions. 

≤ 𝚽𝒆 𝚽𝟐 𝚽𝟑 𝚽𝒎𝒗 

Φ1 94.66% 100% 96.41% 58.12% 

Φ𝑒 - 100% 96.96% 52.04% 

Φ2 - - 84.35% 36.84% 

Φ3 - - - 28.01% 

3.5. Relationships 

To visually inspect the relationships among different consensus measures, we plotted the 

consensus values of the 316,251 generated probability distributions in two-dimensional (2D) scatter 

charts. 

Figure 3 shows the scatter charts of Φ1 scores versus scores based on the other consensus 

measures, where the red dashed lines represent equality between two consensus scores. As 

expected, a positively correlated trend existed. No fixed ordering existed between Φ1 and the 

other consensus measures except that Φ1 ≤ Φ2 always held, as shown in Figure 3b. According to 

Figure 3a–c, as the value of Φ1  approached 0 or 1, the ranges of Φ𝑒 , Φ2  and Φ3  narrowed, 

indicating that the maximum differences between Φ1 and Φ𝑒 , Φ2, and Φ3 decreased. However, 

when the value of Φ1 approached 0.5, the ranges of Φ𝑒 , Φ2, and Φ3 increased, indicating that the 

maximum differences between Φ1  and Φ𝑒 , Φ2 , and Φ3  also increased. Furthermore, the 

maximum difference between Φ1  and Φ𝑒  was smaller than both the maximum differences 

between Φ1 and Φ2, and between Φ1 and Φ3. 

Figure 3d shows that, for Φ1 < 1, as the value of Φ1 increased, the range of Φ𝑚𝑣  increased, 

and the maximum difference between Φ1 and Φ𝑚𝑣  became huge. For any probability distribution 

satisfying Φ1 = 1, its Φ𝑚𝑣  was also 1. However, for any probability distribution satisfying Φ𝑚𝑣 =

1, its value of Φ1  was not necessarily 1. In fact, there were only 𝑛 probability distributions 

satisfying Φ1 = 1 , that is, when 𝑝𝑘 = 1  for some 𝑘 ∈ 𝑋 , and 𝑝𝑖∈𝑋\{𝑘} = 0  (this statement also 

applies to Φ𝑒 , Φ2, and Φ3). However, there were many probability distributions satisfying Φ𝑚𝑣 = 1 

(see Table 2 for examples). 
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(a) Φ1 vs. Φ𝑒 (b) Φ1 vs. Φ2 

 
(c) Φ1 vs. Φ3 (d) Φ1 vs. Φ𝑚𝑣 

Figure 3. Φ1  vs. other consensus measures. (a) Φ1 vs. Φ𝑒 ; (b) Φ1 vs. Φ2 ; (c) Φ1 vs. Φ3 ; and (d) 

Φ1 vs. Φ𝑚𝑣. 

Figure 4 shows the scatter charts of the consensus scores based on Φ𝑒 , Φ2, Φ3, and Φ𝑚𝑣 . No 

fixed ordering existed among these consensus measures except that Φ𝑒 ≤ Φ2 always held, as shown in 

Figure 4a. According to Figure 4a,b,d, for Φ𝑒 , Φ2, and Φ3, as the value of one consensus measure 

approached either end of the interval [0, 1], the range of another consensus measure decreased. 

According to Figure 4a,b, the maximum difference between Φ𝑒 and Φ2 was smaller than that 

between Φ𝑒 and Φ3. According to Figures 3b and 4a,d, the maximum difference between Φ2 and 

Φ𝑒 was smaller than those between Φ2 and Φ1, and between Φ2 and Φ3. Figure 4c,e,f show a 

similar pattern to Figure 3d. As the value of Φ𝑒 (or Φ2, Φ3) increased (before reaching 1), the 

range of Φ𝑚𝑣  increased, and the maximum difference between Φ𝑒  (or Φ2  and Φ3 ) and Φ𝑚𝑣  

became huge. 
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(a) Φ𝑒 vs. Φ2 (b) Φ𝑒 vs. Φ3 

 
(c) Φ𝑒 vs. Φ𝑚𝑣 (d) Φ2 vs. Φ3 

 
(e) Φ2 vs. Φ𝑚𝑣 (f) Φ3 vs. Φ𝑚𝑣 

Figure 4. Scatter charts of Φ𝑒 , Φ2, Φ3, and Φ𝑚𝑣 . (a) Φ𝑒 vs. Φ2 ; (b) Φ𝑒 vs. Φ3 ; (c) Φ𝑒 vs. Φ𝑚𝑣 ; (d) 

Φ2 vs. Φ3; (e) Φ2 vs. Φ𝑚𝑣; and (f) Φ3 vs. Φ𝑚𝑣. 

4. Discussions 

Given a probability distribution, using different consensus measures often yields different 

consensus scores. If there exists a fixed ordering among these scores, then consistent results can be 

drawn using different consensus measures. Unfortunately, such an ordering depends on the given 
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probability distribution. However, according to Table 10, the following orderings among the 

consensus scores held at high probabilities: Φ1 ≤ Φ𝑒 ≤ Φ2 ≤ Φ3, Φ2 > Φ𝑚𝑣 , and Φ3 > Φ𝑚𝑣. 

Because there exists no fixed ordering among consensus scores based on different consensus 

measures, it is crucial to know the relationships among the consensus measures. Figures 3 and 4 

revealed that, for Φ1, Φ𝑒 , Φ2, and Φ3, as the value of one consensus measure approached either 

end of the interval [0, 1], the ranges of the other consensus measures decreased. Thus, one can 

expect smaller differences among Φ𝑒 , Φ1, Φ2, and Φ3 for consensus scores close to 0 or 1, than for 

consensus scores close to 0.5. 

According to Figures 3d and 4c,e,f, the range of Φ𝑚𝑣  increased rapidly as the value of 

Φ𝑒 , Φ1, Φ2, or Φ3 increased. Thus, Φ𝑚𝑣  often gave results inconsistent with those from Φ𝑒 , Φ1, Φ2, 

and Φ3, especially when the value of Φ𝑒 , Φ1, Φ2, or Φ3 was large. Looking at these figures from 

another perspective, the ranges of Φ1, Φ𝑒 , Φ2, and Φ3 decreased as the value of Φ𝑚𝑣  increased. 

Notably, Φ𝑚𝑣  tended to give low scores to probability distributions where some probability was 

located at the opposite end of the mean. Thus, for values of Φ𝑚𝑣  close to zero, one should also 

check the values of Φ1, Φ𝑒 , Φ2, and Φ3 for possibly inconsistent results. 

Choosing a consensus measure remains a task for the users. If one has a low tolerance for even 

a small proportion of extreme opposite opinions, then Φ𝑚𝑣  is a good choice. Otherwise, the other 

consensus measures tend to provide consistent results. If one prefers to emphasize the opinions 

further from the mean, then Φ3 is a good choice. Otherwise, either Φ1 or Φ𝑒 can be used, both 

yielding similar results. Finally, Φ2 provides a middle ground between Φ3 and Φ1. 

5. Conclusions 

An understanding of the characteristics of consensus measures helps users interpret results. 

For example, according to Figure 3b, Φ1 tended to yield a smaller consensus score than Φ2 for the 

same probability distribution; thus, a probability distribution 𝐴 with Φ1(𝐴) = 0.6 might have 

more consensus than another probability distribution 𝐵 with Φ2(𝐵) = 0.7, even though Φ1(𝐴) <

Φ2(𝐵). 

In essence, two opposite forces shape the design of a consensus measure: the force of obeying 

the majority, and the force of respecting the minority. Consensus measure Φ𝑒  stressed on the 

former, and the opinion of the minority has a weak impact on the consensus scores. In contrast, 

Φ𝑚𝑣  emphasizes the latter, and the opinion of the minority substantially influences the consensus 

scores, as shown in the first four examples in Table 9. 

Deviation-based consensus measures (i.e., Φ1, Φ2, and Φ3) allow users to adjust the strengths 

of these two forces. As described in Section 2.2, raising the power of the absolute deviation in the 

deviation-based consensus measures increases the impact of ratings further from the mean. 

Intuitively, unless the probabilities of all opinions are distributed evenly on opposite sides of the 

mean (e.g., 𝑝1 = 𝑝𝑛 = 0.5), ratings further from the mean represent the opinions of the minority. 

Thus, going from Φ1 through to Φ3, the impact of the minority increases. Overall, fine-tuning the 

balance between the force of obeying the majority, and the force of respecting the minority in a 

consensus measure provides the consensus measure with more flexibility for various situations, and 

is a direction of research worth exploring. 

Funding: This research is supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 

106-2221-E-155-038. 

Conflicts of Interest: The author declares no conflict of interest. 

Appendix A 

In this section, we derived the range of 𝐴𝐷(𝑝), where 𝑝 is a probability distribution over 𝑋 =

{1,2, . . , 𝑛} with mean 𝑚. Lemma 1 shows that, by moving each 𝑝𝑖≤𝑚 gradually toward 𝑝1, the 𝐴𝐷 

of the resulting distribution keeps increasing. Similarly, Lemma 2 shows that by moving each 𝑝𝑖>𝑚 

gradually toward 𝑝𝑛, the 𝐴𝐷 of the resulting distribution also keeps increasing. 
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Lemma 1. Let 𝑝(𝑥) and 𝑞(𝑥) be two probability distributions over 𝑋 = {1,2, . . , 𝑛}, 𝑝𝑖  and 𝑞𝑖  denote 

𝑝(𝑥 = 𝑖) and 𝑞(𝑥 = 𝑖), respectively, and 𝑝𝑖 < 1 and 𝑞𝑖 < 1 for each 𝑖 ∈ 𝑋. Let 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1 , and 𝑘 

denote the greatest integer satisfying 1 < 𝑘 ≤ 𝑚 and 𝑝𝑘 > 0. If 𝑞𝑘−1 = 𝑝𝑘 + 𝑝𝑘−1, 𝑞𝑘 = 0, and 𝑞𝑖 = 𝑝𝑖 

for each 𝑖 ∈ 𝑋\{𝑘 − 1, 𝑘}, then 𝐴𝐷(𝑞) > 𝐴𝐷(𝑝). 

Proof. By Equation (3), the mean of 𝑞(𝑥) is 

𝑚′ = (∑ 𝑖𝑝𝑖
𝑘−2
𝑖=1 ) + (𝑘 − 1)(𝑝𝑘−1 + 𝑝𝑘) + (∑ 𝑖𝑝𝑖

𝑛
𝑖=𝑘+1 ) = (∑ 𝑖𝑝𝑖

𝑛
𝑖=1 ) − 𝑝𝑘 = 𝑚 − 𝑝𝑘.  

Let 𝑗 denote the smallest integer such that 𝑚 < 𝑗 and 𝑝𝑗 > 0. Then, 𝑝𝑖 = 0 for 𝑘 + 1 ≤ 𝑖 ≤

𝑗 − 1, and 𝑞𝑖 = 0 for 𝑘 ≤ 𝑖 ≤ 𝑗 − 1. Thus, 

∑ |
𝑗−1
𝑖=𝑘+1 𝑖 − 𝑚|𝑝𝑖=∑ |𝑖 − 𝑚′|𝑞𝑖

𝑗−1
𝑖=𝑘 = 0.  

Also, 0 < 𝑝𝑘 < 1, 𝑘 ≤ 𝑚, and 𝑚 < 𝑗 yield 𝑘 − 1 ≤ 𝑚 − 1 < 𝑚′ < 𝑚 < 𝑗. 

𝐴𝐷(𝑞) = (∑ (
𝑘−2

𝑖=1
𝑚′ − 𝑖)𝑝𝑖) + ((𝑚′ − (𝑘 − 1))(𝑝𝑘−1 + 𝑝𝑘) + (∑ |

𝑗−1

𝑖=𝑘
𝑖 − 𝑚′|𝑞𝑖)

+ (∑ (
𝑛

𝑖=𝑗
𝑖 − 𝑚′)𝑝𝑖) 

= (∑ (
𝑘−2

𝑖=1
𝑚′ − 𝑖)𝑝𝑖) + ((𝑚′ − (𝑘 − 1))(𝑝𝑘−1 + 𝑝𝑘) + (∑ |

𝑗−1

𝑖=𝑘+1
𝑖 − 𝑚|𝑝𝑖) + (∑ (

𝑛

𝑖=𝑗
𝑖 − 𝑚′)𝑝𝑖) 

= ((∑ (
𝑘−2

𝑖=1
𝑚 − 𝑖)𝑝𝑖) − 𝑝𝑘 (∑ 𝑝𝑖

𝑘−2

𝑖=1
)) + (𝑚 − 𝑝𝑘 − (𝑘 − 1))(𝑝𝑘−1 + 𝑝𝑘) + (∑ |

𝑗−1

𝑖=𝑘+1
𝑖 − 𝑚|𝑝𝑖)

+ ((∑ (
𝑛

𝑖=𝑗
𝑖 − 𝑚)𝑝𝑖) + 𝑝𝑘 (∑ 𝑝𝑖

𝑛

𝑖=𝑗
)) 

= (∑ (
𝑘−2

𝑖=1
𝑚 − 𝑖)𝑝𝑖) − 𝑝𝑘 (∑ 𝑝𝑖

𝑘−2

𝑖=1
) + (𝑚 − (𝑘 − 1))𝑝𝑘−1 + (𝑚 − 𝑘)𝑝𝑘 + 𝑝𝑘 − 𝑝𝑘(𝑝𝑘−1 + 𝑝𝑘)

+ (∑ |
𝑗−1

𝑖=𝑘+1
𝑖 − 𝑚|𝑝𝑖) + (∑ (

𝑛

𝑖=𝑗
𝑖 − 𝑚)𝑝𝑖) + 𝑝𝑘 (∑ 𝑝𝑖

𝑛

𝑖=𝑗
) 

= 𝐴𝐷(𝑝) + 𝑝𝑘 ((− ∑ 𝑝𝑖

𝑘−2

𝑖=1
) + 1 − (𝑝𝑘−1 + 𝑝𝑘) + (∑ 𝑝𝑖

𝑛

𝑖=𝑗
))  

= 𝐴𝐷(𝑝) + 𝑝𝑘(1 − ∑ 𝑝𝑖
𝑘
𝑖=1 + ∑ 𝑝𝑖

𝑛
𝑖=𝑗 ) = 𝐴𝐷(𝑝) + 2𝑝𝑘 ∑ 𝑝𝑖

𝑛
𝑖=𝑗 > 𝐴𝐷(𝑝).  

 

□ 

Lemma 2. Let 𝑝(𝑥) and 𝑞(𝑥) be two probability distributions over 𝑋 = {1,2, . . , 𝑛}, 𝑝𝑖  and 𝑞𝑖  denote 

𝑝(𝑥 = 𝑖) and 𝑞(𝑥 = 𝑖), respectively, and 𝑝𝑖 < 1 and 𝑞𝑖 < 1 for each 𝑖 ∈ 𝑋. Let 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1 , and 𝑗 

denote the smallest integer satisfying 𝑚 < 𝑗 < 𝑛 and 𝑝𝑗 > 0. If 𝑞𝑗 = 0, 𝑞𝑗+1 = 𝑝𝑗 + 𝑝𝑗+1, and 𝑞𝑖 = 𝑝𝑖 

for each 𝑖 ∈ 𝑋\{𝑗, 𝑗 + 1}, then 𝐴𝐷(𝑞) > 𝐴𝐷(𝑝). 

Proof. By Equation (3), the mean of 𝑞(𝑥) is 

𝑚′ = (∑ 𝑖𝑝𝑖
𝑗−1
𝑖=1 ) + (𝑗 + 1)(𝑝𝑗 + 𝑝𝑗+1) + (∑ 𝑖𝑝𝑖

𝑛
𝑖=𝑗+2 ) = (∑ 𝑖𝑝𝑖

𝑛
𝑖=1 ) + 𝑝𝑗 = 𝑚 + 𝑝𝑗.  

Let 𝑘 denote the greatest integer such that 1 < 𝑘 ≤ 𝑚 and 𝑝𝑘 > 0. Then, 𝑝𝑖 = 0 for 𝑘 + 1 ≤

𝑖 ≤ 𝑗 − 1, and 𝑞𝑖 = 0 for 𝑘 + 1 ≤ 𝑖 ≤ 𝑗. Thus, 

∑ |
𝑗−1
𝑖=𝑘+1 𝑖 − 𝑚|𝑝𝑖 = ∑ |𝑖 − 𝑚′|𝑞𝑖

𝑗
𝑖=𝑘+1 = 0.  

Also, 0 < 𝑝𝑗 < 1, 𝑘 ≤ 𝑚 and 𝑚 < 𝑗 yield 𝑘 ≤ 𝑚 < 𝑚′ < 𝑚 + 1 < 𝑗 + 1. 

𝐴𝐷(𝑞) = (∑ (
𝑘

𝑖=1
𝑚′ − 𝑖)𝑝𝑖) + (∑ |

𝑗

𝑖=𝑘+1
𝑖 − 𝑚′|𝑞𝑖) + ((𝑗 + 1) − 𝑚′ )(𝑝𝑗 + 𝑝𝑗+1)

+ (∑ (
𝑛

𝑖=𝑗+2
𝑖 − 𝑚′)𝑝𝑖) 

= (∑ (
𝑘

𝑖=1
𝑚′ − 𝑖)𝑝𝑖) + (∑ |

𝑗−1

𝑖=𝑘+1
𝑖 − 𝑚|𝑝𝑖) + ((𝑗 + 1) − 𝑚′ )(𝑝𝑗 + 𝑝𝑗+1) + (∑ (

𝑛

𝑖=𝑗+2
𝑖 − 𝑚′)𝑝𝑖) 
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= ((∑ (
𝑘

𝑖=1
𝑚 − 𝑖)𝑝𝑖) + 𝑝𝑗 (∑ 𝑝𝑖

𝑘

𝑖=1
)) + (∑ |

𝑗−1 

𝑖=𝑘+1
𝑖 − 𝑚|𝑝𝑖) + ((𝑗 + 1) − 𝑚)(𝑝𝑗 + 𝑝𝑗+1)

− 𝑝𝑗(𝑝𝑗 + 𝑝𝑗+1) + ((∑ (
𝑛

𝑖=𝑗+2
𝑖 − 𝑚)𝑝𝑖) − 𝑝𝑗 (∑ 𝑝𝑖

𝑛

𝑖=𝑗+2
)) 

= (∑ (
𝑘

𝑖=1
𝑚 − 𝑖)𝑝𝑖) + 𝑝𝑗 (∑ 𝑝𝑖

𝑘

𝑖=1
) + (∑ |

𝑗−1 

𝑖=𝑘+1
𝑖 − 𝑚|𝑝𝑖) + (𝑗 − 𝑚)𝑝𝑗 + 𝑝𝑗 + ((𝑗 + 1) − 𝑚)𝑝𝑗+1

− 𝑝𝑗(𝑝𝑗 + 𝑝𝑗+1) + (∑ (
𝑛

𝑖=𝑗+2
𝑖 − 𝑚)𝑝𝑖) − 𝑝𝑗 (∑ 𝑝𝑖

𝑛

𝑖=𝑗+2
) 

= 𝐴𝐷(𝑝) + 𝑝𝑗 ((∑ 𝑝𝑖

𝑘

𝑖=1
) + 1 − (𝑝𝑗 + 𝑝𝑗+1) − (∑ 𝑝𝑖

𝑛

𝑖=𝑗+2
))  

= 𝐴𝐷(𝑝) + 𝑝𝑗 ((∑ 𝑝𝑖
𝑘
𝑖=1 ) + 1 − ∑ 𝑝𝑖

𝑛
𝑖=𝑗 ) = 𝐴𝐷(𝑝) + 2𝑝𝑗 ∑ 𝑝𝑖

𝑘
𝑖=1 > 𝐴𝐷(𝑝). 

□ 

Lemmas 3 and 4 were used to derive the upper bound of 𝐴𝐷 in Corollary 1. 

Lemma 3. Given a distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛}, there exists a distribution 𝑞(𝑥) with 𝑞1 +

𝑞𝑛 = 1 and 𝑞𝑖 = 0 for each 𝑖 ∈ 𝑋\{1, 𝑛}, satisfying 𝐴𝐷(𝑞) ≥ 𝐴𝐷(𝑝). 

Proof. First, consider the trivial case of 𝑝𝑖 = 1 for some 𝑖 ∈ 𝑋. Let 𝑞1 = 1, then 𝐴𝐷(𝑞) = 𝐴𝐷(𝑝) 

holds, obviously. Next, consider the case of 𝑝𝑖 < 1 for each 𝑖 ∈ 𝑋. 

Let 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1  denote the mean of 𝑝(𝑥), 𝑘 denote the greatest integer satisfying 1 < 𝑘 ≤ 𝑚 

and 𝑝𝑘 > 0, and 𝑗 denote the smallest integer satisfying 𝑚 < 𝑗 < 𝑛 and 𝑝𝑗 > 0. We can generate a 

new distribution 𝑞(𝑥) by repeatedly applying Lemma 1 to move each 𝑝𝑖≤𝑘 gradually toward 𝑝1, 

and by repeatedly applying Lemma 2 to move each 𝑝𝑖≥𝑗  gradually toward 𝑝𝑛. As a result, 𝑞1 =

∑ 𝑝𝑖
𝑘 
𝑖=1 , 𝑞𝑛 = ∑ 𝑝𝑖

𝑛
𝑖=𝑗 , and 𝑞𝑖 = 0 for each 𝑖 ∈ 𝑋\{1, 𝑛}, and 𝐴𝐷(𝑞) > 𝐴𝐷(𝑝). □ 

Lemma 4. Given a distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛} where 𝑝1 + 𝑝𝑛 = 1 and 𝑝𝑖 = 0 for each 𝑖 ∈

𝑋\{1, 𝑛}, 𝐴𝐷(𝑝) is maximized when 𝑝1 = 𝑝𝑛 = 0.5. 

Proof. Without loss of generality, let 𝑝1 =
1

2
+ 𝛿 and 𝑝𝑛 =

1

2
− 𝛿 for some 𝛿 ≥ 0. Then, Equation (3) 

yields 𝑚 = 1𝑝1 + 𝑛𝑝𝑛 = (
1

2
+ 𝛿) + 𝑛 (

1

2
− 𝛿) =

1+𝑛

2
+ 𝛿(1 − 𝑛). 

If 𝛿 = 0, then 𝑝1 = 𝑝𝑛 = 0.5. Use 𝐴𝐷0 to denote the value of 𝐴𝐷(𝑝) at 𝛿 = 0. Then, 

𝐴𝐷0 = 𝑝1(𝑚 − 1) + 𝑝𝑛(𝑛 − 𝑚) =
1

2
(

1+𝑛

2
− 1) +

1

2
(𝑛 −

1+𝑛

2
) =

𝑛−1

2
. 

𝐴𝐷(𝑝) = (
1

2
+ 𝛿) (𝑚 − 1) + (

1

2
− 𝛿) (𝑛 − 𝑚) 

= (
1

2
+ 𝛿) (

1 + 𝑛

2
+ 𝛿(1 − 𝑛) − 1) + (

1

2
− 𝛿) (𝑛 −

1 + 𝑛

2
− 𝛿(1 − 𝑛)) 

= (
1

2
+ 𝛿) (

𝑛 − 1

2
+ 𝛿(1 − 𝑛)) + (

1

2
− 𝛿) (

𝑛 − 1

2
− 𝛿(1 − 𝑛)) 

=
1

2
(

𝑛 − 1

2
+ 𝛿(1 − 𝑛)) + 𝛿 (

𝑛 − 1

2
+ 𝛿(1 − 𝑛)) +

1

2
(

𝑛 − 1

2
− 𝛿(1 − 𝑛)) − 𝛿 (

𝑛 − 1

2
− 𝛿(1 − 𝑛)) 

=
𝑛−1

2
− 2𝛿2(𝑛 − 1) ≤ 𝐴𝐷0. 

 

□ 

Corollary 1. Given a probability distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛}, 0 ≤ 𝐴𝐷(𝑝) ≤
𝑛−1

2
 holds. 

Proof. The upper bound 
𝑛−1

2
 is the direct result from Lemmas 3 and 4, and occurs when 𝑝1 = 𝑝𝑛 = 0.5. 

The lower bound 0 is by the definition of 𝐴𝐷(𝑝) in Equation (5), and occurs when 𝑝𝑖 = 1 for some 

𝑖 ∈ 𝑋. □ 
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Appendix B 

In this section, we derived the range of 𝑉(𝑝), where 𝑝 is a probability distribution over 𝑋 =

{1,2, . . , 𝑛} with mean 𝑚. The proof follows similar steps to those in Appendix A. 

Lemma 5. Let 𝑝(𝑥) and 𝑞(𝑥) be two probability distributions over 𝑋 = {1,2, . . , 𝑛}, 𝑝𝑖  and 𝑞𝑖  denote 

𝑝(𝑥 = 𝑖) and 𝑞(𝑥 = 𝑖), respectively, and 𝑝𝑖 < 1 and 𝑞𝑖 < 1 for each 𝑖 ∈ 𝑋. Let 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1 , and 𝑘 

denote the greatest integer satisfying 1 < 𝑘 ≤ 𝑚 and 𝑝𝑘 > 0. If 𝑞𝑘−1 = 𝑝𝑘 + 𝑝𝑘−1, 𝑞𝑘 = 0, and 𝑞𝑖 = 𝑝𝑖 

for each 𝑖 ∈ 𝑋\{𝑘 − 1, 𝑘}, then 𝑉(𝑞) > 𝑉(𝑝). 

Proof. The mean of 𝑞(𝑥) is 𝑚′ = 𝑚 − 𝑝𝑘. 

Let 𝑗 denote the smallest integer such that 𝑚 < 𝑗 and 𝑝𝑗 > 0. Then, 𝑝𝑖 = 0 for 𝑘 + 1 ≤ 𝑖 ≤

𝑗 − 1, and 𝑞𝑖 = 0 for 𝑘 ≤ 𝑖 ≤ 𝑗 − 1. Thus, 

∑ (𝑖 − 𝑚)2𝑗−1
𝑖=𝑘+1 𝑝𝑖=∑ (𝑖 − 𝑚′)2𝑞𝑖

𝑗−1
𝑖=𝑘 = 0.  

Also, 0 < 𝑝𝑘 < 1, 𝑘 ≤ 𝑚 and 𝑚 < 𝑗 yield 𝑘 − 1 ≤ 𝑚 − 1 < 𝑚′ < 𝑚 < 𝑗. 

𝑉(𝑞) = (∑ (𝑖 − 𝑚′)2
𝑘−2

𝑖=1
𝑝𝑖) + ((𝑘 − 1) − 𝑚′)

2
(𝑝𝑘−1 + 𝑝𝑘) + (∑ (𝑖 − 𝑚′)2𝑞𝑖

𝑗−1

𝑖=𝑘
)

+ (∑ (𝑖 − 𝑚′)2𝑝𝑖

𝑛

𝑖=𝑗
) 

= ((∑ (𝑖 − 𝑚)2
𝑘−2

𝑖=1
𝑝𝑖) + 2𝑝𝑘 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑘−2

𝑖=1
) + 𝑝𝑘

2 (∑ 𝑝𝑖

𝑘−2

𝑖=1
))

+ ((𝑘 − 1) − 𝑚 + 𝑝𝑘)
2

(𝑝𝑘−1 + 𝑝𝑘) + (∑ (𝑖 − 𝑚)2
𝑗−1

𝑖=𝑘+1
𝑝𝑖)

+ ((∑ (𝑖 − 𝑚)2
𝑛

𝑖=𝑗
𝑝𝑖) + 2𝑝𝑘 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=𝑗
) + 𝑝𝑘

2 (∑ 𝑝𝑖

𝑛

𝑖=𝑗
)) 

= (∑ (𝑖 − 𝑚)2
𝑘−2

𝑖=1
𝑝𝑖) + 2𝑝𝑘 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑘−2

𝑖=1
) + 𝑝𝑘

2 (∑ 𝑝𝑖

𝑘−2

𝑖=1
) + ((𝑘 − 1) − 𝑚 + 𝑝𝑘)

2
𝑝𝑘−1

+ (𝑘 − 𝑚 + 𝑝𝑘 − 1)2𝑝𝑘 + (∑ (𝑖 − 𝑚)2
𝑗−1

𝑖=𝑘+1
𝑝𝑖) + (∑ (𝑖 − 𝑚)2

𝑛

𝑖=𝑗
𝑝𝑖)

+ 2𝑝𝑘 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=𝑗
) + 𝑝𝑘

2 (∑ 𝑝𝑖

𝑛

𝑖=𝑗
) 

= (∑ (𝑖 − 𝑚)2
𝑘−2

𝑖=1
𝑝𝑖) + 2𝑝𝑘 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑘−2

𝑖=1
) + 𝑝𝑘

2 (∑ 𝑝𝑖

𝑘−2

𝑖=1
)

+ (((𝑘 − 1) − 𝑚)
2

+ 2𝑝𝑘((𝑘 − 1) − 𝑚) + 𝑝𝑘
2) 𝑝𝑘−1

+ ((𝑘 − 𝑚)2 + 2(𝑘 − 𝑚)(𝑝𝑘 − 1) + (𝑝𝑘 − 1)2)𝑝𝑘 + (∑ (𝑖 − 𝑚)2
𝑗−1

𝑖=𝑘+1
𝑝𝑖)

+ (∑ (𝑖 − 𝑚)2
𝑛

𝑖=𝑗
𝑝𝑖) + 2𝑝𝑘 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=𝑗
) + 𝑝𝑘

2 (∑ 𝑝𝑖

𝑛

𝑖=𝑗
) 

= 𝑉(𝑝) + 2𝑝𝑘 ((∑ (𝑖 − 𝑚)𝑝𝑖

𝑘−2

𝑖=1
) + ((𝑘 − 1) − 𝑚)𝑝𝑘−1 + (𝑘 − 𝑚)(𝑝𝑘 − 1) − 𝑝𝑘

+ (∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=𝑗
)) + 𝑝𝑘

2 ((∑ 𝑝𝑖

𝑘−2

𝑖=1
) + 𝑝𝑘−1 + 𝑝𝑘 + (∑ 𝑝𝑖

𝑛

𝑖=𝑗
)) + 𝑝𝑘 

= 𝑉(𝑝) + 2𝑝𝑘 ((∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=1
) − 𝑝𝑘) + 𝑝𝑘

2 (∑ 𝑝𝑖

𝑛

𝑖=1
) + 𝑝𝑘 

= 𝑉(𝑝) − 2𝑝𝑘
2 + 𝑝𝑘

2 + 𝑝𝑘 = 𝑉(𝑝) + 𝑝𝑘(1 − 𝑝𝑘) > 𝑉(𝑝). 

 

□ 

Lemma 6. Let 𝑝(𝑥) and 𝑞(𝑥) be two probability distributions over 𝑋 = {1,2, . . , 𝑛}, 𝑝𝑖  and 𝑞𝑖  denote 

𝑝(𝑥 = 𝑖) and 𝑞(𝑥 = 𝑖), respectively, and 𝑝𝑖 < 1 and 𝑞𝑖 < 1 for each 𝑖 ∈ 𝑋. Let 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1 , and 𝑗 
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denote the smallest integer satisfying 𝑚 < 𝑗 < 𝑛 and 𝑝𝑗 > 0. If 𝑞𝑗 = 0, 𝑞𝑗+1 = 𝑝𝑗 + 𝑝𝑗+1, and 𝑞𝑖 = 𝑝𝑖 

for each 𝑖 ∈ 𝑋\{𝑗, 𝑗 + 1}, then 𝑉(𝑞) > 𝑉(𝑝). 

Proof. The mean of 𝑞(𝑥) is 𝑚′ = 𝑚 + 𝑝𝑗. 

Let 𝑘 denote the greatest integer such that 1 < 𝑘 ≤ 𝑚 and 𝑝𝑘 > 0. Then, 𝑝𝑖 = 0 for 𝑘 + 1 ≤

𝑖 ≤ 𝑗 − 1, and 𝑞𝑖 = 0 for 𝑘 + 1 ≤ 𝑖 ≤ 𝑗. Thus, 

∑ (𝑖 − 𝑚)2𝑗−1
𝑖=𝑘+1 𝑝𝑖 = ∑ (𝑖 − 𝑚′)2𝑞𝑖

𝑗
𝑖=𝑘+1 = 0.  

Also, 0 < 𝑝𝑗 < 1, 𝑘 ≤ 𝑚 and 𝑚 < 𝑗 yield 𝑘 ≤ 𝑚 < 𝑚′ < 𝑚 + 1 < 𝑗 + 1. 

𝑉(𝑞) = (∑ (𝑖 − 𝑚′)2
𝑘

𝑖=1
𝑝𝑖) + (∑ (𝑖 − 𝑚′)2𝑞𝑖

𝑗

𝑖=𝑘+1
) + ((𝑗 + 1) − 𝑚′)

2
(𝑝𝑗 + 𝑝𝑗+1)

+ (∑ (𝑖 − 𝑚′)2𝑝𝑖

𝑛

𝑖=𝑗+2
) 

= ((∑ (𝑖 − 𝑚)2
𝑘

𝑖=1
𝑝𝑖) − 2𝑝𝑗 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑘

𝑖=1
) + 𝑝𝑗

2 (∑ 𝑝𝑖

𝑘

𝑖=1
)) + ∑ (𝑖 − 𝑚)2

𝑗−1

𝑖=𝑘+1
𝑝𝑖

+ ((𝑗 + 1) − 𝑚 − 𝑝𝑗)
2

(𝑝𝑗 + 𝑝𝑗+1)

+ ((∑ (𝑖 − 𝑚)2
𝑛

𝑖=𝑗+2
𝑝𝑖) − 2𝑝𝑗 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=𝑗+2
) + 𝑝𝑗

2 (∑ 𝑝𝑖

𝑛

𝑖=𝑗+2
))  

= (∑ (𝑖 − 𝑚)2
𝑘

𝑖=1
𝑝𝑖) − 2𝑝𝑗 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑘

𝑖=1
) + 𝑝𝑗

2 (∑ 𝑝𝑖

𝑘

𝑖=1
) + ∑ (𝑖 − 𝑚)2

𝑗−1

𝑖=𝑘+1
𝑝𝑖

+ ((𝑗 − 𝑚) + (1 − 𝑝𝑗))
2

𝑝𝑗 + ((𝑗 + 1 − 𝑚) − 𝑝𝑗)
2

𝑝𝑗+1 + (∑ (𝑖 − 𝑚)2
𝑛

𝑖=𝑗+2
𝑝𝑖)

− 2𝑝𝑗 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=𝑗+2
) + 𝑝𝑗

2 (∑ 𝑝𝑖

𝑛

𝑖=𝑗+2
)  

= (∑ (𝑖 − 𝑚)2
𝑘

𝑖=1
𝑝𝑖) − 2𝑝𝑗 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑘

𝑖=1
) + 𝑝𝑗

2 (∑ 𝑝𝑖

𝑘

𝑖=1
) + ∑ (𝑖 − 𝑚)2

𝑗−1

𝑖=𝑘+1
𝑝𝑖

+ ((𝑗 − 𝑚)2 + 2(𝑗 − 𝑚)(1 − 𝑝𝑗) + (1 − 𝑝𝑗)
2

) 𝑝𝑗

+ ((𝑗 + 1 − 𝑚)2 − 2𝑝𝑗(𝑗 + 1 − 𝑚) + 𝑝𝑗
2)𝑝𝑗+1 + (∑ (𝑖 − 𝑚)2

𝑛

𝑖=𝑗+2
𝑝𝑖)

− 2𝑝𝑗 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=𝑗+2
) + 𝑝𝑗

2 (∑ 𝑝𝑖

𝑛

𝑖=𝑗+2
)  

= 𝑉(𝑝) − 2𝑝𝑗 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑘

𝑖=1
) + 𝑝𝑗

2 (∑ 𝑝𝑖

𝑘

𝑖=1
) − 2𝑝𝑗 (𝑝𝑗(𝑗 − 𝑚) + 𝑝𝑗+1(𝑗 + 1 − 𝑚))

+ 𝑝𝑗
2(𝑝𝑗 + 𝑝𝑗+1) + 𝑝𝑗(2𝑗 − 2𝑚 + 1 − 2𝑝𝑗) − 2𝑝𝑗 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=𝑗+2
)

+ 𝑝𝑗
2 (∑ 𝑝𝑖

𝑛

𝑖=𝑗+2
) 

= 𝑉(𝑝) − 2𝑝𝑗 (∑ (𝑖 − 𝑚)𝑝𝑖

𝑛

𝑖=1
) + 𝑝𝑗

2 (∑ 𝑝𝑖

𝑛

𝑖=1
) + 𝑝𝑗(2𝑗 − 2𝑚 + 1 − 2𝑝𝑗) 

= 𝑉(𝑝) + 𝑝𝑗
2 + 2𝑗𝑝𝑗 − 2𝑚𝑝𝑗 + 𝑝𝑗 − 2𝑝𝑗

2 

= 𝑉(𝑝) + 2𝑝𝑗(𝑗 − 𝑚) + 𝑝𝑗(1 − 𝑝𝑗) > 𝑉(𝑝). 

 

□ 

Lemma 7. Given a distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛}, there exists a distribution 𝑞(𝑥) with 𝑞1 +

𝑞𝑛 = 1 and 𝑞𝑖 = 0 for each 𝑖 ∈ 𝑋\{1, 𝑛}, satisfying 𝑉(𝑞) ≥ 𝑉(𝑝). 

Proof. First, consider the trivial case of 𝑝𝑖 = 1 for some 𝑖 ∈ 𝑋. Let 𝑞1 = 1, then 𝑉(𝑞) = 𝑉(𝑝) holds, 

obviously. Next, consider the case of 𝑝𝑖 < 1 for each 𝑖 ∈ 𝑋. 

Let 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1  denote the mean of 𝑝(𝑥), 𝑘 denote the greatest integer satisfying 1 < 𝑘 ≤ 𝑚 

and 𝑝𝑘 > 0, and 𝑗 denote the smallest integer satisfying 𝑚 < 𝑗 < 𝑛 and 𝑝𝑗 > 0. We can generate a 
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new distribution 𝑞(𝑥) by repeatedly applying Lemma 5 to move each 𝑝𝑖≤𝑘 gradually toward 𝑝1, 

and by repeatedly applying Lemma 6 to move each 𝑝𝑖≥𝑗  gradually toward 𝑝𝑛. As a result, 𝑞1 =

∑ 𝑝𝑖
𝑘 
𝑖=1 , 𝑞𝑛 = ∑ 𝑝𝑖

𝑛
𝑖=𝑗 , and 𝑞𝑖 = 0 for each 𝑖 ∈ 𝑋\{1, 𝑛}, and 𝑉(𝑞) > 𝑉(𝑝). □ 

Lemma 8. Given a distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛} where 𝑝1 + 𝑝𝑛 = 1 and 𝑝𝑖 = 0 for each 𝑖 ∈

𝑋\{1, 𝑛}, 𝑉(𝑝) is maximized when 𝑝1 = 𝑝𝑛 = 0.5. 

Proof. Without loss of generality, let 𝑝1 =
1

2
+ 𝛿 and 𝑝𝑛 =

1

2
− 𝛿 for some 𝛿 ≥ 0. Then, Equation (3) 

yields 𝑚 = 1𝑝1 + 𝑛𝑝𝑛 = (
1

2
+ 𝛿) + 𝑛 (

1

2
− 𝛿) =

1+𝑛

2
+ 𝛿(1 − 𝑛). 

If 𝛿 = 0, then 𝑝1 = 𝑝𝑛 = 0.5. Use 𝑉0 to denote the value of 𝑉(𝑝) at 𝛿 = 0. Then, 

𝑉0 = 𝑝1(1 − 𝑚)2 + 𝑝𝑛(𝑛 − 𝑚)2 =
1

2
(

1+𝑛

2
− 1)2 +

1

2
(𝑛 −

1+𝑛

2
)2 = (

𝑛−1

2
)

2

. 

𝑉(𝑝) = (
1

2
+ 𝛿) (𝑚 − 1)2 + (

1

2
− 𝛿) (𝑛 − 𝑚)2 

= (
1

2
+ 𝛿) (

1 + 𝑛

2
+ 𝛿(1 − 𝑛) − 1)

2

+ (
1

2
− 𝛿) (𝑛 −

1 + 𝑛

2
− 𝛿(1 − 𝑛))

2

 

= (
1

2
+ 𝛿) (

𝑛 − 1

2
+ 𝛿(1 − 𝑛))

2

+ (
1

2
− 𝛿) (

𝑛 − 1

2
− 𝛿(1 − 𝑛))

2

 

=
1

2
(

𝑛 − 1

2
+ 𝛿(1 − 𝑛))

2

+ 𝛿 (
𝑛 − 1

2
+ 𝛿(1 − 𝑛))

2

+
1

2
(

𝑛 − 1

2
− 𝛿(1 − 𝑛))

2

− 𝛿 (
𝑛 − 1

2
− 𝛿(1 − 𝑛))

2

 

= (
𝑛 − 1

2
)

2

+ 𝛿2(1 − 𝑛)2 + 4𝛿2(1 − 𝑛) (
𝑛 − 1

2
) 

= (
𝑛−1

2
)

2

− 𝛿2(1 − 𝑛)2 ≤ 𝑉0. 

 

□ 

Corollary 2. Given a probability distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛}, 0 ≤ 𝑉(𝑝) ≤ (
𝑛−1

2
)

2

 holds. 

Proof. The upper bound (
𝑛−1

2
)

2

 is the direct result from Lemmas 7 and 8, and occurs when 𝑝1 =

𝑝𝑛 = 0.5. The lower bound 0 is by the definition of 𝑉(𝑝) in Equation (6), and occurs when 𝑝𝑖 = 1 

for some 𝑖 ∈ 𝑋. □ 

Appendix C 

In this section, we derived the range of 𝑆(𝑝), where 𝑝 is a probability distribution over 𝑋 =

{1,2, . . , 𝑛}  with mean 𝑚 . First, Lemma 9 is used to split the probability at 𝑥 = 𝑗  into the 

probabilities at 𝑥 = 1 and at 𝑥 = ⌊𝑚⌋ for 1 < 𝑗 < ⌊𝑚⌋. We can repeatedly apply Lemma 9 until 𝑝𝑗 =

0 for 1 < 𝑗 < ⌊𝑚⌋, and yield a new probability distribution 𝑞 such that 𝑆(𝑞) > 𝑆(𝑝). 

Lemma 9. Let 𝑝(𝑥) be a probability distribution over 𝑋 = {1,2, . . , 𝑛}. Let 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1  and 𝑘 = ⌊𝑚⌋. If 

there exists 𝑝𝑗 > 0 where 1 < 𝑗 < 𝑘, then 𝑆(𝑞) > 𝑆(𝑝) where 𝑞(𝑥) is a probability distribution over 𝑋 

with 𝑞1 = 𝑝1 +
𝑘−𝑗

𝑘−1
𝑝𝑗, 𝑞𝑗 = 0, 𝑞𝑘 = 𝑝𝑘 +

𝑗−1

𝑘−1
𝑝𝑗, and 𝑞𝑖 = 𝑝𝑖 for 𝑖 ∈ 𝑋\{1, 𝑗, 𝑘}. 

Proof. By Equation (3), the mean of 𝑞(𝑥) is also 𝑚. 

𝑆(𝑞) = (∑ |𝑚 − 𝑖|3
𝑖≠1,𝑗,𝑘 𝑝𝑖) + (𝑚 − 1)3 (𝑝1 +

𝑘−𝑗

𝑘−1
𝑝𝑗) + (𝑚 − 𝑗)3(0) + (𝑚 − 𝑘)3 (𝑝𝑘 +

𝑗−1

𝑘−1
𝑝𝑗)  

= (∑ |𝑚 − 𝑖|3
𝑖≠1,𝑗,𝑘 𝑝𝑖) + (𝑚 − 1)3𝑝1 + (𝑚 − 1)3 (

𝑘−𝑗

𝑘−1
𝑝𝑗) + (𝑚 − 𝑘)3𝑝𝑘 + (𝑚 − 𝑘)3 (

𝑗−1

𝑘−1
𝑝𝑗)  
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= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖) + (𝑚 − 1)3 (

𝑘 − 𝑗

𝑘 − 1
𝑝𝑗) + (𝑚 − 𝑘)3 (

𝑗 − 1

𝑘 − 1
𝑝𝑗) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖) + (

𝑝𝑗

𝑘 − 1
) ((𝑚 − 1)3(𝑘 − 𝑗) + (𝑚 − 𝑘)3(𝑗 − 1)) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ (
𝑝𝑗

𝑘 − 1
) ((𝑚3 − 3𝑚2 + 3𝑚 − 1)(𝑘 − 𝑗) + (𝑚3 − 3𝑚2𝑘 + 3𝑚𝑘2 − 𝑘3)(𝑗 − 1)) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ (
𝑝𝑗

𝑘 − 1
) (𝑚3𝑘 − 3𝑚2𝑘 + 3𝑚𝑘 − 𝑘 − 𝑚3𝑗 + 3𝑚2𝑗 − 3𝑚𝑗 + 𝑗 + 𝑚3𝑗 − 3𝑚2𝑘𝑗

+ 3𝑚𝑘2𝑗 − 𝑘3𝑗 − 𝑚3 + 3𝑚2𝑘 − 3𝑚𝑘2 + 𝑘3) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ (
𝑝𝑗

𝑘 − 1
) ((𝑚3𝑘 − 𝑚3) + (3𝑚𝑘 − 3𝑚𝑘2) + (𝑘3 − 𝑘) + (3𝑚2𝑗 − 3𝑚2𝑘𝑗)

+ (3𝑚𝑘2𝑗 − 3𝑚𝑗) + (𝑗 − 𝑘3𝑗)) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ (
𝑝𝑗

𝑘 − 1
) (𝑚3(𝑘 − 1) + 3𝑚𝑘(1 − 𝑘) + 𝑘(𝑘2 − 1) + 3𝑚2𝑗(1 − 𝑘) + 3𝑚𝑗(𝑘2 − 1)

+ 𝑗(1 − 𝑘3)) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖) + 𝑝𝑗(𝑚3 − 3𝑚𝑘 + 𝑘(𝑘 + 1) − 3𝑚2𝑗 + 3𝑚𝑗(𝑘 + 1) − 𝑗(𝑘2 + 𝑘 + 1)) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ 𝑝𝑗((𝑚3 − 3𝑚2𝑗 + 3𝑚𝑗2 − 𝑗3) − 3𝑚𝑗2 + 𝑗3 − 3𝑚𝑘 + 𝑘(𝑘 + 1) + 3𝑚𝑗(𝑘 + 1)

− 𝑗(𝑘2 + 𝑘 + 1)) 

= 𝑆(𝑝) + 𝑝𝑗(−3𝑚𝑗2 + 𝑗3 − 3𝑚𝑘 + 𝑘(𝑘 + 1) + 3𝑚𝑗(𝑘 + 1) − 𝑗(𝑘2 + 𝑘 + 1)) 

= 𝑆(𝑝) + 𝑝𝑗(3𝑚(−𝑗2 − 𝑘 + 𝑗(𝑘 + 1)) + 𝑘(𝑘 + 1)(1 − 𝑗) + 𝑗(𝑗2 − 1)) 

= 𝑆(𝑝) + 𝑝𝑗(3𝑚(𝑗 − 1)(𝑘 − 𝑗) − 𝑘(𝑘 + 1)(𝑗 − 1) + 𝑗(𝑗 + 1)(𝑗 − 1)) 

= 𝑆(𝑝) + 𝑝𝑗(𝑗 − 1)(3𝑚(𝑘 − 𝑗) − 𝑘(𝑘 + 1) + 𝑗(𝑗 + 1)) 

= 𝑆(𝑝) + 𝑝𝑗(𝑗 − 1)(3𝑚(𝑘 − 𝑗) − (𝑘2 − 𝑗2) − (𝑘 − 𝑗)) 

= 𝑆(𝑝) + 𝑝𝑗(𝑗 − 1)(𝑘 − 𝑗)(3𝑚 − (𝑘 + 𝑗) − 1). 

Then 1 < 𝑗 < 𝑘 = ⌊𝑚⌋ ≤ 𝑚 < 𝑛 yields 3𝑚 − (𝑘 + 𝑗) − 1 > 0. Thus, 𝑆(𝑞) > 𝑆(𝑝). □ 

Similar to Lemma 9, Lemma 10 is used to split the probability at 𝑥 = 𝑗 into the probabilities at 

𝑥 = ⌈𝑚⌉ and at 𝑥 = 𝑛 for ⌈𝑚⌉ < 𝑗 < 𝑛. We can repeatedly apply Lemma 10 until 𝑝𝑗 = 0 for ⌈𝑚⌉ <

𝑗 < 𝑛, and yield a new probability distribution 𝑞 such that 𝑆(𝑞) > 𝑆(𝑝). 

Lemma 10. Let 𝑝(𝑥) be a probability distribution over 𝑋 = {1,2, . . , 𝑛}. Let 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1  and 𝑘 = ⌈𝑚⌉. If 

there exists 𝑝𝑗 > 0 where 𝑘 < 𝑗 < 𝑛, then 𝑆(𝑞) > 𝑆(𝑝) where 𝑞(𝑥) is a probability distribution over 𝑋 

with 𝑞𝑘 = 𝑝𝑘 +
𝑛−𝑗

𝑛−𝑘
𝑝𝑗, 𝑞𝑗 = 0, 𝑞𝑛 = 𝑝𝑛 +

𝑗−𝑘

𝑛−𝑘
𝑝𝑗, and 𝑞𝑖 = 𝑝𝑖 for 𝑖 ∈ 𝑋\{𝑘, 𝑗, 𝑛}. 

Proof. By Equation (3), the mean of 𝑞(𝑥) is also 𝑚. 

𝑆(𝑞) = (∑ |𝑚 − 𝑖|3

𝑖≠𝑘,𝑗,𝑛
𝑝𝑖) + (𝑘 − 𝑚)3 (𝑝𝑘 +

𝑛 − 𝑗

𝑛 − 𝑘
𝑝𝑗) + (𝑗 − 𝑚)3(0)

+ (𝑛 − 𝑚)3 (𝑝𝑛 +
𝑗 − 𝑘

𝑛 − 𝑘
𝑝𝑗) 
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= (∑ |𝑚 − 𝑖|3

𝑖≠𝑘,𝑗,𝑛
𝑝𝑖) + (𝑘 − 𝑚)3𝑝𝑘 + (𝑘 − 𝑚)3 (

𝑛 − 𝑗

𝑛 − 𝑘
𝑝𝑗) + (𝑛 − 𝑚)3𝑝𝑛

+ (𝑛 − 𝑚)3 (
𝑗 − 𝑘

𝑛 − 𝑘
𝑝𝑗) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖) + (𝑘 − 𝑚)3 (

𝑛 − 𝑗

𝑛 − 𝑘
𝑝𝑗) + (𝑛 − 𝑚)3 (

𝑗 − 𝑘

𝑛 − 𝑘
𝑝𝑗) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖) + (

𝑝𝑗

𝑛 − 𝑘
) ((𝑘 − 𝑚)3(𝑛 − 𝑗) + (𝑛 − 𝑚)3(𝑗 − 𝑘)) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ (
𝑝𝑗

𝑛 − 𝑘
) ((𝑘3 − 3𝑘2𝑚 + 3𝑘𝑚2 − 𝑚3)(𝑛 − 𝑗)

+ (𝑛3 − 3𝑛2𝑚 + 3𝑛𝑚2 − 𝑚3)(𝑗 − 𝑘)) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ (
𝑝𝑗

𝑛 − 𝑘
) (𝑘3𝑛 − 3𝑘2𝑚𝑛 + 3𝑘𝑚2𝑛 − 𝑚3𝑛 − 𝑘3𝑗 + 3𝑘2𝑚𝑗 − 3𝑘𝑚2𝑗 + 𝑚3𝑗 + 𝑛3𝑗

− 3𝑛2𝑚𝑗 + 3𝑛𝑚2𝑗 − 𝑚3𝑗−𝑛3𝑘 + 3𝑛2𝑚𝑘 − 3𝑛𝑚2𝑘 + 𝑚3𝑘) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ (
𝑝𝑗

𝑛 − 𝑘
) ((−3𝑘2𝑚𝑛 + 3𝑛2𝑚𝑘) + (3𝑘2𝑚𝑗 − 3𝑛2𝑚𝑗) + (−3𝑘𝑚2𝑗 + 3𝑛𝑚2𝑗)

+ (−𝑚3𝑛 + 𝑚3𝑘) + (−𝑘3𝑗 + 𝑛3𝑗) + (𝑘3𝑛−𝑛3𝑘))  

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ (
𝑝𝑗

𝑛 − 𝑘
) (3𝑘𝑚𝑛(𝑛 − 𝑘) − 3𝑚𝑗(𝑛2 − 𝑘2) + 3𝑚2𝑗(𝑛 − 𝑘) − 𝑚3(𝑛 − 𝑘)

+ 𝑗(𝑛3 − 𝑘3) − 𝑛𝑘(𝑛2 − 𝑘2)) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖) + 𝑝𝑗(3𝑘𝑚𝑛 − 3𝑚𝑗(𝑛 + 𝑘) + 3𝑚2𝑗 − 𝑚3 + 𝑗(𝑛2 + 𝑛𝑘 + 𝑘2) − 𝑛𝑘(𝑛 + 𝑘)) 

= (∑ |𝑚 − 𝑖|3

𝑖≠𝑗
𝑝𝑖)

+ 𝑝𝑗((𝑗3 − 3𝑚𝑗2 + 3𝑚2𝑗 − 𝑚3) + 3𝑚𝑗2 − 𝑗3 + 3𝑘𝑚𝑛 − 3𝑚𝑗(𝑛 + 𝑘)

+ 𝑗(𝑛2 + 𝑛𝑘 + 𝑘2) − 𝑛𝑘(𝑛 + 𝑘)) 

= 𝑆(𝑝) + 𝑝𝑗(3𝑚𝑗2 − 𝑗3 + 3𝑘𝑚𝑛 − 3𝑚𝑗(𝑛 + 𝑘) + 𝑗(𝑛2 + 𝑛𝑘 + 𝑘2) − 𝑛𝑘(𝑛 + 𝑘)) 

= 𝑆(𝑝) + 𝑝𝑗(3𝑚(𝑗 − 𝑘)(𝑗 − 𝑛) + 𝑛(𝑛 + 𝑘)(𝑗 − 𝑘) − 𝑗(𝑗2 − 𝑘2)) 

= 𝑆(𝑝) + 𝑝𝑗(𝑗 − 𝑘)(3𝑚(𝑗 − 𝑛) + 𝑛(𝑛 + 𝑘) − 𝑗(𝑗 + 𝑘)) 

= 𝑆(𝑝) + 𝑝𝑗(𝑗 − 𝑘)(3𝑚(𝑗 − 𝑛) + (𝑛2 − 𝑗2) + 𝑘(𝑛 − 𝑗)) 

= 𝑆(𝑝) + 𝑝𝑗(𝑗 − 𝑘)(𝑛 − 𝑗)(−3𝑚 + (𝑛 + 𝑗) + 𝑘). 

Then 1 < 𝑚 ≤ ⌈𝑚⌉ = 𝑘 < 𝑗 < 𝑛 yields −3𝑚 + (𝑛 + 𝑗) + 𝑘 > 0. Thus, 𝑆(𝑞) > 𝑆(𝑝). □ 

Lemmas 11, 12, and 13 are used to split the probabilities at 𝑥 = 𝑚, 𝑥 = ⌊𝑚⌋, and 𝑥 = ⌈𝑚⌉, 

respectively, into 𝑥 = 1 and 𝑥 = 𝑛. 

Lemma 11. Let 𝑝(𝑥) be a probability distribution over 𝑋 = {1,2, . . , 𝑛}. Let 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1 . If 𝑚 ∈ 𝑋 and 

𝑝𝑚 > 0 , then 𝑆(𝑞) > 𝑆(𝑝)  where 𝑞(𝑥)  is a probability distribution over 𝑋  with 𝑞1 = 𝑝1 +
𝑛−𝑚

𝑛−1
𝑝𝑚 , 

𝑞𝑚 = 0, 𝑞𝑛 = 𝑝𝑛 +
𝑚−1

𝑛−1
𝑝𝑚, and 𝑞𝑖 = 𝑝𝑖  for 𝑖 ∈ 𝑋\{1, 𝑚, 𝑛}. 

Proof. By Equation (3), the mean of 𝑞(𝑥) is also 𝑚. 
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𝑆(𝑞) = (∑ |𝑚 − 𝑖|3

𝑖≠1,𝑚,𝑛
𝑝𝑖) + (𝑚 − 1)3 (𝑝1 +

𝑛 − 𝑚

𝑛 − 1
𝑝𝑚) + |𝑚 − 𝑚|3(0)

+ (𝑛 − 𝑚)3 (𝑝𝑛 +
𝑚 − 1

𝑛 − 1
𝑝𝑚) 

= 𝑆(𝑝) + (𝑚 − 1)3 (
𝑛 − 𝑚

𝑛 − 1
𝑝𝑚) + (𝑛 − 𝑚)3 (

𝑚 − 1

𝑛 − 1
𝑝𝑚) 

= 𝑆(𝑝) +
𝑝𝑚(𝑚 − 1)(𝑛 − 𝑚)

𝑛 − 1
((𝑚 − 1)2 + (𝑛 − 𝑚)2)  > 𝑆(𝑝). 

 

□ 

Lemma 12. Let 𝑝(𝑥) be a probability distribution over 𝑋 = {1,2, . . , 𝑛}, 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1 , and 𝑘 = ⌊𝑚⌋. If 

1 < 𝑘 < 𝑚 and 𝑝𝑘 > 0, then 𝑆(𝑞) > 𝑆(𝑝) where 𝑞(𝑥) is a probability distribution over 𝑋 with 𝑞1 =

𝑝1 +
𝑛−𝑘

𝑛−1
𝑝𝑘, 𝑞𝑘 = 0, 𝑞𝑛 = 𝑝𝑛 +

𝑘−1

𝑛−1
𝑝𝑘, and 𝑞𝑖 = 𝑝𝑖 for 𝑖 ∈ 𝑋\{1, 𝑘, 𝑛}. 

Proof. By Equation (3), the mean of 𝑞(𝑥) is also 𝑚. 

𝑆(𝑞) = (∑ |𝑚 − 𝑖|3
𝑖≠1,𝑘,𝑛 𝑝𝑖) + (𝑚 − 1)3 (𝑝1 +

𝑛−𝑘

𝑛−1
𝑝𝑘) + (𝑚 − 𝑘)3(0) + (𝑛 − 𝑚)3 (𝑝𝑛 +

𝑘−1

𝑛−1
𝑝𝑘)  

= 𝑆(𝑝) + (𝑚 − 1)3 (
𝑛−𝑘

𝑛−1
𝑝𝑘) + (𝑛 − 𝑚)3 (

𝑘−1

𝑛−1
𝑝𝑘) − (𝑚 − 𝑘)3𝑝𝑘   

= 𝑆(𝑝) +
𝑝𝑘

𝑛−1
((𝑚 − 1)3(𝑛 − 𝑘) + (𝑛 − 𝑚)3(𝑘 − 1) − (𝑚 − 𝑘)3(𝑛 − 1))  

= 𝑆(𝑝) +
𝑝𝑘

𝑛−1
((𝑚 − 1)3(𝑛 − 𝑘) + (𝑛 − 𝑚)3(𝑘 − 1) − (𝑚 − 𝑘)3(𝑛 − 𝑘 + 𝑘 − 1))  

= 𝑆(𝑝) +
𝑝𝑘

𝑛 − 1
((𝑚 − 1)3(𝑛 − 𝑘) − (𝑚 − 𝑘)3(𝑛 − 𝑘) + (𝑛 − 𝑚)3(𝑘 − 1) − (𝑚 − 𝑘)3(𝑘 − 1)) 

= 𝑆(𝑝) +
𝑝𝑘

𝑛−1
((𝑚 − 𝑘 + 𝑘 − 1)3(𝑛 − 𝑘) − (𝑚 − 𝑘)3(𝑛 − 𝑘) + (𝑛 − 𝑚)3(𝑘 − 1) − (𝑚 − 𝑘)3(𝑘 − 1))  

> 𝑆(𝑝) +
𝑝𝑘

𝑛−1
((𝑘 − 1)3(𝑛 − 𝑘) + (𝑛 − 𝑚)3(𝑘 − 1) − (𝑚 − 𝑘)3(𝑘 − 1))  

= 𝑆(𝑝) +
𝑝𝑘(𝑘−1)

𝑛−1
((𝑘 − 1)2(𝑛 − 𝑘) + (𝑛 − 𝑚)3 − (𝑚 − 𝑘)3).  

 

Then, 𝑘 − 1 ≥ 1 > 𝑚 − 𝑘 > 0 and 𝑛 > 𝑚  yield (𝑘 − 1)2 > (𝑚 − 𝑘)2 > 0 and 𝑛 − 𝑘 > 𝑚 − 𝑘 , 

and thus, (𝑘 − 1)2(𝑛 − 𝑘) > (𝑚 − 𝑘)3. Therefore, 𝑆(𝑞) > 𝑆(𝑝) holds. □ 

Lemma 13. Let 𝑝(𝑥) be a probability distribution over 𝑋 = {1,2, . . , 𝑛}, 𝑚 = ∑ 𝑖𝑝𝑖
𝑛
𝑖=1 , and 𝑘 = ⌈𝑚⌉. If 

𝑚 < 𝑘 < 𝑛 and 𝑝𝑘 > 0, then 𝑆(𝑞) > 𝑆(𝑝) where 𝑞(𝑥) is a probability distribution over 𝑋 with 𝑞1 =

𝑝1 +
𝑛−𝑘

𝑛−1
𝑝𝑘, 𝑞𝑘 = 0, 𝑞𝑛 = 𝑝𝑛 +

𝑘−1

𝑛−1
𝑝𝑘, and 𝑞𝑖 = 𝑝𝑖 for 𝑖 ∈ 𝑋\{1, 𝑘, 𝑛}. 

Proof. By Equation (3), the mean of 𝑞(𝑥) is also 𝑚. 

𝑆(𝑞) = (∑ |𝑚 − 𝑖|3
𝑖≠1,𝑘,𝑛 𝑝𝑖) + (𝑚 − 1)3 (𝑝1 +

𝑛−𝑘

𝑛−1
𝑝𝑘) + (𝑘 − 𝑚)3(0) + (𝑛 − 𝑚)3 (𝑝𝑛 +

𝑘−1

𝑛−1
𝑝𝑘)  

= 𝑆(𝑝) + (𝑚 − 1)3 (
𝑛−𝑘

𝑛−1
𝑝𝑘) + (𝑛 − 𝑚)3 (

𝑘−1

𝑛−1
𝑝𝑘) − (𝑘 − 𝑚)3𝑝𝑘   

= 𝑆(𝑝) +
𝑝𝑘

𝑛−1
((𝑚 − 1)3(𝑛 − 𝑘) + (𝑛 − 𝑚)3(𝑘 − 1) − (𝑘 − 𝑚)3(𝑛 − 1))  

= 𝑆(𝑝) +
𝑝𝑘

𝑛−1
((𝑚 − 1)3(𝑛 − 𝑘) + (𝑛 − 𝑚)3(𝑘 − 1) − (𝑘 − 𝑚)3(𝑛 − 𝑘 + 𝑘 − 1))  

= 𝑆(𝑝) +
𝑝𝑘

𝑛 − 1
((𝑚 − 1)3(𝑛 − 𝑘) − (𝑘 − 𝑚)3(𝑛 − 𝑘) + (𝑛 − 𝑚)3(𝑘 − 1) − (𝑘 − 𝑚)3(𝑘 − 1)) 

= 𝑆(𝑝) +
𝑝𝑘

𝑛−1
((𝑚 − 1)3(𝑛 − 𝑘) − (𝑘 − 𝑚)3(𝑛 − 𝑘) + (𝑛 − 𝑘 + 𝑘 − 𝑚)3(𝑘 − 1) − (𝑘 − 𝑚)3(𝑘 − 1))  

> 𝑆(𝑝) +
𝑝𝑘

𝑛−1
((𝑚 − 1)3(𝑛 − 𝑘) − (𝑘 − 𝑚)3(𝑛 − 𝑘) + (𝑛 − 𝑘)3(𝑘 − 1))  

= 𝑆(𝑝) +
𝑝𝑘(𝑛−𝑘)

𝑛−1
((𝑚 − 1)3 − (𝑘 − 𝑚)3 + (𝑛 − 𝑘)2(𝑘 − 1)).  

 

Then, 𝑛 − 𝑘 ≥ 1 > 𝑘 − 𝑚 > 0 and 𝑚 > 1 yield (𝑛 − 𝑘)2 > (𝑘 − 𝑚)2 > 0 and 𝑘 − 1 > 𝑘 − 𝑚 , 

and thus, (𝑛 − 𝑘)2(𝑘 − 1) > (𝑘 − 𝑚)3. Therefore, 𝑆(𝑞) > 𝑆(𝑝) holds. □ 

Given a probability distribution 𝑝(𝑥) with the probability concentrating at both ends, Lemma 

14 shows that 𝑆(𝑝) is maximized when the probability is evenly distributed. 
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Lemma 14. Given a probability distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛} where 𝑝1 + 𝑝𝑛 = 1 and 𝑝𝑖 = 0 

for each 𝑖 ∈ 𝑋\{1, 𝑛}, 𝑆(𝑝) is maximized when 𝑝1 = 𝑝𝑛 = 0.5. 

Proof. Without loss of generality, let 𝑝1 =
1

2
+ 𝛿 and 𝑝𝑛 =

1

2
− 𝛿 where 0 ≤ 𝛿 ≤

1

2
. Then, Equation 

(3) yields 𝑚 = 𝑝1 + 𝑛𝑝𝑛 = (
1

2
+ 𝛿) + 𝑛 (

1

2
− 𝛿) =

1+𝑛

2
+ 𝛿(1 − 𝑛). 

Use 𝑆0 to denote the value of 𝑆(𝑝) at 𝛿 = 0. Then, 

𝑆0 = 𝑝1(𝑚 − 1)3 + 𝑝𝑛(𝑛 − 𝑚)3 =
1

2
(

1+𝑛

2
− 1)3 +

1

2
(𝑛 −

1+𝑛

2
)3 = (

𝑛−1

2
)

3

. 

𝑆(𝑝) = (
1

2
+ 𝛿) (𝑚 − 1)3 + (

1

2
− 𝛿) (𝑛 − 𝑚)3 

=(
1

2
+ 𝛿) (

1+𝑛

2
+ 𝛿(1 − 𝑛) − 1)

3

+ (
1

2
− 𝛿) (𝑛 −

1+𝑛

2
− 𝛿(1 − 𝑛))

3

 

= (
1

2
+ 𝛿) (

𝑛 − 1

2
+ 𝛿(1 − 𝑛))

3

+ (
1

2
− 𝛿) (

𝑛 − 1

2
− 𝛿(1 − 𝑛))

3

 

=
1

2
(

𝑛 − 1

2
+ 𝛿(1 − 𝑛))

3

+ 𝛿 (
𝑛 − 1

2
+ 𝛿(1 − 𝑛))

3

+
1

2
(

𝑛 − 1

2
− 𝛿(1 − 𝑛))

3

− 𝛿 (
𝑛 − 1

2
− 𝛿(1 − 𝑛))

3

 

=
1

2
((

𝑛 − 1

2
)

3

+ 3 (
𝑛 − 1

2
)

2

𝛿(1 − 𝑛) + 3 (
𝑛 − 1

2
) 𝛿2(1 − 𝑛)2 + 𝛿3(1 − 𝑛)3) 

              +
1

2
((

𝑛 − 1

2
)

3

− 3 (
𝑛 − 1

2
)

2

𝛿(1 − 𝑛) + 3 (
𝑛 − 1

2
) 𝛿2(1 − 𝑛)2 − 𝛿3(1 − 𝑛)3) 

              + 𝛿 ((
𝑛 − 1

2
)

3

+ 3 (
𝑛 − 1

2
)

2

𝛿(1 − 𝑛) + 3 (
𝑛 − 1

2
) 𝛿2(1 − 𝑛)2 + 𝛿3(1 − 𝑛)3) 

              − 𝛿 ((
𝑛 − 1

2
)

3

− 3 (
𝑛 − 1

2
)

2

𝛿(1 − 𝑛) + 3 (
𝑛 − 1

2
) 𝛿2(1 − 𝑛)2 − 𝛿3(1 − 𝑛)3) 

= ((
𝑛 − 1

2
)

3

+ 3 (
𝑛 − 1

2
) 𝛿2(1 − 𝑛)2) + 2𝛿 (3 (

𝑛 − 1

2
)

2

𝛿(1 − 𝑛) + 𝛿3(1 − 𝑛)3) 

= (
𝑛−1

2
)

3

− 2𝛿4(𝑛 − 1)3 ≤ 𝑆0. 

 

□ 

Corollary 3. Given a probability distribution 𝑝(𝑥) over 𝑋 = {1,2, . . , 𝑛}, 0 ≤ 𝑆(𝑝) ≤ (
𝑛−1

2
)

3

 holds. 

Proof. The lower bound 0 is by the definition of 𝑆(𝑝) in Equation (6), and occurs when 𝑝𝑖 = 1 for 

some 𝑖 ∈ 𝑋. The upper bound (
𝑛−1

2
)

3

 is the direct result from Lemmas 9 to 14, and occurs when 

𝑝1 = 𝑝𝑛 = 0.5. First, we can repeatedly apply Lemmas 9 and 10 to yield a new distribution 𝑞(𝑥) 

such that 𝑆(𝑞) > 𝑆(𝑝) and 𝑞𝑗 = 0 for 1 < 𝑗 < ⌊𝑚⌋ and for ⌈𝑚⌉ < 𝑗 < 𝑛. Then, we apply Lemmas 

11, 12, and 13 to yield a new probability distribution 𝑟 such that 𝑆(𝑟) > 𝑆(𝑞) and 𝑟𝑗 = 0 for 1 <

𝑗 < 𝑛. Finally, we apply Lemma 14 to show that 𝑆(𝑟) ≤ 𝑆0 where 𝑆0 = (
𝑛−1

2
)

3

 is the value of 𝑆(𝑟) 

when 𝑟1 = 𝑟𝑛 = 0.5. □ 
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