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Abstract: This paper considers a stochastic susceptible exposed infectious recovered (SEIR) epidemic
model with varying population size and vaccination. We aim to study the global dynamics of the
reduced nonlinear stochastic proportional differential system. We first investigate the existence and
uniqueness of global positive solution of the stochastic system. Then the sufficient conditions for
the extinction and permanence in mean of the infectious disease are obtained. Furthermore, we
prove that the solution of the stochastic system has a unique ergodic stationary distribution under
appropriate conditions. Finally, the discussion and numerical simulation are given to demonstrate
the obtained results.

Keywords: Stochastic SEIR model; varying population size; vaccination; permanence in mean;
stationary distribution

1. Introduction

Since the pioneering work of Kermack and Mckendrick [1], mathematical modeling for the
dynamics of epidemic transmission has a realistic significance in predicting and controlling the spread
of infectious diseases in the field of epidemiological research [2–8]. Recently, stochastic differential
equations have been widely applied to physics, engineering, chemistry, and biology [9–21], which have
obtained some novel results.

In fact, with the development of modern medicine, vaccination has become an important strategy
for disease control. Then numerous scholars have investigated the effect of vaccination on disease [22–27].
The epidemic model with a constant population size is relatively effective for diseases with a low
mortality and short duration. However, it is clearly untenable for diseases with a high mortality and
varying populations. Thus epidemic models with varying population size seem to be more reasonable,
which have attracted much interest from the research scientists [28–30]. Moreover, many infectious
diseases incubate inside the hosts for a period of time before becoming infectious, so it is very
meaningful to consider the effect of the incubation period. Based on the above considerations,
Sun et al. [28] studied an SEIR model with varying population size and vaccination. The system
can be described by 

Ṡ =bN − (1− δ)βSI
N

− δ(1− p)βSI
N

− δpS− µS,

Ė =
(1− δ)βSI

N
+

δ(1− p)βSI
N

− αE− µE,

İ =αE− (ε + γ + µ)I,

Ṙ =δpS + γI − µR,

(1)
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where S(t), E(t), I(t) and R(t), respectively, stand for the densities of the susceptible, the exposed,
the infective and recovered individuals at time t, the total population size is denoted by
N(t) = S(t) + E(t) + I(t) + R(t). b represents the inflow rate (including birth and immigration),
µ denotes the outflow rate (including natural death and emigration). The function βSI

N stands for the
standard incidence rate, here β represents the transmission rate of disease. δ (0 ≤ δ < 1) is the vaccine
coverage rate of susceptible individuals, p (0 ≤ p ≤ 1) is the vaccine efficacy, α represents the rate at
which the exposed individuals become infectious, ε is the rate of disease-related death and γ stands
for the recovery rate of infective individuals. The parameters δ and p are all non-negative constants
and b, µ, β, α, ε and γ are positive constants. Moreover, the differential equation of total population
size N(t) is given by Ṅ = (b− µ)N − εI. The authors [28] explored the proportions of individuals in
the four epidemiological classes, namely

s̃ =
S
N

, ẽ =
E
N

, ĩ =
I
N

, r̃ =
R
N

. (2)

It is easy to get that the variables s̃, ẽ, ĩ and r̃ satisfy the following system of differential equations

˙̃s =b− (1− δp)βs̃ĩ− (δp + b)s̃ + εs̃ĩ,
˙̃e =(1− δp)βs̃ĩ− (α + b)ẽ + εẽĩ,
˙̃i =αẽ− (ε + γ + b)ĩ + εĩ2,
˙̃r =δps̃ + γĩ− br̃ + εĩr̃.

Since variable r̃ does not appear in the first, second, third equations of the above system. Then the
above system becomes the following reduced system

˙̃s =b− (1− δp)βs̃ĩ− (δp + b)s̃ + εs̃ĩ,
˙̃e =(1− δp)βs̃ĩ− (α + b)ẽ + εẽĩ,
˙̃i =αẽ− (ε + γ + b)ĩ + εĩ2

(3)

which is subject to the constraint r̃ = 1− s̃− ẽ− ĩ. In the region4 =
{(

s̃, ẽ, ĩ
)
∈ R3

+|0 ≤ s̃ + ẽ + ĩ ≤ 1
}

,
they established the epidemiological threshold condition R0, which determines disease extinction or
permanence, where

R0 =
bαβ(1− δp)

(α + b)(δp + b)(ε + γ + b)
.

Meanwhile, they analyzed the global dynamics of system (3) and derived the equilibria
(including the disease-free equilibrium and the endemic equilibrium) and their global stability.
In addition, the parameter restrictions for uniform permanence were obtained.

Nevertheless, the biological populations in the ecosystem are inevitably subjected to uncertain
environmental perturbations. It is worth noting that this phenomenon is ubiquitous in the natural
environment. So various stochastic epidemic models have been proposed and studied [31–36]. To the
best of our knowledge, there are not too many researches on global dynamics of the stochastic
SEIR epidemic model with varying population size and vaccination yet. In this paper, to make this
epidemic model (1) more reasonable and realistic, we suppose the stochastic perturbations are directly
proportional to s̃, ẽ, ĩ and r̃ under the influence of white noise type, influenced on the ˙̃s(t), ˙̃e(t), ˙̃i(t) and
˙̃r(t) in system (1), respectively. This implies the stochastic effects of white noise on the birth and death
rates of S, E, I, R. Then corresponding to system (1), a stochastic version can be reached by
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

dS =

[
bN − (1− δ)βSI

N
− δ(1− p)βSI

N
− δpS− µS

]
dt + σ1SdB1(t),

dE =

[
(1− δ)βSI

N
+

δ(1− p)βSI
N

− αE− µE
]

dt + σ2EdB2(t),

dI = [αE− (ε + γ + µ)I]dt + σ3 IdB3(t),

dR = (δpS + γI − µR)dt + σ4RdB4(t),

(4)

where Bi(t)(i = 1, 2, 3, 4) is the standard Wiener processes with Bi(0) = 0 a.s. σi(t)(i = 1, 2, 3, 4) stands
for a continuous and bounded function for any t ≥ 0 and σ2

i (t)(i = 1, 2, 3, 4) represents the intensities
of Wiener processes. Furthermore, the differential equation of total population size N(t) is given by
the following form

dN = [(b− µ)N − εI]dt + σ1SdB1(t) + σ2EdB2(t) + σ3 IdB3(t) + σ4RdB4(t).

From (2), the system (4) becomes the following proportional system



ds̃ =
[
b− (1− δp)βs̃ĩ− (δp + b)s̃ + εs̃ĩ− σ2

1 s̃2 + s̃
(

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2 + σ2

4 r̃2
)]

dt

+ σ1 s̃(1− s̃)dB1(t)− σ2 s̃ẽdB2(t)− σ3 s̃ĩdB3(t)− σ4 s̃r̃dB4(t),

dẽ =
[
(1− δp)βs̃ĩ− (α + b)ẽ + εẽĩ− σ2

2 ẽ2 + ẽ
(

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2 + σ2

4 r̃2
)]

dt

− σ1 s̃ẽdB1(t) + σ2 ẽ(1− ẽ)dB2(t)− σ3 ẽĩdB3(t)− σ4 ẽr̃dB4(t),

dĩ =
[
αẽ− (ε + γ + b)ĩ + εĩ2 − σ2

3 ĩ2 + ĩ
(

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2 + σ2

4 r̃2
)]

dt

− σ1 s̃ĩdB1(t)− σ2 ẽĩdB2(t) + σ3 ĩ
(

1− ĩ
)

dB3(t)− σ4 ĩr̃dB4(t),

dr̃ =
[
δps̃ + γĩ− br̃ + εĩr̃− σ2

4 r̃2 + r̃
(

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2 + σ2

4 r̃2
)]

dt

− σ1 s̃r̃dB1(t)− σ2 ẽr̃dB2(t)− σ3 ĩr̃dB3(t) + σ4r̃(1− r̃)dB4(t).

(5)

It is worthy to note that, the variables s̃, ẽ, ĩ and r̃ satisfy the relation r̃ = 1− s̃− ẽ− ĩ, we can omit
analysis of the fourth equation of system (5) and explore the following reduced system



ds̃ =
[

b− (1− δp)βs̃ĩ− (δp + b)s̃ + εs̃ĩ− σ2
1 s̃2 + s̃

(
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2

+ σ2
4

(
1− s̃− ẽ− ĩ

)2
)]

dt + σ1 s̃(1− s̃)dB1(t)− σ2 s̃ẽdB2(t)− σ3 s̃ĩdB3(t)

− σ4 s̃
(

1− s̃− ẽ− ĩ
)

dB4(t),

dẽ =
[
(1− δp)βs̃ĩ− (α + b)ẽ + εẽĩ− σ2

2 ẽ2 + ẽ
(

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2

+ σ2
4

(
1− s̃− ẽ− ĩ

)2
)]

dt− σ1 s̃ẽdB1(t) + σ2 ẽ(1− ẽ)dB2(t)− σ3 ẽĩdB3(t)

− σ4 ẽ
(

1− s̃− ẽ− ĩ
)

dB4(t),

dĩ =
[

αẽ− (ε + γ + b)ĩ + εĩ2 − σ2
3 ĩ2 + ĩ

(
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2 + σ2
4

(
1− s̃− ẽ− ĩ

)2
)]

dt

− σ1 s̃ĩdB1(t)− σ2 ẽĩdB2(t) + σ3 ĩ
(

1− ĩ
)

dB3(t)− σ4 ĩ
(

1− s̃− ẽ− ĩ
)

dB4(t)

(6)

with the initial value
(

s̃(0), ẽ(0), ĩ(0)
)
∈ R3

+ and s̃(0) + ẽ(0) + ĩ(0) < 1.



Entropy 2018, 20, 376 4 of 20

Since system (6) is a three-dimensional stochastic system with many high-order nonlinear terms,
this makes the stochastic analysis novel and more complex than [34,36].

Throughout this article, unless otherwise specified, let (Ω, F , {F}t≥0,P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and
right continuous while F0 contains all P-null sets). Further suppose Bi(t)(i = 1, 2, 3, 4) stands for the
mutually independent standard Wiener processes defined on the complete probability space Ω. For an
integrable function x(t) on [0,+∞), let us define 〈x(t)〉 = 1

t
∫ t

0 x(r)dr.

2. Global Positive Solution

The following Itô’s formula will be used frequently in the sequel.

Lemma 1. [37] Assume that X(t) ∈ R+ is an Itô’s process of the form

dX(t) = F(X(t−), t−)dt + G(X(t−), t−)dB(t),

where F : Rn × R+ × S→ Rn and G : Rn × R+ × S→ Rn are measurable functions.
Given V ∈ C2,1(Rn × R+ × S; R+), we define the operator LV by

LV(X, t) =Vt(X, t) + VX(X, t)F(X, t) +
1
2

trace
[

GT(X, t)VXX(X, t)G(X, t)
]

,

where

Vt(X, t) =
∂VX(X, t)

∂t
, VX(X, t) =

(
∂VX(X, t)

∂X1
, ...,

∂VX(X, t)
∂Xn

)
, VXX(X, t) =

(
∂2VX(X, t)

∂Xi∂Xj

)
n×n

.

Then the generalized Itô’s formula is given by

dV(X, t) =LV(X, t)dt + VX(X, t)G(X, t)dB(t).

To explore the dynamical behaviors of a population system, we first concern the global existence
and positivity of the solutions of system (6).

Lemma 2. For any given initial value
(

s̃(0), ẽ(0), ĩ(0)
)
∈ R3

+ and s̃(0) + ẽ(0) + ĩ(0) < 1, the system (6)

has a unique positive local solution (s̃(t), ẽ(t), ĩ(t)) for t ∈ [−ω, τe), where τe is the explosion time [37].

Theorem 1. For any given initial value
(

s̃(0), ẽ(0), ĩ(0)
)
∈ R3

+ and s̃(0) + ẽ(0) + ĩ(0) < 1, the system (6)

has a unique positive solution
(

s̃(t), ẽ(t), ĩ(t)
)
∈ R3

+ on t > 0 a.s.

Proof. The following proof is divided into two parts.
Part I. Since the coefficients of the system (6) satisfy local Lipschitz condition, from Lemma 2, it is
easy to see that the system (6) has a unique positive local solution

(
s̃(t), ẽ(t), ĩ(t)

)
for any given initial

value
(

s̃(0), ẽ(0), ĩ(0)
)
∈ R3

+ and s̃(0) + ẽ(0) + ĩ(0) < 1.
Part II. Now we prove that the positive solution is global, that is τe = ∞ a.s. Let k0 ≥ 0 be sufficiently
large such that s̃(0), ẽ(0) and ĩ(0) all lie in

[
1
k0

, k0

]
. For each integer k ≥ k0, let us define the stopping time

τk = inf
{

t ∈ [−ω, τe) : s̃(t) /∈
(

1
k

, k
)

, ẽ(t) /∈
(

1
k

, k
)

or ĩ(t) /∈
(

1
k

, k
)}

,

where we define inf ∅ = ∞ (∅ stands for the empty set). Evidently, τk is strictly increasing when
k→ ∞. Let τ∞ = lim

k→∞
τk, thus τ∞ ≤ τe a.s. So we just need to show that τ∞ = ∞ a.s. If τ∞ = ∞ is untrue,
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then there exist two constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Hence, there exists
k1 ≥ k0(k1 ∈ N+) such that

P{τk ≤ T} ≥ ε, k ≥ k1. (7)

Define a C2-function V: R3
+ → R+ by

V
(

s̃, ẽ, ĩ
)
=− ln

(
1− s̃− ẽ− ĩ

)
− ln s̃− ln ẽ− ln ĩ− 3.

The non-negativity of V (̃s, ẽ, ĩ) can be obtained from m− 1− ln m ≥ 0, m > 0.
In terms of the multi-dimensional Itô’s formula and system (6), we have

dV =LVdt + σ1 (4̃s− 1)dB1(t) + σ2 (4̃e− 1)dB2(t) + σ3

(
4̃i− 1

)
dB3(t)

+ σ4

(
3− 4̃s− 4̃e− 4̃i

)
dB4(t),

where LV is given in Appendix A in detail. Then we have

LV ≤β + δp + 4b + ε + α + γ +
1
2

σ2
1 +

1
2

σ2
2 +

1
2

σ2
3 +

1
2

σ2
4

:=M0,

where M0 is a positive constant.
So we get

dV ≤M0dt + σ1 (4̃s− 1)dB1(t) + σ2 (4̃e− 1)dB2(t) + σ3

(
4̃i− 1

)
dB3(t)

+ σ4

(
3− 4̃s− 4̃e− 4̃i

)
dB4(t).

(8)

Integrating both sides of (8) from 0 to τk ∧ T and then taking the expectation yield

EV
(

s̃(τk ∧ T), ẽ(τk ∧ T), ĩ(τk ∧ T)
)
≤V

(
s̃(0), ẽ(0), ĩ(0)

)
+E

∫ τk∧T

0
M0dt

≤V
(

s̃(0), ẽ(0), ĩ(0)
)
+ M0T.

(9)

Let Ωk = {τk ≤ T}, k ≥ k1 and from (7), we have P(Ωk) ≥ ε. Notice that for every ω ∈ Ωk,
there exists s̃(τk, ω), ẽ(τk, ω) or ĩ(τk, ω) equals either 1

k or k. Thus

V
(

s̃(τk, ω), ẽ(τk, ω), ĩ(τk, ω)
)
≥
(

1
k
− 1− ln

1
k

)
∧ (k− 1− ln k). (10)

By virtue of (9) and (10), we have

V
(

s̃(0), ẽ(0), ĩ(0)
)
+ M0T ≥E

[
1Ωk(ω)V

(
s̃(τk, ω), ẽ(τk, ω), ĩ(τk, ω)

)]
≥ε

[(
1
k
− 1− ln

1
k

)
∧ (k− 1− ln k)

]
,

here 1Ωk(ω) represents the indicator function of Ωk(ω).
Let k→ ∞, which implies

∞ > V
(

s̃(0), ẽ(0), ĩ(0)
)
+ M0T = ∞

is a contradiction. Obviously, we get that τ∞ = ∞. The proof of Theorem 1 is complete.



Entropy 2018, 20, 376 6 of 20

3. Extinction

For a population system, the parameter conditions of disease extinction and permanence have
become an important issue that attracts more and more attention in real life. In this section, we mainly
investigate the extinction of disease and leave the argument of permanence to the next section.

Theorem 2. Let
(

s̃(t), ẽ(t), ĩ(t)
)

be the solution of system (6) with the initial value
(

s̃(0), ẽ(0), ĩ(0)
)
∈ R3

+

and s̃(0) + ẽ(0) + ĩ(0) < 1. If the parameter conditions

M1 < 2(1− $)α, ε ≤ (1− δp)β < ε + γ + b

hold, then

lim sup
t→∞

ln
(

ẽ(t) + $̃i(t)
)

t
≤ ($− 1)α +

M1

2
< 0 a.s.,

where

$ =
−(ε + γ + b− α) +

√
(ε + γ + b− α)2 + 4(1− δp)αβ

2α

and

M1 = max
{

σ2
1 ,
(

1− $2
)

σ2
3 , σ2

4

}
,

namely, ẽ(t) and ĩ(t) tend to zero exponentially a.s. That is to say, the exposed and infective individuals go to
extinction almost surely.

Proof. Let us define a differentiable function V by

V = ln
(

ẽ(t) + $̃i(t)
)

,

here $ is a positive constant to be determined later. According to the Itô’s formula and system (6), we have

dV =LVdt− σ1s̃dB1(t) +
σ2ẽ
(

1− ẽ− $̃i
)

ẽ + $̃i
dB2(t) +

σ3̃i
(

$− ẽ− $̃i
)

ẽ + $̃i
dB3(t)

− σ4

(
1− s̃− ẽ− ĩ

)
dB4(t),

(11)

where LV is given in Appendix B in detail. One can derive that

dV ≤
[
($− 1)α +

M1

2

]
dt− σ1s̃dB1(t) +

σ2ẽ
(

1− ẽ− $̃i
)

ẽ + $̃i
dB2(t) +

σ3̃i
(

$− ẽ− $̃i
)

ẽ + $̃i
dB3(t)

− σ4

(
1− s̃− ẽ− ĩ

)
dB4(t),

(12)

here M1 = max
{

σ2
1 ,
(
1− $2) σ2

3 , σ2
4
}

. Then, integrating from 0 to t and dividing by t on both sides
of (12) yield

ln
(

ẽ(t) + $̃i(t)
)

t
≤ ($− 1)α +

M1

2
+

ln
(

ẽ(0) + $̃i(0)
)

t
+

M̃(t)
t

,

here
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M̃(t) =− σ1

∫ t

0
s̃(r)dB1(r) + σ2

∫ t

0

ẽ(r)
(

1− ẽ(r)− $̃i(r)
)

ẽ(r) + $̃i(r)
dB2(r)

+ σ3

∫ t

0

ĩ(r)
(

$− ẽ(r)− $̃i(r)
)

ẽ(r) + $̃i(r)
dB3(r)− σ4

∫ t

0

(
1− s̃(r)− ẽ(r)− ĩ(r)

)
dB4(r).

In a similar way as [38], making use of the strong law of large numbers [37] yields

lim
t→∞

M̃(t)
t

= 0 a.s.

Therefore,

lim sup
t→∞

ln
(

ẽ(t) + $̃i(t)
)

t
≤ ($− 1)α +

M1

2
< 0 a.s.,

which shows that
lim
t→∞

ẽ(t) = 0, lim
t→∞

ĩ(t) = 0 a.s.

The proof of Theorem 2 is complete.

4. Permanence in Mean

Theorem 3. Let
(

s̃(t), ẽ(t), ĩ(t)
)

be the solution of system (6) with the initial value
(

s̃(0), ẽ(0), ĩ(0)
)
∈ R3

+

and s̃(0) + ẽ(0) + ĩ(0) < 1. If the parameter condition

3
√

b(1− δp)βα >
δp + 3b + α + ε + γ + 1

2 σ2
1 + 1

2 σ2
2 + 1

2 σ2
3

3

holds, then
ĩ ≤ lim inf

t→∞

〈̃
i(t)
〉
≤ lim sup

t→∞

〈̃
i(t)
〉
≤ ĩ a.s.,

where

ĩ =
3 3
√

b(1− δp)βα−
(

δp + 3b + α + ε + γ + 1
2 σ2

1 + 1
2 σ2

2 + 1
2 σ2

3

)
(1− δp)β

and

ĩ =
2b + α + ε + γ + 1

2 σ2
2 + 1

2 σ2
3

2ε
,

that is to say, the infective individuals ĩ(t) are permanent in mean almost surely.

Proof. The following proof is divided into two steps.
Step I. According to the Itô’s formula and system (6), we have

d
(

ln s̃ + ln ẽ + ln ĩ
)
=

[
b
s̃
− (1− δp)β̃i + 3ε̃i +

(1− δp)βs̃̃i
ẽ

+
αẽ
ĩ
+

3
2

σ2
1 s̃2 +

3
2

σ2
2 ẽ2 +

3
2

σ2
3 ĩ2

+
3
2

σ2
4

(
1− s̃− ẽ− ĩ

)2
−
(

δp + 3b + α + ε + γ +
1
2

σ2
1 +

1
2

σ2
2

+
1
2

σ2
3

)]
dt + σ1 (1− 3̃s)dB1(t) + σ2 (1− 3̃e)dB2(t)

+ σ3

(
1− 3̃i

)
dB3(t)− 3σ4

(
1− s̃− ẽ− ĩ

)
dB4(t).

(13)
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Integrating from 0 to t and dividing by t on both sides of (13) lead to

ln s̃(t)
t

+
ln ẽ(t)

t
+

ln ĩ(t)
t
≥3 3
√

b(1− δp)βα− (1− δp)β
〈̃

i
〉
−
(

δp + 3b + α + ε + γ

+
1
2

σ2
1 +

1
2

σ2
2 +

1
2

σ2
3

)
+

ln s̃(0)
t

+
ln ẽ(0)

t
+

ln ĩ(0)
t

+
M(t)

t
,

here

M(t) =σ1

∫ t

0
(1− 3̃s(r))dB1(r) + σ2

∫ t

0
(1− 3̃e(r))dB2(r) + σ3

∫ t

0

(
1− 3̃i(r)

)
dB3(r)

− 3σ4

∫ t

0

(
1− s̃(r)− ẽ(r)− ĩ(r)

)
dB4(r).

The detail derivation process for the above inequality is given in Appendix C.
In a similar way as [38], making use of the strong law of large numbers [37] leads to

lim
t→∞

M(t)
t

= 0 a.s.

Then, by virtue of −∞ < ln s̃(t) < 0, −∞ < ln ẽ(t) < 0, −∞ < ln ĩ(t) < 0 (̃s + ẽ + ĩ + r̃ = 1) and
δp < 1, it is easy to get that

lim inf
t→∞

〈̃
i(t)
〉
≥ ĩ > 0 a.s.

Step II. Similarly, using the Itô’s formula and system (6), we have

d
(

ln ẽ + ln ĩ
)
=

[
(1− δp)βs̃̃i

ẽ
+

αẽ
ĩ
+ 2ε̃i + σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2 + σ2
4

(
1− s̃− ẽ− ĩ

)2

−
(

2b + α + ε + γ +
1
2

σ2
2 +

1
2

σ2
3

)]
dt− 2σ1s̃dB1(t) + σ2 (1− 2̃e)dB2(t)

+ σ3

(
1− 2̃i

)
dB3(t)− 2σ4

(
1− s̃− ẽ− ĩ

)
dB4(t).

(14)

Integrating from 0 to t and dividing by t on both sides of (14) result in

ln ẽ(t)
t

+
ln ĩ(t)

t
=(1− δp)β

〈
s̃̃i
ẽ

〉
+ α

〈
ẽ
ĩ

〉
+ 2ε

〈̃
i
〉
+

〈
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2 + σ2
4

(
1− s̃− ẽ− ĩ

)2
〉

−
(

2b + α + ε + γ +
1
2

σ2
2 +

1
2

σ2
3

)
+

ln ẽ(0)
t

+
ln ĩ(0)

t
+

M̂(t)
t

≥2ε
〈̃

i
〉
−
(

2b + α + ε + γ +
1
2

σ2
2 +

1
2

σ2
3

)
+

ln ẽ(0)
t

+
ln ĩ(0)

t
+

M̂(t)
t

,

here

M̂(t) =− 2σ1

∫ t

0
s̃(r)dB1(r) + σ2

∫ t

0
(1− 2̃e(r))dB2(r) + σ3

∫ t

0

(
1− 2̃i(r)

)
dB3(r)

− 2σ4

∫ t

0

(
1− s̃(r)− ẽ(r)− ĩ(r)

)
dB4(r).

In a similar way as [38], using the strong law of large numbers [37], we have

lim
t→∞

M̂(t)
t

= 0 a.s.

Therefore,
lim sup

t→∞

〈̃
i(t)
〉
≤ ĩ > 0 a.s.
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The proof of Theorem 3 is complete.

5. Stationary Distribution and Ergodicity

Recently, the stationary distribution attract deep research interests of many authors [32–35].
The ergodicity is one of the most important properties for the stochastic system, and geometric
ergodicity for finite-dimensional systems has been shown in detail and well-developed in many earlier
works [39,40]. In this section, based on the theory of Khasminskii [41] and the Lyapunov function
method, we explore the conditions of the existence of an ergodic stationary distribution, which shows
that the epidemic disease will prevail.

Assume X(t) be a time-homogeneous Markov process in Dn ⊂ Rn, which is described by the
stochastic differential equation

dX(t) = b(X)dt +
n

∑
η=1

ση(X)dBη(t),

here Dn stands for a n-dimensional Euclidean space.
The diffusion matrix is as follows:

A(x) = (aij(x)), aij(x) =
n

∑
η=1

σi
η(x)σ

j
η(x).

Assumption 1. Assume that there exists a bounded domain U ⊂ Dn with regular boundary Γ such that
U ⊂ Dn( U is the closure of U), satisfying the following properties:
(i) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix A(x) is
bounded away from zero.
(ii) If x ∈ Dn\U, the mean time τ at which a path issuing from x reaches the set U is finite, and sup

x∈Θ
Exτ < ∞

for every compact subset Θ ⊂ Dn.

Lemma 3. [41] When Assumption 1 holds, then the Markov process X(t) has a stationary distribution π(·).
In addition, when f (·) is a function integrable with respect to the measure π, then

Px

{
lim

T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Dn

f (x)π(dx)
}
= 1

for all x ∈ Dn.

Remark 1. To prove Assumption 1(i) [42], it suffices to demonstrate that F is uniformly elliptical in any
bounded domain H, here

Fu = b(x)ux +
1
2

trace(A(x)uxx),

namely, there exists a positive number Z such that

n

∑
i,j=1

aij(x)ξiξ j ≥ Z|ξ|2, x ∈ H, ξ ∈ Rn.

To prove Assumption 1(ii) [43], it suffices to demonstrate that there exist some neighborhood U and
a nonnegative C2-function V such that ∀x ∈ Dn\U, LV(x) < 0.

Making use of the Lemma 3, we can obtain the main results as follows.
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Theorem 4. Let
(

s̃(t), ẽ(t), ĩ(t)
)

be the solution of system (6) with the initial value
(

s̃(0), ẽ(0), ĩ(0)
)
∈ R3

+

and s̃(0) + ẽ(0) + ĩ(0) < 1. If the parameter condition

3
√

b(1− δp)βα >
2δp + 5b + α + 2ε + 2γ + 2σ2

1 + 2σ2
2 + 2σ2

3 + 1
2 σ2

4
3

holds, then the system (6) has a unique stationary distribution π(·) and it has ergodic property.

Proof. Now let us define a positive-definite function V by

V = − ln
(

s̃ + ẽ + ĩ
)
− ln s̃− ln ẽ− ln ĩ− ln r̃.

Using the Itô’s formula yields

LV ≤ −b
s̃
− (1− δp)βs̃̃i

ẽ
− αẽ

ĩ
− b

s̃ + ẽ + ĩ
− δps̃

r̃
− γ̃i

r̃
+ M1, (15)

here
M1 = (1− δp)β + 2δp + 5b + α + 2ε + 2γ + 2σ2

1 + 2σ2
2 + 2σ2

3 +
1
2

σ2
4 .

The detail derivation process for the above inequality of LV is given in Appendix D.
Next let us construct the following compact subset U:

U =
{(

s̃, ẽ, ĩ
)
∈ Ũ : ψ1 ≤ s̃ < 1, ψ2 ≤ ẽ < 1, ψ3 ≤ ĩ < 1, ψ4 ≤ s̃ + ẽ + ĩ ≤ 1− ψ4

}
,

where
Ũ =

{
0 < s̃ < 1, 0 < ẽ < 1, 0 < ĩ < 1, 0 < s̃ + ẽ + ĩ < 1

}
and ψi ∈ (0, 1)(i = 1, 2, 3, 4) is a sufficiently small constant satisfying the following conditions:

ψ2 = ψ1
2ψ3, ψ4 = ψ1

2 = ψ3
2, (16)

− b
ψ1

+ M1 ≤ −1, (17)

− (1− δp)β
ψ1

+ M1 ≤ −1, (18)

(1− δp)βψ3 − b < 0, (19)

− b
ψ4

+ M1 ≤ −1, (20)

− δp
ψ1
− γ

ψ3
+ M1 ≤ −1. (21)

Then
Ũ\U = U1 ∪U2 ∪U3 ∪U4 ∪U5,

with

U1 =
{(

s̃, ẽ, ĩ
)
∈ Ũ : 0 < s̃ < ψ1

}
, U2 =

{(
s̃, ẽ, ĩ

)
∈ Ũ : ψ1 ≤ s̃ < 1, 0 < ẽ < ψ2, ψ3 ≤ ĩ < 1

}
,

U3 =
{(

s̃, ẽ, ĩ
)
∈ Ũ : 0 < ĩ < ψ3

}
, U4 =

{(
s̃, ẽ, ĩ

)
∈ Ũ : 0 < s̃ + ẽ + ĩ < ψ4

}
,

U5 =
{(

s̃, ẽ, ĩ
)
∈ Ũ : ψ1 ≤ s̃ < 1, ψ3 ≤ ĩ < 1, 1− ψ4 < s̃ + ẽ + ĩ < 1

}
.
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Now we prove the negativity of LV for any Ũ\U.
Case I. If

(
s̃, ẽ, ĩ

)
∈ U1, it follows from (A1) and (17) that

LV ≤ −b
s̃
+ M1 ≤ −

b
ψ1

+ M1 ≤ −1.

Case II. If
(

s̃, ẽ, ĩ
)
∈ U2, (16) and (18) derive that

LV ≤ − (1− δp)βs̃̃i
ẽ

+ M1 ≤ −
(1− δp)βψ1ψ3

ψ2
+ M1 = − (1− δp)β

ψ1
+ M1 ≤ −1.

Case III. If
(

s̃, ẽ, ĩ
)
∈ U3, (A1) and (19) yield that

LV ≤− b− b
s̃
− (1− δp)βs̃̃i

ẽ
− αẽ

ĩ
+ (1− δp)βψ3 + 2δp + 5b + α + 2ε + 2γ

+ 2σ2
1 + 2σ2

2 + 2σ2
3 +

1
2

σ2
4

≤− 3 3
√

b(1− δp)βα + 2δp + 5b + α + 2ε + 2γ + 2σ2
1 + 2σ2

2 + 2σ2
3 +

1
2

σ2
4 < 0.

Case IV. If
(

s̃, ẽ, ĩ
)
∈ U4, (A1) and (20) imply that

LV ≤ − b
s̃ + ẽ + ĩ

+ M1 ≤ −
b

ψ4
+ M1 ≤ −1.

Case V. If
(

s̃, ẽ, ĩ
)
∈ U5, it follows from (A1), (16) and (21) that

LV ≤ −δps̃
r̃
− γ̃i

r̃
+ M1 ≤ −

δpψ1

ψ4
− γψ3

ψ4
+ M1 = − δp

ψ1
− γ

ψ3
+ M1 ≤ −1.

Define

φ = max
{
−1,−3 3

√
b(1− δp)βα + 2δp + 5b + α + 2ε + 2γ + 2σ2

1 + 2σ2
2 + 2σ2

3 +
1
2

σ2
4

}
< 0.

Obviously, one can see that LV ≤ φ < 0 for all
(

s̃, ẽ, ĩ
)
∈ Ũ\U, which shows that Assumption 1(ii)

is satisfied. On the other hand, there exists a positive number

Z =min
{(

σ2
1 (1− s̃)2 + σ2

2 ẽ2 + σ2
3 ĩ2 + σ2

4

(
1− s̃− ẽ− ĩ

)2
)

s̃2,
(

σ2
1 s̃2 + σ2

2 (1− ẽ)2 + σ2
3 ĩ2 + σ2

4

×
(

1− s̃− ẽ− ĩ
)2
)

ẽ2,
(

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3

(
1− ĩ

)2
+ σ2

4

(
1− s̃− ẽ− ĩ

)2
)

ĩ2,
(

s̃, ẽ, ĩ
)
∈ Ũ

}
such that

3

∑
i,j=1

aijξiξ j =

(
σ2

1 (1− s̃)2 + σ2
2 ẽ2 + σ2

3 ĩ2 + σ2
4

(
1− s̃− ẽ− ĩ

)2
)

s̃2ξ2
1 +

(
σ2

1 s̃2 + σ2
2 (1− ẽ)2 + σ2

3 ĩ2

+ σ2
4

(
1− s̃− ẽ− ĩ

)2
)

ẽ2ξ2
2 +

(
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3

(
1− ĩ

)2
+ σ2

4

(
1− s̃− ẽ− ĩ

)2
)

ĩ2ξ2
3

≥Z|ξ|2,
(

s̃, ẽ, ĩ
)
∈ Ũ, ξ ∈ R3,
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which shows that Assumption 1(i) is satisfied. Consequently, the system (6) has a unique stationary
distribution π(·) and it has ergodic property. The proof of Theorem 4 is complete.

6. Simulations and Conclusions

6.1. Simulations

Next, in order to support the results of the above theorems, we carry out some computer simulations.
In Figure 1, take s̃(0) = 0.3, ẽ(0) = 0.25, ĩ(0) = 0.15, b = 0.15, β = 0.5, γ = 0.3, α = 0.2, δ = 0.25,

p = 0.2, ε = 0.15 and σ1 = σ2 = σ3 = σ4 = 0.25. Then

M1 = max
{

σ2
1 ,
(

1− $2
)

σ2
3 , σ2

4

}
= 0.0625 < 2(1− $)α = 0.0652

and
ε = 0.15 < (1− δp)β = 0.475 < ε + γ + b = 0.6

satisfy the parameter conditions in Theorem 2, we can get that the exposed and infective individuals
go to extinction almost surely. Obviously, Figure 1 validates our results of the Theorem 2.

Figure 1. Time sequence diagram of system (6) for extinctions of the exposed and infective individuals.

In Figure 2, take s̃(0) = 0.15, ẽ(0) = 0.2, ĩ(0) = 0.15, b = 0.02, β = 0.9, γ = 0.01, α = 0.1, δ = 0.02,
p = 0.02, ε = 0.16, σ1 = 0.05, σ2 = 0.05, σ3 = 0.05 and σ4 = 0.1. Obviously,

0.1216 = 3
√

b(1− δp)βα >
δp + 3b + α + ε + γ + 1

2 σ2
1 + 1

2 σ2
2 + 1

2 σ2
3

3
= 0.1114

satisfies the parameter condition in Theorem 3, then

0.0342 = ĩ ≤ lim inf
t→∞

〈̃
i(t)
〉
≤ lim sup

t→∞

〈̃
i(t)
〉
≤ ĩ = 0.9766,

we can get that the infective individuals ĩ(t) are permanent in mean almost surely. As expected,
Figure 2 confirms our results of the Theorem 3.

From Figures 2 and 3, a set of large stochastic parameter values σ1 = σ2 = σ3 = σ4 = 0.25 can lead
to infective individuals go to extinction (see Figure 2), while infective individuals can be permanent
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in mean under the condition of a set of small stochastic parameter values σ1 = σ2 = σ3 = 0.05 and
σ4 = 0.1 (see Figure 3).

Figure 2. Time sequence diagram of system (6) for permanence in mean of the infective individuals.

0 500 1000 1500 2000
0
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0.1

0.15

(a)

t

s̃
(t
)

 

 

s̃(t)

0 500 1000 1500 2000
0
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0.1

0.15

0.2

(b)

t

ẽ
(t
)

 

 

ẽ(t)
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0

0.1

0.2

(c)

t

ĩ
(t
)

 

 

ĩ(t)
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0
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(d)

The density function of s̃(t)

0.08 0.09 0.1 0.11 0.12
0

200

400

600

800

The density function of ẽ(t)

(e)

0.14 0.16 0.18 0.2 0.22
0

100

200

300

400

The density function of ĩ(t)

(f)

Figure 3. (a–c) represent the solutions of system (6); (d–e) stand for the density functions of s̃(t),
ẽ(t) and ĩ(t), respectively.
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In Figure 3, take s̃(0) = 0.15, ẽ(0) = 0.2, ĩ(0) = 0.15, b = 0.02, β = 2.1, γ = 0.01, α = 0.2, δ = 0.02,
p = 0.02, ε = 0.1 and σ1 = σ2 = σ3 = σ4 = 0.01. Then

0.2033 = 3
√

b(1− δp)βα >
2δp + 5b + α + 2ε + 2γ + 2σ2

1 + 2σ2
2 + 2σ2

3 + 1
2 σ2

4
3

= 0.1738

satisfies the parameter condition in Theorem 4, we can get that the stochastic system (6) has a unique
stationary distribution π(·) and it has ergodic property. Figure 3 indicates that the solution of system (6)
swings up and down in a small neighborhood. According to the density functions in Figure 3d–f,
we can see that there exists a stationary distribution. As expected, Figure 3 supports our results of the
Theorem 4.

The Figures 1–3 above show that the large white noise value can lead to infectious diseases to go to
extinction, which implies that stochastic fluctuations can suppress the disease outbreak, while the small
white noise value can cause infectious diseases to be persistent. In addition, The Figure 3 also shows
the stochastic system (6) has a unique ergodic stationary distribution under appropriate conditions.
Therefore, the numerical simulation examples are completely consistent with the theoretical results of
the Theorems 2–4.

6.2. Conclusions

In this paper, we apply stochastic analysis methods to study the global dynamics of
a high-dimensional stochastic reduced proportional SEIR epidemic system which makes the analysis
novel and complex. We obtain the existence of a unique global positive solution and parameter
conditions of extinction or permanence in mean. Furthermore, the solution of the stochastic system has
a unique ergodic stationary distribution under certain sufficient parameter conditions. Cubic terms
of s̃, ẽ, ĩ and multiple stochastic terms for dBi(t)(i = 1, 2, 3, 4) in system (6) make the analysis more
difficult and complex than the models in [34,36]. Some ingenious inequality techniques are used to
deal with cubic terms of s̃, ẽ, ĩ of system (6). Therefore, compare with previous methods and research
results, we develop previous methods and improve the main results of previous studies.

We summarize the main conclusions as follows:

(I) When

M1 < 2(1− $)α, ε ≤ (1− δp)β < ε + γ + b

hold, then

lim sup
t→∞

ln
(

ẽ(t) + $ĩ(t)
)

t
< 0 a.s.

That is to say, the exposed and infective individuals go to extinction almost surely.

(II) When

3
√

b(1− δp)βα >
δp + 3b + α + ε + γ + 1

2 σ2
1 + 1

2 σ2
2 + 1

2 σ2
3

3
holds, then

ĩ ≤ lim inf
t→∞

〈
ĩ(t)
〉
≤ lim sup

t→∞

〈
ĩ(t)
〉
≤ ĩ a.s.

That is to say, the infective individuals ĩ(t) are permanent in mean almost surely.

(III) When

3
√

b(1− δp)βα >
2δp + 5b + α + 2ε + 2γ + 2σ2

1 + 2σ2
2 + 2σ2

3 + 1
2 σ2

4
3

holds, then the system (6) has a unique stationary distribution π(·) and it has ergodic property.
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By comparing the above conclusions (II) and (III), we can see that when system (6) has a ergodic
stationary distribution, then the infective individuals ĩ(t) are permanent in mean almost surely.
However, it is not applicable in reverse. The above results of Theorems 2–4 show a large stochastic
disturbance can cause infectious diseases to go to extinction, in other words, the persistent infectious
disease of a deterministic system can become extinct due to the white noise stochastic disturbance.
This implies that stochastic fluctuations can suppress the disease outbreak.
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Appendix A.

Proof of Theorem 1. Define a C2-function V: R3
+ → R+ by

V
(

s̃, ẽ, ĩ
)
=− ln

(
1− s̃− ẽ− ĩ

)
− ln s̃− ln ẽ− ln ĩ− 3.

dV =LVdt + σ1 (4s̃− 1)dB1(t) + σ2 (4ẽ− 1)dB2(t) + σ3

(
4ĩ− 1

)
dB3(t)

+ σ4

(
3− 4s̃− 4ẽ− 4ĩ

)
dB4(t),

where

LV =
b
(

2s̃ + ẽ + ĩ− 1
)

s̃
(

1− s̃− ẽ− ĩ
) − (1− δp)βĩ

(
2s̃ + ẽ + ĩ− 1

)
1− s̃− ẽ− ĩ

−
(δp + b)

(
2s̃ + ẽ + ĩ− 1

)
1− s̃− ẽ− ĩ

+
εĩ
(

4s̃ + 4ẽ + 4ĩ− 3
)

1− s̃− ẽ− ĩ
+

(
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2 + σ2
4

(
1− s̃− ẽ− ĩ

)2
)(

4s̃ + 4ẽ + 4ĩ− 3
)

1− s̃− ẽ− ĩ

−
σ2

1 s̃
(

2s̃ + ẽ + ĩ− 1
)

1− s̃− ẽ− ĩ
+

(1− δp)βs̃ĩ
(

s̃ + 2ẽ + ĩ− 1
)

ẽ
(

1− s̃− ẽ− ĩ
) −

(α + b)
(

s̃ + 2ẽ + ĩ− 1
)

1− s̃− ẽ− ĩ

−
σ2

2 ẽ
(

s̃ + 2ẽ + ĩ− 1
)

1− s̃− ẽ− ĩ
+

αẽ
(

s̃ + ẽ + 2ĩ− 1
)

ĩ
(

1− s̃− ẽ− ĩ
) −

(ε + γ + b)
(

s̃ + ẽ + 2ĩ− 1
)

1− s̃− ẽ− ĩ

−
σ2

3 ĩ
(

s̃ + ẽ + 2ĩ− 1
)

1− s̃− ẽ− ĩ
+

1
2

σ2
1

(
4s̃2 − 2s̃ + 1

)
+

1
2

σ2
2

(
4ẽ2 − 2ẽ + 1

)
+

1
2

σ2
3

(
4ĩ2 − 2ĩ + 1

)
+

1
2

σ2
4

[
3
(

1− s̃− ẽ− ĩ
)2

+
(

s̃ + ẽ + ĩ
)2
]

,
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since r̃ = 1− s̃− ẽ− ĩ and δp < 1, thus

LV ≤ b (s̃− r̃)
s̃r̃

− (1− δp)βĩ (s̃− r̃)
r̃

− (δp + b) (s̃− r̃)
r̃

+
εĩ (1− 4r̃)

r̃
+

(1− δp)βs̃ĩ (ẽ− r̃)
ẽr̃

− (α + b) (ẽ− r̃)
r̃

+
αẽ
(

ĩ− r̃
)

ĩr̃
−

(ε + γ + b)
(

ĩ− r̃
)

r̃
+

1
2

σ2
1 +

1
2

σ2
2 +

1
2

σ2
3 +

1
2

σ2
4

=
b
r̃
− b

s̃
− βs̃ĩ

r̃
+ βĩ +

βδps̃ĩ
r̃
− βδpĩ− δps̃

r̃
+ δp− bs̃

r̃
+ b +

εĩ
r̃
− 4εĩ− εĩ

r̃
+ ε +

βs̃ĩ
r̃

− βs̃ĩ
ẽ
− βδps̃ĩ

r̃
+

βδps̃ĩ
ẽ
− αẽ

r̃
+ α− bẽ

r̃
+ b +

αẽ
r̃
− αẽ

ĩ
− γĩ

r̃
+ γ− bĩ

r̃
+ b

+
1
2

σ2
1 +

1
2

σ2
2 +

1
2

σ2
3 +

1
2

σ2
4

≤ b
r̃
− bs̃

r̃
− bẽ

r̃
− bĩ

r̃
+ βĩ + δp + 3b + ε +

βs̃ĩ
ẽ
(δp− 1) + α + γ +

1
2

σ2
1 +

1
2

σ2
2 +

1
2

σ2
3 +

1
2

σ2
4

≤β + δp + 4b + ε + α + γ +
1
2

σ2
1 +

1
2

σ2
2 +

1
2

σ2
3 +

1
2

σ2
4

:=M0,

where M0 is a positive constant. �

Appendix B.

Proof of Theorem 2.

LV =
1

ẽ + $ĩ

[
(1− δp)βs̃ĩ− (α + b)ẽ + εẽĩ + $αẽ− $(ε + γ + b)ĩ + $εĩ2

]
+

1
2

σ2
1 s̃2

+
1
2

1− 1(
ẽ + $ĩ

)2

 σ2
2 ẽ2 +

1
2

1− $2(
ẽ + $ĩ

)2

 σ2
3 ĩ2 +

1
2

σ2
4

(
1− s̃− ẽ− ĩ

)2
,

since s̃ = 1− ẽ− ĩ− r̃ and δp < 1, thus

LV ≤ 1
ẽ + $ĩ

[
(β− δpβ− $(ε + γ + b))ĩ + (ε− β + δpβ)ẽĩ + ($ε− β + δpβ)ĩ2

+ ($− 1)αẽ
]
+

1
2

σ2
1 s̃2 +

1
2

1− 1(
ẽ + $ĩ

)2

 σ2
2 ẽ2 +

1
2

1− $2(
ẽ + $ĩ

)2

 σ2
3 ĩ2

+
1
2

σ2
4

(
1− s̃− ẽ− ĩ

)2
.

Take

$ =
−(ε + γ + b− α) +

√
(ε + γ + b− α)2 + 4(1− δp)αβ

2α
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such that $($− 1)α = β− δpβ− $(ε + γ + b). Here, it is easy to see that $ ∈ (0, 1). Then one can
derive that

dV ≤
[
($− 1)α +

1
2

σ2
1 s̃2 +

1
2

(
1− $2

)
σ2

3 ĩ2 +
1
2

σ2
4

(
1− s̃− ẽ− ĩ

)2
]

dt− σ1 s̃dB1(t)

+
σ2 ẽ
(

1− ẽ− $ĩ
)

ẽ + $ĩ
dB2(t) +

σ3 ĩ
(

$− ẽ− $ĩ
)

ẽ + $ĩ
dB3(t)− σ4

(
1− s̃− ẽ− ĩ

)
dB4(t)

≤
[
($− 1)α +

M1

2

]
dt− σ1 s̃dB1(t) +

σ2 ẽ
(

1− ẽ− $ĩ
)

ẽ + $ĩ
dB2(t) +

σ3 ĩ
(

$− ẽ− $ĩ
)

ẽ + $ĩ
dB3(t)

− σ4

(
1− s̃− ẽ− ĩ

)
dB4(t),

here M1 = max
{

σ2
1 ,
(
1− $2) σ2

3 , σ2
4
}

. �

Appendix C.

Proof of Theorem 3.

ln s̃(t)
t

+
ln ẽ(t)

t
+

ln ĩ(t)
t

=b
〈

1
s̃

〉
− (1− δp)β

〈
ĩ
〉
+ 3ε

〈
ĩ
〉
+ (1− δp)β

〈
s̃ĩ
ẽ

〉
+ α

〈
ẽ
ĩ

〉
+

〈
3
2

σ2
1 s̃2 +

3
2

σ2
2 ẽ2 +

3
2

σ2
3 ĩ2 +

3
2

σ2
4

(
1− s̃− ẽ− ĩ

)2
〉

−
(

δp + 3b + α + ε + γ +
1
2

σ2
1 +

1
2

σ2
2 +

1
2

σ2
3

)
+

ln s̃(0)
t

+
ln ẽ(0)

t
+

ln ĩ(0)
t

+
M(t)

t

≥
〈

b
1
s̃
+ (1− δp)β

s̃ĩ
ẽ
+ α

ẽ
ĩ

〉
− (1− δp)β

〈
ĩ
〉
−
(

δp + 3b + α + ε

+ γ +
1
2

σ2
1 +

1
2

σ2
2 +

1
2

σ2
3

)
+

ln s̃(0)
t

+
ln ẽ(0)

t
+

ln ĩ(0)
t

+
M(t)

t

≥3 3
√

b(1− δp)βα− (1− δp)β
〈

ĩ
〉
−
(

δp + 3b + α + ε + γ

+
1
2

σ2
1 +

1
2

σ2
2 +

1
2

σ2
3

)
+

ln s̃(0)
t

+
ln ẽ(0)

t
+

ln ĩ(0)
t

+
M(t)

t
.

�

Appendix D.

Proof of Theorem 4. Now let us define a positive-definite function V by

V =− ln
(

s̃ + ẽ + ĩ
)
− ln s̃− ln ẽ− ln ĩ− ln r̃

:= V1 + V2 + V3 + V4 + V5.
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From the Itô’s formula yields

LV1 =− 1
s̃ + ẽ + ĩ

[
b− (δp + b)s̃ + εs̃ĩ− bẽ + εẽĩ− (ε + γ + b)ĩ + εĩ2 − σ2

1 s̃2 − σ2
2 ẽ2 − σ2

3 ĩ2

+
(

s̃ + ẽ + ĩ
) (

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2 + σ2

4 r̃2
) ]

+

r̃2
[

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2 + σ2

4

(
s̃ + ẽ + ĩ

)2
]

2
(

s̃ + ẽ + ĩ
)2

=− b
s̃ + ẽ + ĩ

+
δps̃ + (ε + γ)ĩ

s̃ + ẽ + ĩ
− εĩ +

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2

s̃ + ẽ + ĩ
−
(

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2 +

1
2

σ2
4 r̃2
)

+
r̃2
(

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2
)

2
(

s̃ + ẽ + ĩ
)2 + b.

Similarly,

LV2 =− b
s̃
+ (1− δp)βĩ− εĩ + δp + b +

1
2

σ2
1 −

1
2

(
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2 + σ2
4 r̃2
)

,

LV3 =− (1− δp)βs̃ĩ
ẽ

− εĩ + α + b +
1
2

σ2
2 −

1
2

(
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2 + σ2
4 r̃2
)

,

LV4 =− αẽ
ĩ
− εĩ + ε + γ + b +

1
2

σ2
3 −

1
2

(
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2 + σ2
4 r̃2
)

,

LV5 =− δps̃
r̃
− γĩ

r̃
− εĩ + b +

1
2

σ2
4 −

1
2

(
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2 + σ2
4 r̃2
)

.

Therefore,

LV =− b
s̃ + ẽ + ĩ

− b
s̃
− (1− δp)βs̃ĩ

ẽ
− αẽ

ĩ
− 5εĩ− δps̃

r̃
− γĩ

r̃
+

δps̃ + (ε + γ)ĩ
s̃ + ẽ + ĩ

+
σ2

1 s̃2 + σ2
2 ẽ2 + σ2

3 ĩ2

s̃ + ẽ + ĩ
+

r̃2
(

σ2
1 s̃2 + σ2

2 ẽ2 + σ2
3 ĩ2
)

2
(

s̃ + ẽ + ĩ
)2 + (1− δp)βĩ−

(
3σ2

1 s̃2

+ 3σ2
2 ẽ2 + 3σ2

3 ĩ2 +
5
2

σ2
4 r̃2
)
+

1
2

(
σ2

1 + σ2
2 + σ2

3 + σ2
4

)
+ δp + 5b + α + ε + γ

≤− b
s̃
− (1− δp)βs̃ĩ

ẽ
− αẽ

ĩ
− b

s̃ + ẽ + ĩ
− δps̃

r̃
− γĩ

r̃
+ M1,

(A1)

here
M1 = (1− δp)β + 2δp + 5b + α + 2ε + 2γ + 2σ2

1 + 2σ2
2 + 2σ2

3 +
1
2

σ2
4 .

�
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