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Abstract: Dividing the world into subsystems is an important component of the scientific method.
The choice of subsystems, however, is not defined a priori. Typically, it is dictated by experimental
capabilities, which may be different for different agents. Here, we propose a way to define
subsystems in general physical theories, including theories beyond quantum and classical mechanics.
Our construction associates every agent A with a subsystem SA, equipped with its set of states and its
set of transformations. In quantum theory, this construction accommodates the notion of subsystems
as factors of a tensor product, as well as the notion of subsystems associated with a subalgebra of
operators. Classical systems can be interpreted as subsystems of quantum systems in different ways,
by applying our construction to agents who have access to different sets of operations, including
multiphase covariant channels and certain sets of free operations arising in the resource theory of
quantum coherence. After illustrating the basic definitions, we restrict our attention to closed systems,
that is, systems where all physical transformations act invertibly and where all states can be generated
from a fixed initial state. For closed systems, we show that all the states of all subsystems admit a
canonical purification. This result extends the purification principle to a broader setting, in which
coherent superpositions can be interpreted as purifications of incoherent mixtures.

Keywords: subsystem; agent; conservation of information; purification; group representations;
commuting subalgebras

1. Introduction

The composition of systems and operations is a fundamental primitive in our modelling of
the world. It has been investigated in depth in quantum information theory [1,2], and in the
foundations of quantum mechanics, where composition has played a key role from the early days
of Einstein–Podolski–Rosen [3] and Schroedinger [4]. At the level of frameworks, the most recent
developments are the compositional frameworks of general probabilistic theories [5–15] and categorical
quantum mechanics [16–20].

The mathematical structure underpinning most compositional approaches is the structure of
monoidal category [18,21]. Informally, a monoidal category describes circuits, in which wires represent
systems and boxes represent operations, as in the following diagram:
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The composition of systems is described by a binary operation denoted by ⊗, and referred to as
the “tensor product” (note that ⊗ is not necessarily a tensor product of vector spaces). The system
A⊗ B is interpreted as the composite system made of subsystems A and B. Larger systems are built in
a bottom-up fashion, by combining subsystems together. For example, a quantum system of dimension
d = 2n can arise from the composition of n single qubits.

In some situations, having a rigid decomposition into subsystems is neither the most convenient
nor the most natural approach. For example, in algebraic quantum field theory [22], it is natural
to start from a single system—the field—and then to identify subsystems, e.g., spatial or temporal
modes. The construction of the subsystems is rather flexible, as there is no privileged decomposition
of the field into modes. Another example of flexible decomposition into subsystems arises in quantum
information, where it is crucial to identify degrees of freedom that can be treated as “qubits”. Viola,
Knill, and Laflamme [23] and Zanardi, Lidar, and Lloyd [24] proposed that the partition of a system
into subsystems should depend on which operations are experimentally accessible. This flexible
definition of subsystem has been exploited in quantum error correction, where decoherence free
subsystems are used to construct logical qubits that are untouched by noise [25–30]. The logical qubits
are described by “virtual subsystems" of the total Hilbert space [31], and in general such subsystems
are spread over many physical qubits. In all these examples, the subsystems are constructed through
an algebraic procedure, whereby the subsystems are associated with algebras of observables [32].
However, the notion of “algebra of observables” is less appealing in the context of general physical
theories, because the multiplication of two observables may not be defined. For example, in the
framework of general probabilistic theories [5–15], observables represent measurement procedures,
and there is no notion of “multiplication of two measurement procedures”.

In this paper, we propose a construction of subsystems that can be applied to general physical
theories, even in scenarios where observables and measurements are not included in the framework.
The core of our construction is to associate subsystems to sets of operations, rather than observables.
To fix ideas, it is helpful to think that the operations can be performed by some agent. Given a set
of operations, the construction extracts the degrees of freedom that are acted upon only by those
operations, identifying a “private space” that only the agent can access. Such a private space
then becomes the subsystem, equipped with its own set of states and its own set of operations.
This construction is closely related to an approach proposed by Krämer and del Rio, in which the
states of a subsystem are identified with equivalence classes of states of the global system [33]. In this
paper, we extend the equivalence relation to transformations, providing a complete description of the
subsystems. We illustrate the construction in a several examples, including

1. quantum subsystems associated with the tensor product of two Hilbert spaces,
2. subsystems associated with an subalgebra of self-adjoint operators on a given Hilbert space,
3. classical systems of quantum systems,
4. subsystems associated with the action of a group representation on a given Hilbert space.

The example of the classical systems has interesting implications for the resource theory
of coherence [34–41]. Our construction implies that different types of agents, corresponding to
different choices of free operations, are associated with the same subsystem, namely the largest
classical subsystem of a given quantum system. Specifically, classical systems arise from strictly
incoherent operations [41], physically incoherent operations [38,39], phase covariant operations [38–40],
and multiphase covariant operations (to the best of our knowledge, multiphase covariant operations
have not been considered so far in the resource theory of coherence). Notably, we do not obtain classical
subsystems from the maximally incoherent operations [34] and from the incoherent operations [35,36],



Entropy 2018, 20, 358 3 of 54

which are the first two sets of free operations proposed in the resource theory of coherence. For these
two types of operations, we find that the associated subsystem is the whole quantum system.

After examining the above examples, we explore the general features of our construction.
An interesting feature is that certain properties, such as the impossibility of instantaneous signalling
between two distinct subsystems, arise by fiat, rather then being postulated as physical requirements.
This fact is potentially useful for the project of finding new axiomatizations of quantum theory [42–48]
because it suggests that some of the axioms assumed in the usual (compositional) framework may turn
out to be consequences of the very definition of subsystem. Leveraging on this fact, one could hope to
find axiomatizations with a smaller number of axioms that pinpoint exactly the distinctive features of
quantum theory. In addition, our construction suggests a desideratum that every truly fundamental
axiom should arguably satisfy: an axiom for quantum theory should hold for all possible subsystems of
quantum systems. We call this requirement Consistency Across Subsystems. If one accepts our broad
definition of subsystems, then Consistency Across Subsystems is a very non-trivial requirement, which
is not easily satisfied. For example, the Subspace Axiom [5], stating that all systems with the same
number of distinguishable states are equivalent, does not satisfy Consistency Across Subsystems
because classical subsystems are not equivalent to the corresponding quantum systems, even if they
have the same number of distinguishable states.

In general, proving that Consistence Across Subsystems is satisfied may require great effort.
Rather than inspecting the existing axioms and checking whether or not they are consistent across
subsystems, one can try to formulate the axioms in a way that guarantees the validity of this property.
We illustrate this idea in the case of the Purification Principle [8,12,13,15,49–51], which is the key
ingredient in the quantum axiomatization of Refs. [13,15,42] and plays a central role in the axiomatic
foundation of quantum thermodynamics [52–54] and quantum information protocols [8,15,55–57].
Specifically, we show that the Purification Principle holds for closed systems, defined as systems where
all transformations are invertible, and where every state can be generated from a fixed initial state by
the action of a suitable transformation. Closed systems satisfy the Conservation of Information [58],
i.e., the requirement that physical dynamics should send distinct states to distinct states. Moreover,
the states of the closed systems can be interpreted as “pure”. In this setting, the general notion of
subsystem captures the idea of purification, and extends it to a broader setting, allowing us to regard
coherent superpositions as the “purifications” of classical probability distributions.

The paper is structured as follows. In Section 2, we outline related works. In Section 3, we present
the main framework and the construction of subsystems. The framework is illustrated with five
concrete examples in Section 4. In Section 5, we discuss the key structures arising from our construction,
such as the notion of partial trace and the validity of the no-signalling property. In Section 6, we identify
two requirements, concerning the existence of agents with non-overlapping sets of operations, and
the ability to generate all states from a given initial state. We also highlight the relation between the
second requirement and the notion of causality. We then move to systems satisfying the Conservation
of Information (Section 7) and we formalize an abstract notion of closed systems (Section 8). For such
systems, we provide a dynamical notion of pure states, and we prove that every subsystem satisfies the
Purification Principle (Section 9). A macro-example, dealing with group representations in quantum
theory is provided in Section 10. Finally, the conclusions are drawn in Section 11.

2. Related Works

In quantum theory, the canonical route to the definition of subsystems is to consider commuting
algebras of observables, associated with independent subsystems. The idea of defining independence
in terms of commutation has a long tradition in quantum field theory and, more recently, quantum
information theory. In algebraic quantum field theory [22], the local subsystems associated with
causally disconnected regions of spacetime are described by commuting C*-algebras. A closely related
approach is to associate quantum systems to von Neumann algebras, which can be characterized as
double commutants [59]. In quantum error correction, decoherence free subsystems are associated
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with the commutant of the noise operators [28,29,31]. In this context, Viola, Knill, and Laflamme [23]
and Zanardi, Lidar, and Lloyd [24] made the point that subsystems should be defined operationally,
in terms of the experimentally accessible operations. The canonical approach of associating subsystems
to subalgebras was further generalized by Barnum, Knill, Ortiz, and Viola [60,61], who proposed the
notion of generalized entanglement, i.e., entanglement relative to a subspace of operators. Later, Barnum,
Ortiz, Somma, and Viola explored this notion in the context of general probabilistic theories [62].

The above works provided a concrete model of subsystems that inspired the present work.
An important difference, however, is that here we will not use the notions of observable and expectation
value. In fact, we will not use any probabilistic notion, making our construction usable also in
frameworks where no notion of measurement is present. This makes the construction appealingly
simple, although the flip side is that more work will have to be done in order to recover the probabilistic
features that are built-in in other frameworks.

More recently, del Rio, Krämer, and Renner [63] proposed a general framework for representing
the knowledge of agents in general theories (see also the Ph.D. theses of del Rio [64] and Krämer [65]).
Krämer and del Rio further developed the framework to address a number of questions related to
locality, associating agents to monoids of operations, and introducing a relation, called convergence
through a monoid, among states of a global system [33]. Here, we will extend this relation to
transformations, and we will propose a general definition of subsystem, equipped with its set of
states and its set of transformations.

Another related work is the work of Brassard and Raymond-Robichaud on no-signalling and
local realism [66]. There, the authors adopt an equivalence relation on transformations, stating that
two transformations are equivalent iff they can be transformed into one another through composition
with a local reversible transformation. Such a relation is related to the equivalence relation on
transformations considered in this paper, in the case of systems satisfying the Conservation of
Information. It is interesting to observe that, notwithstanding the different scopes of Ref. [66] and
this paper, the Conservation of Information plays an important role in both. Ref. [66], along with
discussions with Gilles Brassard during QIP 2017 in Seattle, provided inspiration for the present paper.

3. Constructing Subsystems

Here, we outline the basic definitions and the construction of subsystems.

3.1. A Pre-Operational Framework

Our starting point is to consider a single system S, with a given set of states and a given set of
transformations. One could think S to be the whole universe, or, more modestly, our “universe of
discourse”, representing the fragment of the world of which we have made a mathematical model.
We denote by St(S) the set of states of the system (sometimes called the “state space”), and by Transf(S)
be the set of transformations the system can undergo. We assume that Transf(S) is equipped with
a composition operation ◦, which maps a pair of transformations A and B into the transformation
B ◦ A. The transformation B ◦ A is interpreted as the transformation occurring when B happens
right before A. We also assume that there exists an identity operation IS, satisfying the condition
A ◦ IS = IS ◦ A = A for every transformation A ∈ Transf(A). In short, we assume that the physical
transformations form a monoid.

We do not assume any structure on the state space St(S): in particular, we do not assume that
St(S) is convex. We do assume, however, is that there is an action of the monoid Transf(S) on the
set St(S): given an input state ψ ∈ St(S) and a transformation T ∈ Transf(S), the action of the
transformation produces the output state T ψ ∈ St(S).

Example 1 (Closed quantum systems). Let us illustrate the basic framework with a textbook example,
involving a closed quantum system evolving under unitary dynamics. Here, S is a quantum system of dimension
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d, and the state space St(S) is the set of pure quantum states, represented as rays on the complex vector space Cd,
or equivalently, as rank-one projectors. With this choice, we have

St(S) =
{
|ψ〉〈ψ| : |ψ〉 ∈ Cd , 〈ψ|ψ〉 = 1

}
. (2)

The physical transformations are represented by unitary channels, i.e., by maps of the form |ψ〉〈ψ| 7→
U|ψ〉〈ψ|U†, where U ∈ Md(C) is a unitary d-by-d matrix over the complex field. In short, we have

Transf(S) =
{

U ·U† : U ∈ Md(C) , U†U = U†U = I
}

, (3)

where I is the d-by-d identity matrix. The physical transformations form a monoid, with the composition
operation induced by the matrix multiplication (U ·U†) ◦ (V ·V†) := (UV) · (UV)†.

Example 2 (Open quantum systems). Generally, a quantum system can be in a mixed state and can undergo
an irreversible evolution. To account for this scenario, we must take the state space St(S) to be the set of all
density matrices. For a system of dimension d, this means that the state space is

St(S) =
{

ρ ∈ Md(C) : ρ ≥ 0 Tr[ρ] = 1
}

, (4)

where Tr[ρ] = ∑d
n=1〈n|ρ|n〉 denotes the matrix trace, and ρ ≥ 0 means that the matrix ρ is positive semidefinite.

Transf(S) is the set of all quantum channels [67], i.e., the set of all linear, completely positive, and trace-preserving
maps from Md(C) to itself. The action of the quantum channel T on a generic state ρ can be specified through
the Kraus representation [68]

T (ρ) =
r

∑
i=1

TiρT†
i , (5)

where {Ti}r
i=1 ⊆ Md(C) is a set of matrices satisfying the condition ∑r

i=1 T†
i Ti = I. The composition of two

transformations T and S is given by the composition of the corresponding linear maps.

Note that, at this stage, there is no notion of measurement in the framework. The sets St(S) and
Transf(S) are meant as a model of system S irrespectively of anybody’s ability to measure it, or even to
operate on it. For this reason, we call this layer of the framework pre-operational. One can think of the
pre-operational framework as the arena in which agents will act. Of course, the physical description of
such an arena might have been suggested by experiments done earlier on by other agents, but this fact
is inessential for the scope of our paper.

3.2. Agents

Let us introduce agents into the picture. In our framework, an agent A is identified a set of
transformations, denoted as Act(A; S) and interpreted as the possible actions of A on S. Since the
actions must be allowed physical processes, the inclusion Act(A; S) ⊆ Transf(S) must hold. It is
natural, but not strictly necessary, to assume that the concatenation of two actions is a valid action,
and that the identity transformation is a valid action. When these assumptions are made, Act(A; S) is
a monoid. Still, the construction presented in the following will hold not only for monoids, but also for
generic sets Act(A; S). Hence, we adopt the following minimal definition:

Definition 1 (Agents). An agent A is identified by a subset Act(A; S) ⊆ Transf(S).

Note that this definition captures only one aspect of agency. Other aspects—such as the ability
to gather information, make decisions, and interact with other agents—are important too, but not
necessary for the scope of this paper.
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We also stress that the interpretation of the subset Act(A; S) ⊆ Transf(S) as the set of actions of an
agent is not strictly necessary for the validity of our results. Nevertheless, the notion of “agent” here is
useful because it helps explaining the rationale of our construction. The role of the agent is somehow
similar to the role of a “probe charge” in classical electromagnetism. The probe charge need not exist in
reality, but helps—as a conceptual tool—to give operational meaning to the magnitude and direction
of the electric field.

In general, the set of actions available to agent A may be smaller than the set of all physical
transformations on S. In addition, there may be other agents that act on system S independently of
agent A. We define the independence of actions in the following way:

Definition 2. Agents A and B act independently if the order in which they act is irrelevant, namely

A ◦ B = B ◦ A , ∀A ∈ Act(A; S) ,B ∈ Act(B; S) . (6)

In a very primitive sense, the above relation expresses the fact that A and B act on “different
degrees of freedom” of the system.

Remark 1 (Commutation of transformations vs. commutation of observables). Commutation conditions
similar to Equation (6) are of fundamental importance in quantum field theory, where they are known under
the names of “Einstein causality” [69] and “Microcausality” [70]. However, the similarity should not mislead
the reader. The field theoretic conditions are expressed in terms of operator algebras. The condition is that the
operators associated with independent systems commute. For example, a system localized in a certain region
could be associated with the operator algebra A, and another system localized in another region could be associated
with the operator algebra B. In this situation, the commutation condition reads

CD = DC ∀C ∈ A, ∀D ∈ B . (7)

In contrast, Equation (6) is a condition on the transformations, and not on the observables, which are not
even described by our framework. In quantum theory, Equation (6) is a condition on the completely positive
maps, and not to the elements of the algebras A and B. In Section 4, we will bridge the gap between our
framework and the usual algebraic framework, focussing on the scenario where A and B are finite dimensional
von Neumann algebras.

3.3. Adversaries and Degradation

From the point of view of agent A, it is important to identify the degrees of freedom that no other
agent B can affect. In an adversarial setting, agent B can be viewed as an adversary that tries to control
as much of the system as possible.

Definition 3 (Adversary). Let A be an agent and let Act(A; S) be her set of operations. An adversary of A
is an agent B that acts independently of A, i.e., an agent B whose set of actions satisfies

Act(B; S) ⊆ Act(A; S)′ :=
{
B ∈ Transf(S) : B ◦ A = A ◦ B , ∀A ∈ Act(A; S)

}
. (8)

Like the agent, the adversary is a conceptual tool, which will be used to illustrate our notion of
subsystem. The adversary need not be a real physical entity, localized outside the agent’s laboratory,
and trying to counteract the agent’s actions. Mathematically, the adversary is just a subset of the
commutant of Act(A; S). The interpretation of B as an “adversary” is a way to “give life to to the
mathematics”, and to illustrate the rationale of our construction.
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When B is interpreted as an adversary, we can think of his actions as a “degradation”, which
compromises states and transformations. We denote the degradation relation as �B, and write

φ �B ψ iff ∃B ∈ Act(B; S) : ψ = B φ , (9)

S �B T iff ∃B1,B2 ∈ Act(B; S) : T = B1 ◦ S ◦ B2 (10)

for φ, ψ ∈ St(S) or S , T ∈ Transf(S).
The states that can be obtained by degrading ψ will be denoted as

DegB(ψ) :=
{
Bψ : B ∈ Act(B; S)

}
. (11)

The transformations that can be obtained by degrading T will be denoted as

DegB(T ) :=
{
B1 ◦ T ◦ B2 : B1,B2 ∈ Act(B; S)

}
. (12)

The more operations B can perform, the more powerful B will be as an adversary. The most
powerful adversary compatible with the independence condition (6) is the adversary that can
implement all transformations in the commutant of Act(A; S):

Definition 4. The maximal adversary of agent A is the agent A′ that can perform the actions Act
(

A′; S
)

:=
Act(A; S)′.

Note that the actions of the maximal adversary are automatically a monoid, even if the set
Act(A; S) is not. Indeed,

• the identity map IS commutes with all operations in Act(A; S), and
• if B and B′ commute with every operation in Act(A; S), then also their composition B ◦ B′ will

commute with all the operations in Act(A; S).

In the following, we will use the maximal adversary to define the subsystem associated
with agent A.

3.4. The States of the Subsystem

Given an agent A, we think of the subsystem SA to be the collection of all degrees of freedom
that are unaffected by the action of the maximal adversary A′. Consistently with this intuitive picture,
we partition the states of S into disjoint subsets, with the interpretation that two states are in the same
subset if and only if they correspond to the same state of subsystem SA.

We denote by Λψ the subset of St(S) containing the state ψ. To construct the state space of the
subsystem, we adopt the following rule:

Rule 1. If the state ψ is obtained from the state φ through degradation, i.e., if ψ ∈ DegA′(φ), then ψ and φ

must correspond to the same state of subsystem SA, i.e., one must have Λψ = Λφ.

Rule 1 imposes that all states in the set DegA′(ψ) must be contained in the set Λψ. Furthermore,
we have the following fact:

Proposition 1. If the sets DegA′(φ) and DegA′(ψ) have non-trivial intersection, then Λφ = Λψ.

Proof. By Rule 1, every element of DegA′(φ) is contained in Λφ. Similarly, every element of DegA′(ψ)

is contained in Λψ. Hence, if DegA′(φ) and DegA′(ψ) have non-trivial intersection, then also Λφ and
Λψ have non-trivial intersection. Since the sets Λφ and Λψ belong to a disjoint partition, we conclude
that Λφ = Λψ.
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Generalizing the above argument, it is clear that two states φ and ψ must be in the same subset
Λφ = Λψ if there exists a finite sequence (ψ1, ψ2, . . . , ψn) ⊆ St(S) such that

ψ1 = φ , ψn = ψ , and DegA′(ψi) ∩DegA′(ψi+1) 6= ∅ ∀i ∈ {1, 2, . . . , n− 1} . (13)

When this is the case, we write φ 'A ψ. Note that the relation φ 'A ψ is an equivalence relation.
When the relation φ 'A ψ holds, we say that φ and ψ are equivalent for agent A. We denote the
equivalence class of the state ψ by [ψ]A.

By Rule 1, the whole equivalence class [ψ]A must be contained in the set Λψ, meaning that all
states in the equivalence class must correspond to the same state of subsystem SA. Since we are not
constrained by any other condition, we make the minimal choice

Λψ := [ψ]A . (14)

In summary, the state space of system SA is

St(SA) :=
{
[ψ]A : ψ ∈ St(S)

}
. (15)

3.5. The Transformations of a Subsystem

The transformations of system SA can also be constructed through equivalence classes. Before
taking equivalence classes, however, we need a candidate set of transformations that can be interpreted
as acting exclusively on subsystem SA. The largest candidate set is the set of all transformations that
commute with the actions of the maximal adversary A′, namely

Act(A′; S)′ = Act(A; S)′′ . (16)

In general, Act(A; S)′′ could be larger than Act(A; S), in agreement with the fact the set of physical
transformations of system SA could be larger than the set of operations that agent A can perform.
For example, agent A could have access only to noisy operations, while another, more technologically
advanced agent could perform more accurate operations on the same subsystem.

For two transformations S and T in Act(A; S)′′, the degradation relation �A′ takes the simple form

S �A′ T iff T = B ◦ S for some B ∈ Act(A′; S) . (17)

As we did for the set of states, we now partition the set Act(A; S)′′ into disjoint subsets, with the
interpretation that two transformations act in the same way on the subsystem SA if and only if they
belong to the same subset.

Let us denote by ΘA the subset containing the transformationA. To find the appropriate partition
of Act(A; S)′′ into disjoint subsets, we adopt the following rule:

Rule 2. If the transformation T ∈ Act(A; S)′′ is obtained from the transformation S ∈ Act(A; S)′′ through
degradation, i.e., if T ∈ DegA′(S), then T and S must act in the same way on the subsystem SA, i.e., they must
satisfy ΘT = ΘS .

Intuitively, the motivation for the above rule is that system SA is defined as the system that is not
affected by the action of the adversary.

Rule 2 implies that all transformations in DegA′(T ) must be contained in ΘT . Moreover, we have
the following:

Proposition 2. If the sets DegA′(S) and DegA′(T ) have non-trivial intersection, then ΘS = ΘT .
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Proof. By Rule 2, every element of DegA′(S) is contained in ΘS . Similarly, every element of DegA′(T )
is contained in ΘT . Hence, if DegA′(S) and DegA′(T ) have non-trivial intersection, then also ΘS and
ΘT have non-trivial intersection. Since the sets ΛS and ΛT belong to a disjoint partition, we conclude
that ΛS = ΛT .

Using the above proposition, we obtain that the equality ΘT = ΘS holds whenever there exists a
finite sequence (A1,A2, . . . ,An) ⊆ Act(A; S)′′ such that

A1 = S , An = T , and DegA′(Ai) ∩DegA′(Ai+1) 6= ∅ ∀i ∈ {1, 2, . . . , n− 1} . (18)

When the above relation is satisfied, we write S 'A T and we say that S and T are equivalent for
agent A. It is immediate to check that 'A is an equivalence relation. We denote the equivalence class
of the transformation T ∈ Act(A; S)′′ as [T ]A.

By Rule 2, all the elements of [T ]A must be contained in the set ΘT , i.e., they should correspond
to the same transformation on SA. Again, we make the minimal choice: we stipulate that the set ΘT
coincides exactly with the equivalence class [T ]A. Hence, the transformations of subsystem SA are

Transf(SA) :=
{
[T ]A : T ∈ Act(A; S)′′

}
. (19)

The composition of two transformations [T1]A and [T2]A is defined in the obvious way, namely

[T1]A ◦ [T2]A := [T1 ◦ T2]A . (20)

Similarly, the action of the transformations on the states is defined as

[T ]A [ψ]A := [T ψ]A . (21)

In Appendix A, we show that definitions (20) and (21) are well-posed, in the sense that their
right-hand sides are independent of the choice of representatives within the equivalence classes.

Remark 1. It is important not to confuse the transformation T ∈ Act(A; S)′′ with the equivalence class
[T ]A: the former is a transformation on the whole system S, while the latter is a transformation only on
subsystem SA. To keep track of the distinction, we define the restriction of the transformation T ∈ Act(A; S)′′

to the subsystem SA via the map

πA(T ) := [T ]A . (22)

Proposition 3. The restriction map πA : Act(A; S)′′ → Transf(SA) is a monoid homomorphism, namely
πA(IS) = ISA and πA(S ◦ T ) = πA(S) ◦ πA(T ) for every pair of transformations S , T ∈ Act(A; S)′′.

Proof. Immediate from the definition (20).

4. Examples of Agents, Adversaries, and Subsystems

In this section, we illustrate the construction of subsystems in five concrete examples.

4.1. Tensor Product of Two Quantum Systems

Let us start from the obvious example, which will serve as a sanity check for the soundness of our
construction. Let S be a quantum system with Hilbert spaceHS = HA ⊗HB. The states of S are all the
density operators on the Hilbert spaceHS. The space of all linear operators fromHS to itself will be
denoted as Lin(HS), so that
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St(S) =
{

ρ ∈ Lin(HS) : ρ ≥ 0, Tr[ρ] = 1
}

. (23)

The transformations are all the quantum channels (linear, completely positive, and trace-preserving
linear maps) from Lin(HS) to itself. We will denote the set of all channels on system S as Chan(S).
Similarly, we will use the notation Lin(HA) [Lin(HB)] for the spaces of linear operators from HA
[HB] to itself, and the notation Chan(A) [Chan(B)] for the quantum channels from Lin(HA) [Lin(HB)]
to itself.

We can now define an agent A whose actions are all quantum channels acting locally on
system A, namely

Act(A; S) :=
{
A⊗ IB : A ∈ Chan(A)

}
, (24)

where IB denotes the identity map on Lin(HB). It is relatively easy to see that the commutant of
Act(A; S) is

Act(A; S)′ =
{
IA ⊗B : B ∈ Chan(B)

}
(25)

(see Appendix B for the proof). Hence, the maximal adversary of agent A is the adversary A′ = B that
has full control on the Hilbert spaceHB. Note also that one has Act(A; S)′′ = Act(A; S).

Now, the following fact holds:

Proposition 4. Two states ρ, σ ∈ St(S) are equivalent for agent A if and only if TrB[ρ] = TrB[σ], where TrB
denotes the partial trace over the Hilbert spaceHB.

Proof. Suppose that the equivalence ρ 'A σ holds. By definition, this means that there exists a finite
sequence (ρ1, ρ2, . . . , ρn) such that

ρ1 = ρ , ρn = σ , and DegB(ρi) ∩DegB(ρi+1) 6= ∅ ∀i ∈ {1, 2, . . . , n− 1} . (26)

In turn, the condition of non-trivial intersection implies that, for every i ∈ {1, 2, . . . , n− 1}, one has

(IA ⊗Bi) (ρi) = (IA ⊗ B̃i) (ρi+1) , (27)

where Bi and B̃i are two quantum channels in Chan(B). Since Bi and B̃i are trace-preserving, Equation (27)
implies TrB[ρi] = TrB[ρi+1], as one can see by taking the partial trace onHB on both sides. In conclusion,
we obtained the equality TrB[ρ] ≡ TrB[ρ1] = TrB[ρ2] = · · · = TrB[ρn] ≡ TrB[σ].

Conversely, suppose that the condition TrB[ρ] = TrB[σ] holds. Then, one has

(IA ⊗B0) (ρ) = (IA ⊗B0) (σ) , (28)

where B0 ∈ Chan(B) is the erasure channel defined as B0(·) = β0 TrB[·], β0 being a fixed (but otherwise
arbitrary) density matrix in Lin(HB). Since IA ⊗B0 is an element of Act(B; S), Equation (28) shows
that the intersection between DegB(ρ) and DegB(σ) is non-empty. Hence, ρ and σ correspond to the
same state of system SA.

We have seen that two global states ρ, σ ∈ St(S) are equivalent for agent A if and only if they
have the same partial trace over B. Hence, the state space of the subsystem SA is

St(SA) =
{

TrB[ρ] : ρ ∈ St(S)
}

, (29)

consistently with the standard prescription of quantum mechanics.
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Now, let us consider the transformations. It is not hard to show that two transformations
T ,S ∈ Act(A; S)′′ are equivalent if and only if TrB ◦T = TrB ◦S (see Appendix B for the details).
Recalling that the transformations in Act(A; S)′′ are of the form A ⊗ IB, for some A ∈ Chan(A),
we obtain that the set of transformations of SA is

Transf(SA) = Chan(A) . (30)

In summary, our construction correctly identifies the quantum subsystem associated with the
Hilbert spaceHA, with the right set of states and the right set of physical transformations.

4.2. Subsystems Associated with Finite Dimensional Von Neumann algebras

In this example, we show that our notion of subsystem encompasses the traditional notion of
subsystem based on an algebra of observables. For simplicity, we restrict our attention to a quantum
system S with finite dimensional Hilbert spaceHS ' Cd, d < ∞. With this choice, the state space St(S)
is the set of all density matrices in Md(C) and the transformation monoid Transf(S) is the set of all
quantum channels (linear, completely positive, trace-preserving maps) from Md(C) to itself.

We now define an agent A associated with a von Neumann algebra A ⊆ Md(C). In the finite
dimensional setting, a von Neumann algebra is just a matrix algebra that contains the identity operator
and is closed under the matrix adjoint. Every such algebra can be decomposed in a block diagonal form.
Explicitly, one can decompose the Hilbert spaceHS as

HS =
⊕

k

(
HAk ⊗HBk

)
, (31)

for appropriate Hilbert spaces HAk and HBk . Relative to this decomposition, the elements of the
algebra A are characterized as

C ∈ A ⇐⇒ C =
⊕

k

(
Ck ⊗ IBk

)
, (32)

where Ck is an operator in Lin(HAk ), and IBk is the identity on HBk . The elements of the commutant
algebra A′ are characterized as

D ∈ A′ ⇐⇒ D =
⊕

k

(
IAk ⊗ Dk

)
, (33)

where IAk is the identity onHAk and Dk is an operator in Lin(HBk ).
We grant agent A the ability to implement all quantum channels with Kraus operators in the

algebra A, i.e., all quantum channels in the set

Chan(A) :=
{
C ∈ Chan(S) : C(·) =

r

∑
i=1

Ci · C†
i , Ci ∈ A ∀i ∈ {1, . . . , r}

}
. (34)

The maximal adversary of agent A is the agent B who can implement all the quantum channels
that commute with the channels in Chan(A), namely

Act(B; S) = Chan(A)′ . (35)

In Appendix C, we prove that Chan(A)′ coincides with the set of quantum channels with Kraus
operators in the commutant of the algebra A: in formula,

Chan(A)′ = Chan(A′) . (36)
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As in the previous example, the states of subsystem SA can be characterized as “partial traces”
of the states in S, provided that one adopts the right definition of “partial trace”. Denoting the
commutant of the algebra A by B := A′, one can define the “partial trace over the algebra B” as the
channel TrB : Lin(HS)→

⊕
k Lin(HAk ) specified by the relation

TrB(ρ) :=
⊕

k

TrBk

[
Πk ρΠk

]
, (37)

where Πk is the projector on the subspace HAk ⊗HBk ⊆ HS, and TrBk denotes the partial trace over
the spaceHBk . With definition (37), is not hard to see that two states are equivalent for A if and only if
they have the same partial trace over B:

Proposition 5. Two states ρ, σ ∈ St(S) are equivalent for A if and only if TrB[ρ] = TrB[σ].

The proof is provided in Appendix C. In summary, the states of system St(SA) are obtained from
the states of S via partial trace over B, namely

St(SA) =
{

TrB(ρ) : ρ ∈ St(S)
}

. (38)

Our construction is consistent with the standard algebraic construction, where the states of system
SA are defined as restrictions of the global states to the subalgebra A: indeed, for every element C ∈ A,
we have the relation

Tr[C ρ] = Tr

[(⊕
k

Ck ⊗ IBk

)
ρ

]
= ∑

k
Tr[(Ck ⊗ IBk )ΠkρΠk]

= ∑
k

Tr
{

Ck TrBk [ΠkρΠk]
}

= Tr
{

Č TrB[ρ]
}

, Č :=
⊕

k

Ck , (39)

meaning that the restriction of the state ρ to the subalgebra A is in one-to-one correspondence with the
state TrB[ρ].

Alternatively, the states of subsystem SA can be characterized as density matrices of the block
diagonal form

σ =
⊕

k

pk σk , (40)

where (pk) is a probability distribution, and each σk is a density matrix in Lin(HAk ). In Appendix C,
we characterize the transformations of the subsystem SA as quantum channels A of the form

A =
⊕

k

Ak , (41)

where Ak : Lin(HAk ) → Lin(HAk ) is a linear, completely positive, and trace-preserving map.
In summary, the subsystem SA is a direct sum of quantum systems.
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4.3. Coherent Superpositions vs. Incoherent Mixtures in Closed-System Quantum Theory

We now analyze an example involving only pure states and reversible transformations. Let S
be a single quantum system with Hilbert space HS = Cd , d < ∞, equipped with a distinguished
orthonormal basis {|n〉}d

n=1. As the state space, we consider the set of pure quantum states: in formula,

St(S) =
{
|ψ〉〈ψ| : |ψ〉 ∈ Cd , 〈ψ|ψ〉 = 1

}
. (42)

As the set of transformations, we consider the set of all unitary channels: in formula,

Transf(S) =
{

U ·U† : U ∈ Md(C) , U†U = U†U = I
}

. (43)

To agent A, we grant the ability to implement all unitary channels corresponding to diagonal
unitary matrices, i.e., matrices of the form

Uθ = ∑
k

eiθk |k〉〈k| , θ = (θ1, . . . , θd) ∈ [0, 2π)×d , (44)

where each phase θk can vary independently of the other phases. In formula, the set of actions of
agent A is

Act(A; S) =
{

Uθ ·U†
θ : Uθ ∈ Lin(HS) , Uθ as in Equation (44)

}
. (45)

The peculiarity of this example is that the actions of the maximal adversary A′ are exactly the
same as the actions of A. It is immediate to see that Act(A; S) is included in Act(A′; S) because all
operations of agent A commute. With a bit of extra work, one can see that, in fact, Act(A; S) and
Act(A′; S) coincide.

Let us look at the subsystem associated with agent A. The equivalence relation among states
takes a simple form:

Proposition 6. Two pure states with unit vectors |φ〉, |ψ〉 ∈ HS are equivalent for A if and only if |ψ〉 = U|φ〉
for some diagonal unitary matrix U.

Proof. Suppose that there exists a finite sequence (|ψ1〉, |ψ2〉, . . . , |ψn〉) such that

|ψ1〉 = |φ〉 , |ψn〉 = |ψ〉 , and DegA′(|ψi〉〈ψi|) ∩DegA′(|ψi+1〉〈ψi+1|) 6= ∅ ∀i ∈ {1, 2, . . . , n− 1} .

This means that, for every i ∈ {1, . . . , n− 1}, there exist two diagonal unitary matrices Ui and Ũi
such that Ui|ψi〉 = Ũi|ψi+1〉, or equivalently,

|ψi+1〉 = Ũ†
i Ui|ψi〉 . (46)

Using the above relation for all values of i, we obtain |ψ〉 = U|φ〉 with U :=
Ũ†

n−1 Un−1 · · · Ũ†
2 U2Ũ†

1 U1.
Conversely, suppose that the condition |ψ〉 = U|φ〉 holds for some diagonal unitary matrix U.

Then, the intersection DegA′(|φ〉〈φ|) ∩ DegA′(|ψ〉〈ψ|) is non-empty, which implies that |φ〉〈φ| and
|ψ〉〈ψ| are in the same equivalence class.
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Using Proposition 6, it is immediate to see that the equivalence class [|ψ〉〈ψ|]A′ is uniquely
identified by the diagonal density matrix ρ = ∑k |ψk|2 |k〉〈k|. Hence, the state space of system SA is
the set of diagonal density matrices

St(SA) =
{

ρ = ∑
k

pk |k〉〈k| : pk ≥ 0 ∀k , ∑
k

pk = 1
}

. (47)

The set of transformations of system SA is trivial because the actions of A coincide with the actions
of the adversary A′, and therefore they are all in the equivalence class of the identity transformation.
In formula, one has

Transf(SA) =
{
ISA

}
. (48)

4.4. Classical Subsystems in Open-System Quantum Theory

This example is of the same flavour as the previous one but is more elaborate and more interesting.
Again, we consider a quantum system S with Hilbert space H = Cd. Now, we take St(S) to be the
whole set of density matrices in Md(C) and Transf(S) to be the whole set of quantum channels from
Md(C) to itself.

We grant to agent A the ability to perform every multiphase covariant channel, that is, every
quantum channelM satisfying the condition

Uθ ◦M =M◦Uθ ∀θ = (θ1, θ2, . . . , θd) ∈ [0, 2π)×d , (49)

where Uθ = Uθ ·U†
θ is the unitary channel corresponding to the diagonal unitary Uθ = ∑k eiθk |k〉〈k|.

Physically, we can interpret the restriction to multiphase covariant channels as the lack of a reference
for the definition of the phases in the basis {|k〉 , k = 1, . . . , d}.

It turns out that the maximal adversary of agent A is the agent A′ that can perform every
basis-preserving channel B, that is, every channel satisfying the condition

B(|k〉〈k|) = |k〉〈k| ∀k ∈ {1, . . . , d} . (50)

Indeed, we have the following:

Theorem 1. The monoid of multiphase covariant channels and the monoid of basis-preserving channels are the
commutant of one another.

The proof, presented in Appendix D.1, is based on the characterization of the basis-preserving
channels provided in [71,72].

We now show that states of system SA can be characterized as classical probability distributions.

Proposition 7. For every pair of states ρ, σ ∈ St(S), the following are equivalent:

1. ρ and σ are equivalent for agent A,
2. D(ρ) = D(σ), where D is the completely dephasing channel D(·) := ∑k |k〉〈k| · |k〉〈k|.

Proof. Suppose that Condition 1 holds, meaning that there exists a sequence (ρ1, ρ2, . . . , ρn) such that

ρ1 = ρ , ρn = σ , ∀i ∈ {1, . . . , n− 1} ∃Bi , B̃i ∈ Act(B; S) : Bi(ρi) = B̃i(ρi+1) , (51)

where Bi and B̃i are basis-preserving channels. The above equation implies

〈k|Bi(ρi)|k〉 = 〈k|B̃i(ρi+1)|k〉 . (52)
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Now, the relation 〈k|B(ρ)|k〉 = 〈k|ρ|k〉 is valid for every basis-preserving channel B and for every
state ρ [71]. Applying this relation on both sides of Equation (52), we obtain the condition

〈k|ρi|k〉 = 〈k|ρi+1|k〉 , (53)

valid for every k ∈ {1, . . . , d}. Hence, all the density matrices (ρ1, ρ2, . . . , ρn) must have the same
diagonal entries, and, in particular, Condition 2 must hold.

Conversely, suppose that Condition 2 holds. Since the dephasing channel D is obviously
basis-preserving, we obtained the condition DegA′(ρ) ∩ DegA′(σ) 6= ∅, which implies that ρ and
σ are equivalent for agent A. In conclusion, Condition 1 holds.

Proposition 7 guarantees that the states of system SA is in one-to-one correspondence with
diagonal density matrices, and therefore, with classical probability distributions: in formula,

St(SA) =
{
(pk)

d
k=1 : pk ≥ 0 ∀k , ∑

k
pk = 1

}
. (54)

The transformations of system SA can be characterized as transition matrices, namely

Transf(SA) =
{
[Pjk]j≤d, k≤d : Pjk ≥ 0 ∀j, k ∈ {1, . . . , d} , ∑

j
Pjk = 1 ∀k ∈ {1, . . . , d}

}
. (55)

The proof of Equation (55) is provided in Appendix D.2.
In summary, agent A has control on a classical system, whose states are probability distributions,

and whose transformations are classical transition matrices.

4.5. Classical Systems From Free Operations in the Resource Theory of Coherence

In the previous example, we have seen that classical systems arise from agents who have access
to the monoid of multiphase covariant channels. In fact, classical systems can arise in many other
ways, corresponding to agents who have access to different monoids of operations. In particular, we
find that several types of free operations in the resource theory of coherence [34–41] identify classical
systems. Specifically, consider the monoids of

1. Strictly incoherent operations [41], i.e., quantum channels T with the property that, for every
Kraus operator Ti, the map Ti(·) = Ti · Ti satisfies the condition D ◦ Ti = Ti ◦ D, where D is the
completely dephasing channel.

2. Dephasing covariant operations [38–40], i.e., quantum channels T satisfying the condition
D ◦ T = T ◦ D.

3. Phase covariant channels [40], i.e., quantum channels T satisfying the condition T ◦ Uϕ =

Uϕ ◦ T , ∀ϕ ∈ [0, 2π), where Uϕ is the unitary channel associated with the unitary matrix
Uϕ = ∑k eikϕ |k〉〈k|.

4. Physically incoherent operations [38,39], i.e., quantum channels that are convex combinations of
channels T admitting a Kraus representation where each Kraus operator Ti is of the form

Ti = Uπi Uθi Pi , (56)

where Uπi is a unitary that permutes the elements of the computational basis, Uθi is a diagonal
unitary, and Pi is a projector on a subspace spanned by a subset of vectors in the computational basis.

For each of the monoids 1–4, our construction yields the classical subsystem consisting of diagonal
density matrices. The transformations of the subsystem are just the classical channels. The proof is
presented in Appendix E.1.

Notably, other choices of free operations, such as the maximally incoherent operations [34] and the
incoherent operations [35], do not identify classical subsystems. The maximally incoherent operations
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are the quantum channels T that map diagonal density matrices to diagonal density matrices, namely
T ◦ D = D ◦ T ◦ D, where D is the completely dephasing channel. The incoherent operations are the
quantum channels T with the property that, for every Kraus operator Ti, the map Ti(·) = Ti · Ti sends
diagonal matrices to diagonal matrices, namely Ti ◦ D = D ◦ Ti ◦ D.

In Appendix E.2, we show that incoherent and maximally incoherent operations do not identify
classical subsystems: the subsystem associated with these operations is the whole quantum system.
This result can be understood from the analogy between these operations and non-entangling
operations in the resource theory of entanglement [38,39]. Non-entangling operations do not generate
entanglement, but nevertheless they cannot (in general) be implemented with local operations
and classical communication. Similarly, incoherent and maximally incoherent operations do not
generate coherence, but they cannot (in general) be implemented with incoherent states and coherence
non-generating unitary gates. An agent that performs these operations must have access to more
degrees of freedom than just a classical subsystem.

At the mathematical level, the problem is that the incoherent and maximally incoherent operations
do not necessarily commute with the dephasing channel D. In our construction, commutation
with the dephasing channel is essential for retrieving classical subsystems. In general, we have
the following theorem:

Theorem 2. Every set of operations that

1. contains the set of classical channels, and
2. commutes with the dephasing channel

identifies a d-dimensional classical subsystem of the original d-dimensional quantum system.

The proof is provided in Appendix E.1.

5. Key Structures: Partial Trace and No Signalling

In this section, we go back to the general construction of subsystems, and we analyse the main
structures arising from it. First, we observe that the definition of subsystem guarantees by fiat the
validity of the no-signalling principle, stating that operations performed on one subsystem cannot
affect the state of an independent subsystem. Then, we show that our construction of subsystems
allows one to build a category.

5.1. The Partial Trace and the No Signalling Property

We defined the states of system SA as equivalence classes. In more physical terms, we can regard
the map ψ 7→ [ψ]A as an operation of discarding, which takes system S and throws away the degrees
of freedom reachable by the maximal adversary A′. In our adversarial picture, “throwing away some
degrees of freedom” means leaving them under the control of the adversary, and considering only the
part of the system that remains under the control of the agent.

Definition 5. The partial trace over A′ is the function TrA′ : St(S)→ St(SA), defined by TrA′(ψ) = [ψ]A
for a generic ψ ∈ St(S).

The reason for the notation TrA′ is that in quantum theory the operation TrA′ coincides with the
partial trace of matrices, as shown in the example of Section 4.1. For subsystems associated with
von Neumann algebras, the partial trace is the “partial trace over the algebra” defined in Section 4.2.
For subsystems associated with multiphase covariant channels or dephasing covariant operations,
the partial trace is the completely dephasing channel, which “traces out” the off-diagonal elements of
the density matrix.
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With the partial trace notation, the states of system SA can be succinctly written as

St(SA) =
{

ρ = TrA′(ψ) : ψ ∈ St(S)
}

. (57)

Denoting B := A′, we have the important relation

TrB ◦B = TrB ∀B ∈ Act(B; S) . (58)

Equation (58) can be regarded as the no signalling property: the actions of agent B cannot lead to
any change on the system of agent A. Of course, here the no signalling property holds by fiat, precisely
because of the way the subsystems are defined!

The construction of subsystems has the merit to clarify the status of the no-signalling principle.
No-signalling is often associated with space-like separation, and is heuristically justified through the
idea that physical influences should propagate within the light cones. However, locality is only a
sufficient condition for the no signalling property. Spatial separation implies no signalling, but the
converse is not necessarily true: every pair of distinct quantum systems satisfies the no-signalling
condition, even if the two systems are spatially contiguous. In fact, the no-signalling condition holds
even for virtual subsystems of a single, spatially localized system. Think for example of a quantum
particle localized in the xy plane. The particle can be regarded as a composite system, made of two
virtual subsystems: a particle localized on the x-axis, and another particle localized on the y-axis.
The no-signalling property holds for these two subsystems, even if they are not separated in space.
As Equation (58) suggests, the validity of the no-signalling property has more to do with the way
subsystems are constructed, rather than the way the subsystems are distributed in space.

5.2. A Baby Category

Our construction of subsystems defines a category, consisting of three objects, S, SA, and SB,
where SB is the subsystem associated with the agent B = A′. The sets Transf(S), Transf(SA), and
Transf(SB) are the endomorphisms from S to S, SA to SA, and SB to SB, respectively. The morphisms
from S to SA and from S to SB are defined as

Transf(S→ SA) =
{

TrB ◦T : T ∈ Transf(S)
}

(59)

and

Transf(S→ SB) =
{

TrA ◦T : T ∈ Transf(S)
}

, (60)

respectively.
Morphisms from SA to S, from SB to S, from SA to SB, or from SB to SA, are not naturally defined.

In Appendix F, we provide a mathematical construction that enlarges the sets of transformations,
making all sets non-empty. Such a construction allows us to reproduce a categorical structure known
as a splitting of idempotents [73,74]

6. Non-Overlapping Agents, Causality, and the Initialization Requirement

In the previous sections, we developed a general framework, applicable to arbitrary physical
systems. In this section, we identify some desirable properties that the global systems may enjoy.

6.1. Dual Pairs of Agents

So far, we have taken the perspective of agent A. Let us now take the perspective of the maximal
adversary A′. We consider A′ as the agent, and denote his maximal adversary as A′′. By definition,
A′′ can perform every action in the commutant of Act(A′; S), namely
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Act(A′′; S) = Act(A′; S)′ = Act(A; S)′′ . (61)

Obviously, the set of actions allowed to agent A′′ includes the set of actions allowed to agent A.
At this point, one could continue the construction and consider the maximal adversary of agent A′′.
However, no new agent would appear at this point: the maximal adversary of agent A′′ is agent A′

again. When two agents have this property, we call them a dual pair:

Definition 6. Two agents A and B form a dual pair iff Act(A; S) = Act(B; S)′ and Act(B; S) = Act(A; S)′.

All the examples in Section 4 are examples of dual pairs of agents.
It is easy to see that an agent A is part of a dual pair if and only if the set Act(A; S) coincides with

its double commutant Act(A; S)′′.

6.2. Non-Overlapping Agents

Suppose that agents A and B form a dual pair. In general, the actions in Act(A; S) may have a
non-trivial intersection with the actions in Act(B; S). This situation does indeed happen, as we have
seen in Sections 4.3 and 4.4. Still, it is important to examine the special case where the actions of A and
B have only trivial intersection, corresponding to the identity action IS. When this is the case, we say
that the agents A and B are non-overlapping:

Definition 7. Two agents A and B are non-overlapping iff Act(A; S) ∩ Act(B; S) ⊆ {IS}.

Dual pairs of non-overlapping agents are characterized by the fact that the sets of actions have
trivial center:

Proposition 8. Let A and B be a dual pair of agents. Then, the following are equivalent:

1. A and B are non-overlapping,
2. Act(A; S) has trivial center,
3. Act(B; S) has trivial center.

Proof. Since agents A and B are dual to each other, we have Act(B; S) = Act(A; S)′ and Act(A; S) =
Act(B; S)′. Hence, the intersection Act(A; S)∩Act(B; S) coincides with the center of Act(A; S), and with
the center of Act(B; S). The non-overlap condition holds if and only if the center is trivial.

Note that the existence of non-overlapping dual pairs is a condition on the transformations of the
whole system S:

Proposition 9. The following are equivalent:

1. system S admits a dual pair of non-overlapping agents,
2. the monoid Transf(S) has trivial center.

Proof. Assume that Condition 1 holds for a pair of agents A and B. Let C(S) be the center of Transf(S).
By definition, C(S) is contained into Act(B; S) because Act(B; S) contains all the transformations that
commute with those in Act(A; S). Moreover, the elements of C(S) commute with all elements of
Act(B; S), and therefore they are in the center of Act(B; S). Since A and B are a non-overlapping
dual pair, the center of Act(B; S) must be trivial (Proposition 8), and therefore C(S) must be trivial.
Hence, Condition 2 holds.

Conversely, suppose that Condition 2 holds. In that case, it is enough to take A to be the maximal
agent, i.e., the agent Amax with Act (Amax; S) = Transf(S). Then, the maximal adversary of Amax is the
agent B = A′max with Act(B; S) = Act (Amax; S)′ = C(S) = {IS}. By definition, the two agents form a
non-overlapping dual pair. Hence, Condition 1 holds.
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The existence of dual pairs of non-overlapping agents is a desirable property, which may be used
to characterize “good systems”:

Definition 8 (Non-Overlapping Agents). We say that system S satisfies the Non-Overlapping Agents
Requirement if there exists at least one dual pair of non-overlapping agents acting on S.

The Non-Overlapping Agents Requirement guarantees that the total system S can be regarded as
a subsystem: if Amax is the maximal agent (i.e., the agent who has access to all transformations on S),
then the subsystem SAmax is the whole system S. A more formal statement of this fact is provided in
Appendix G.

6.3. Causality

The Non-Overlapping Agents Requirement guarantees that the subsystem associated with a maximal
agent (i.e., an agent who has access to all possible transformations) is the whole system S. On the
other hand, it is natural to expect that a minimal agent, who has no access to any transformation, should
be associated with the trivial system, i.e., the system with a single state and a single transformation.
The fact that the minimal agent is associated with the trivial system is important because it equivalent
to a property of causality [8,13,75,76]: indeed, we have the following

Proposition 10. Let Amin be the minimal agent and let Amax be its maximal adversary, coinciding with the
maximal agent. Then, the following conditions are equivalent

1. SAmin is the trivial system,
2. one has TrAmax [ρ] = TrAmax [σ] for every pair of states ρ, σ ∈ St(S).

Proof. 1⇒ 2: By definition, the state space of SAmin consists of states of the form TrAmax [ρ], ρ ∈ St(S).
Hence, the state space contains only one state if and only if Condition 2 holds. 2 ⇒ 1: Condition 2
implies that every two states of system S are equivalent for agent Amax. The fact that SAmin has only
one transformation is true by definition: since the adversary of Amin is the maximal agent, one has
T ∈ DegAmax(IS) for every transformation T ∈ Transf(S). Hence, every transformation is in the
equivalence class of the identity.

With a little abuse of notation, we may denote the trace over Amax as TrS because Amax has access
to all transformations on system S. With this notation, the causality condition reads

TrS[ρ] = TrS[σ] ∀ρ, σ ∈ St(S) . (62)

It is interesting to note that, unlike no signalling, causality does not necessarily hold in the framework
of this paper. This is because the trace TrS is defined as the quotient with respect to all possible
transformations, and having a single equivalence class is a non-trivial property. One possibility is
to demand the validity of this property, and to call a system proper, only if it satisfies the causality
condition (62). In the following subsection, we will see a requirement that guarantees the validity of
the causality condition.

6.4. The Initialization Requirement

The ability to prepare states from a fixed initial state is important in the circuit model of quantum
computation, where qubits are initialized to the state |0〉, and more general states are generated by
applying quantum gates. More broadly, the ability to initialize the system in a given state and to
generate other states from it is important for applications in quantum control and adiabatic quantum
computing. Motivated by these considerations, we formulate the following definition:
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Definition 9. A system S satisfies the Initialization Requirement if there exists a state ψ0 ∈ St(S) from which
any other state can be generated, meaning that, for every other state ψ ∈ St(S), there exists a transformation
T ∈ Transf(S) such that ψ = T ψ0. When this is the case, the state ψ0 is called cyclic.

The Initialization Requirement is satisfied in quantum theory, both at the pure state level and at the
mixed state level. At the pure state level, every unit vector |ψ〉 ∈ HS can be generated from a fixed unit
vector |ψ0〉 ∈ HS via a unitary transformation U. At the mixed state level, every density matrix ρ can be
generated from a fixed density matrix ρ0 via the erasure channel Cρ(·) = ρ Tr[·]. By the same argument,
the initialization requirement is also satisfied when S is a system in an operational-probabilistic
theory [8,10–13] and when S is a system in a causal process theory [75,76].

The Initialization Requirement guarantees that minimal agents are associated with trivial systems:

Proposition 11. Let S be a system satisfying the Initialization Requirement, and let Amin be the minimal
agent, i.e., the agent that can only perform the identity transformation. Then, the subsystem SAmin is trivial:
St
(
SAmin

)
contains only one state and Transf

(
SAmin

)
contains only one transformation.

Proof. By definition, the maximal adversary of Amin is the maximal agent Amax, who has access to
all physical transformations. Then, every transformation is in the equivalence class of the identity
transformation, meaning that system SAmin has a single transformation. Now, let ψ0 be the cyclic state.
By the Initialization Requirement, the set DegAmax(ψ0) is the whole state space St(S). Hence, every
state is equivalent to the state ψ0. In other words, St

(
SAmin

)
contains only one state.

The Initialization Requirement guarantees the validity of causality, thanks to Proposition 10.
In addition, the Initialization Requirement is important independently of the causality property.
For example, we will use it to formulate an abstract notion of closed system.

7. The Conservation of Information

In this section, we consider systems where all transformations are invertible. In such systems,
every transformation can be thought as the result of some deterministic dynamical law. The different
transformations in Transf(S) can be interpreted as different dynamics, associated with different values
of physical parameters, such as coupling constants or external control parameters.

7.1. Logically Invertible vs. Physically Invertible

Definition 10. A transformation T ∈ Transf(S) is logically invertible iff the map

T̂ : St(S)→ St(S) , ψ 7→ T ψ (63)

is injective.

Logically invertible transformations can be interpreted as evolutions of the system that preserve
the distictness of states. At the fundamental level, one may require that all physical evolutions be
logically invertible, a requirement that is sometimes called the Conservation of Information [58]. In the
following, we will explore the consequences of such requirement:

Definition 11 (Logical Conservation of Information). System S satisfies the Logical Conservation of
Information if all transformations in Transf(S) are logically invertible.

The requirement is well-posed because the invertible transformations form a monoid. Indeed,
the identity transformation is logically invertible, and that the composition of two logically invertible
transformations is logically invertible.

A special case of logical invertibility is physical invertibility, defined as follows:



Entropy 2018, 20, 358 21 of 54

Definition 12. A transformation T ∈ Transf(S) is physically invertible iff there exists another
transformation T ′ ∈ Transf(S) such that T ′ ◦ T = IS.

Physical invertibility is more than injectivity: not only should the map T be injective on the state
space, but also its inverse should be a physical transformation. In light of this observation, we state a
stronger version of the Conservation of Information, requiring physical invertibility:

Definition 13 (Physical Conservation of Information). System S satisfies the Physical Conservation of
Information if all transformations in Transf(S) are physically invertible.

The difference between Logical and Physical Conservation of Information is highlighted by the
following example:

Example 3 (Conservation of Information in closed-system quantum theory). Let S be a closed quantum
system described by a separable, infinite-dimensional Hilbert spaceHS, and let St(S) be the set of pure states,
represented as rank-one density matrices

St(S) =
{
|ψ〉〈ψ| : |ψ〉 ∈ HS , 〈ψ|ψ〉 = 1

}
. (64)

One possible choice of transformations is the monoid of isometric channels

Transf(S) =
{

V ·V† : V ∈ Lin(S) , V†V = I
}

. (65)

This choice of transformations satisfies the Logical Conservation of Information, but violates the Physical
Conservation of Information because in general the map V† ·V fails to be trace-preserving, and therefore fails to
be an isometric channel. For example, consider the shift operator

V =
∞

∑
n=0
|n + 1〉〈n| . (66)

The operator V is an isometry but its left-inverse V† is not an isometry. As a result, the channel V† ·V is
not an allowed physical transformation according to Equation (65).

An alternative choice of physical transformations is the set of unitary channels

Transf(S) =
{

V ·V† : V ∈ Lin(S) , V†V = VV† = I
}

. (67)

With this choice, the Physical Conservation of Information is satisfied: every physical transformation is
invertible and the inverse is a physical transformation.

7.2. Systems Satisfying the Physical Conservation of Information

In a system satisfying the Physical Conservation of Information, the transformations are not only
physically invertible, but also physically reversible, in the following sense:

Definition 14. A transformation T ∈ Transf(S) is physically reversible iff there exists another
transformation T ′ ∈ Transf(S) such that T ′ ◦ T = T ◦ T ′ = IS.

With the above definition, we have the following:

Proposition 12. If system S satisfies the Physical Conservation of Information, then every physical
transformation is physically reversible. The monoid Transf(S) is a group, hereafer denoted as G(S).
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Proof. Since T is physically invertible, there exists a transformation T ′ such that T ′ ◦ T = IS. Since the
Physical Conservation of Information holds, T ′ must be physically invertible, meaning that there
exists a transformation T ′′ such that T ′′ ◦ T ′ = IS. Hence, we have

T ′′ = T ′′ ◦ (T ′ ◦ T ) = (T ′′ ◦ T ′) ◦ T = T . (68)

Since T ′′ = T , the invertibility condition T ′′ ◦ T ′ = IS becomes T ◦ T ′ = IS. Hence, T is
reversible and Transf(S) is a group.

7.3. Subsystems of Systems Satisfying the Physical Conservation of Information

Imagine that an agent A acts on a system S satisfying the Physical Conservation of Information.
We assume that the actions of agent A form a subgroup of G(S), denoted as GA. The maximal adversary
of A is the adversary B = A′, who has access to all transformations in the set

GB := G′A =
{
UB ∈ G(S) : UB ◦ UA = UA ◦ UB , ∀UA ∈ G(A)

}
. (69)

It is immediate to see that the set GB is a group. We call it the adversarial group.
The equivalence relations used to define subsystems can be greatly simplified. Indeed, it is easy

to see that two states ψ, ψ′ ∈ St(S) are equivalent for A if and only if there exists a transformation
UB ∈ GB such that

ψ′ = UBψ . (70)

Hence, the states of the subsystem SA are orbits of the group GB: for every ψ ∈ St(S), we have

TrB[ψ] :=
{
UBψ : UB ∈ GB

}
. (71)

Similarly, the degradation of a transformation U ∈ G(S) yields the orbit

DegB(U ) =
{
UB,1 ◦ U ◦ UB,2 : UB,1,UB,2 ∈ GB

}
. (72)

It is easy to show that the transformations of the subsystem SA are the orbits of the group GB:

Transf(SA) =
{

πA(U ) : U ∈ G′′A

}
, πA(U ) :=

{
UB ◦ U : UB ∈ GB

}
. (73)

8. Closed Systems

Here, we define an abstract notion of “closed systems”, which captures the essential features of
what is traditionally called a closed system in quantum theory. Intuitively, the idea is that all the states
of the closed system are “pure” and all the evolutions are reversible.

An obvious problem in defining closed system is that our framework does not include a notion of
“pure state”. To circumvent the problem, we define the closed systems in the following way:

Definition 15. System S is closed iff it satisfies the Logical Conservation of Information and the Initialiation
Requirement, that is, iff

1. every transformation is logically invertible,
2. there exists a state ψ0 ∈ St(S) such that, for every other state ψ ∈ St(S), one has ψ = Vψ0 for some

suitable transformation V ∈ Transf(S).

For a closed system, we nominally say that all the states in St(S) are “pure”, or, more precisely,
“dynamically pure”. This definition is generally different from the usual definition of pure states as



Entropy 2018, 20, 358 23 of 54

extreme points of convex sets, or from the compositional definition of pure states as states with only
product extensions [77]. First of all, dynamically pure states are not a subset of the state space: provided
that the right conditions are met, they are all the states. Other differences between the usual notion of
pure states and the notion of dynamically pure states are highlighted by the following example:

Example 4. Let S be a system in which all states are of the form Uρ0U†, where U is a generic 2-by-2 unitary
matrix, and ρ0 ∈ M2(C) is a fixed 2-by-2 density matrix. For the transformations, we allow all unitary
channels U ·U†. By construction, system S satisfies the initialization Requirement, as one can generate every
state from the initial state ρ0. Moreover, all the transformations of system S are unitary and therefore the
Conservation of Information is satisfied, both at the physical and the logical level. Therefore, the states of system
S are dynamically pure. Of course, the states Uρ0U† need not be extreme points of the convex set of all density
matrices, i.e., they need not be rank-one projectors. They are so only when the cyclic state ρ0 is rank-one.

On the other hand, consider a similar example, where

• system S is a qubit,
• the states are pure states, of the form |ψ〉〈ψ| for a generic unit vector |ψ〉 ∈ C2,
• the transformations are unitary channels V ·V†, where the unitary matrix V has real entries.

Using the Bloch sphere picture, the physical transformations are rotations around the y axis. Clearly,
the Initialization Requirement is not satisfied because there is no way to generate arbitrary points on the sphere
using only rotations around the y-axis. In this case, the states of S are pure in the convex set sense, but not
dynamically pure.

For closed systems satisfying the Physical Conservation of Information, every pair of pure states
are interconvertible:

Proposition 13 (Transitive action on the pure states). If system S is closed and satisfies the Physical
Conservation of Information, then, for every pair of states ψ, ψ′ ∈ St(S), there exists a reversible transformation
U ∈ G(S) such that ψ′ = Uψ.

Proof. By the Initialization Requirement, one has ψ = Vψ0 and ψ′ = V ′ψ0 for suitable V ,V ′ ∈
Transf(S). By the Physical Conservation of Information, all the tranformations in Transf(S) are
physically reversible. Hence, ψ′ = V ′ ◦ V−1ψ = Uψ, having defined U = V ′ ◦ V−1.

The requirement that all pure states be connected by reversible transformations has featured in
many axiomatizations of quantum theory, either directly [5,44–46], or indirectly as a special case of
other axioms [42,48]. Comparing our framework with the framework of general probabilistic theories,
we can see that the dynamical definition of pure states refers to a rather specific situation, in which all
pure states are connected, either to each other (in the case of physical reversibility) or with to a fixed
cyclic state (in the case of logical reversibility).

9. Purification

Here, we show that closed systems satisfying the Physical Conservation of Information also
satisfy the purification property [8,12,13,15,49–51], namely the property that every mixed state can be
modelled as a pure state of a larger system in a canonical way. Under a certain regularity assumption,
the same holds for closed systems satisfying only the Logical Conservation of Information.

9.1. Purification in Systems Satisfying the Physical Conservation of Information

Proposition 14 (Purification). Let S be a closed system satisfying the Physical Conservation of Information.
Let A be an agent in S, and let B = A′ be its maximal adversary. Then, for every state ρ ∈ St(SA), there
exists a pure state ψ ∈ St(S), called the purification of ρ, such that ρ = TrB[ψ]. Moreover, the purification
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of ρ is essentially unique: if ψ′ ∈ St(S) is another pure state with TrB[ψ] = ρ, then there exists a reversible
transformation UB ∈ GB such that ψ′ = UBψ.

Proof. By construction, the states of system SA are orbits of states of system S under the adversarial
group GB. By Equation (71), every two states ψ, ψ′ ∈ St(S) in the same orbit are connected by an
element of GB.

Note that the notion of purification used here is more general than the usual notion of purification
in quantum information and quantum foundations. The most important difference is that system
SA need not be a factor in a tensor product. Consider the example of the coherent superpositions vs.
classical mixtures (Section 4.3). There, systems SA and SB coincide, their states are classical probability
distributions, and the purifications are coherent superpositions. Two purifications of the same classical
state p = (p1, p2, . . . , pd) are two rank-one projectors |ψ〉〈ψ| and |ψ′〉〈ψ′| corresponding to unit vectors
of the form

|ψ〉 = ∑
n

√
pn eiθn |n〉 and |ψ′〉 = ∑

n

√
pn eiθ′n |n〉 . (74)

One purification can be obtained from the other by applying a diagonal unitary matrix. Specifically,
one has

|ψ′〉 = UB|ψ〉 with UB = ∑
n

ei(θ′n−θn) |n〉〈n| . (75)

For finite dimensional quantum systems, the notion of purification proposed here encompasses
both the notion of entanglement and the notion of coherent superposition. The case of infinite
dimensional systems will be discussed in the next subsection.

9.2. Purification in Systems Satisfying the Logical Conservation of Information

For infinite dimensional quantum systems, every density matrix can be purified, but not all
purifications are connected by reversible transformations. Consider for example the unit vectors

|ψ〉AB =
√

1− x2
∞

∑
n=0

xn |n〉A ⊗ |n〉B and |ψ′〉AB =
√

1− x2
∞

∑
n=0

xn |n〉A ⊗ |n + 1〉B , (76)

for some x ∈ [0, 1).
For every fixed x 6= 0, there is one and only one operator VB satisfying the condition |ψ′〉AB =

(IA ⊗ VB)|ψ〉AB, namely the shift operator VB = ∑∞
n=0 |n + 1〉〈n|. However, VB is only an isometry,

but not a unitary. This means that, if we define the states of system SA as equivalence classes of pure
states under local unitary equivalence, the two states |ψ〉〈ψ| and |ψ′〉〈ψ′| would end up into two
different equivalence classes.

One way to address the problem is to relax the requirement of reversibility and to consider the
monoid of isometries, defining

Transf(S) := {V ·V† : V ∈ Lin(S) , V†V = I} . (77)

Given two purifications of the same state, say |ψ〉 and |ψ′〉, it is possible to show that at least one
of the following possibilities holds:

1. |ψ′〉 = (IA ⊗VB) |ψ〉 for some isometry VB acting on system SB,
2. |ψ〉 = (IA ⊗VB) |ψ′〉 for some isometry VB acting on system SB.

Unfortunately, this uniqueness property is not automatically valid in every system satisfying the
Logical Conservation of Information. Still, we will now show a regularity condition, under which the
uniqueness property is satisfied:
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Definition 16. Let S be a system satisfying the Logical Conservation of Information, let M ⊆ Transf(S) be a
monoid, and let DegM(ψ) be the set defined by

DegM(ψ) =
{
V ψ : V ∈ M

}
. (78)

We say that the monoid M ⊆ Transf(S) is regular iff

1. for every pair of states ψ, ψ′ ∈ St(S), the condition DegM(ψ) ∩DegM(ψ′) 6= ∅ implies that there exists
a transformation U ∈ M such that ψ′ = Uψ or ψ = Uψ′,

2. for every pair of transformations V ,V ′ ∈ M, there exists a transformationW ∈ M such that V =W ◦ V ′
or V ′ =W ◦ V .

The regularity conditions are satisfied in quantum theory by the monoid of isometries.

Example 5 (Isometric channels in quantum theory). Let S be a quantum system with separable Hilbert
spaceH, of dimension d ≤ ∞. Let St(S) the set of all pure quantum states, and let Transf(S) be the monoid of
all isometric channels.

We now show that the monoid M = Transf(S) is regular. The first regularity condition is immediate
because for every pair of unit vectors |ψ〉 and |ψ′〉 there exists an isometry (in fact, a unitary) V such that
|ψ′〉 = U|ψ〉. Trivially, this implies the relation |ψ′〉〈ψ′| = U|ψ〉〈ψ|U† at the level of quantum states and
isometric channels.

Let us see that the second regularity condition holds. Let V, V′ ∈ Lin(H) be two isometries onH, and let
{|i〉}d

i=1 be the standard basis forH. Then, the isometries V and V′ can be written as

V =
d

∑
i=1
|φi〉〈i| and V′ = ∑

i
|φ′i〉〈i| , (79)

where {|φi〉}d
i=1 and {|φ′i〉}d

i=1 are orthonormal vectors (not necessarily forming bases for the whole Hilbert
spaceH). Define the subspaces S = Span{|φi〉}d

i=1 and S′ = Span{|φ′i〉}d
i=1, and let {|ψj〉}r

j=1 and {|ψ′j〉}r′
j=1

be orthonormal bases for the orthogonal complements S⊥ and S′⊥, respectively. If r ≤ r′, we define the isometry

W =

(
d

∑
i=1
|φ′i〉〈φi|

)
+

(
r

∑
j=1
|ψ′j〉〈ψj|

)
, (80)

and we obtain the condition V′ = WV. Alternatively, if r′ ≤ r, we can define the isometry

W =

(
d

∑
i=1
|φi〉〈φ′i |

)
+

(
r

∑
j=1
|ψj〉〈ψ′j|

)
, (81)

and we obtain the condition V = WV′. At the level of isometric channels, we obtained the condition V ′ =W ◦V
or the condition V =W ◦ V ′, with V(·) = V ·V†, V ′(·) = V′ ·V′†, andW(·) = W ·W†.

The fact that the monoid of all isometric channels is regular implies that other monoids of isometric channels
are also regular. For example, if the Hilbert spaceH has the tensor product structureH = HA ⊗HB, then the
monoid of local isometric channels, defined by isometries of the form IA ⊗VB, is regular. More generally, if the
Hilbert space is decomposed as

H =
⊕

k
(HA,k ⊗HB,k) , (82)
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then the monoid of isometric channels generated by isometries of the form

V =
⊕

k
(IA,k ⊗VB,k) (83)

is regular.

We are now in position to derive the purification property for general closed systems:

Proposition 15. Let S be a closed system. Let A be an agent and let B = A′ be its maximal adversary.
If Act(B; S) is a regular monoid, the condition TrB[ψ] = TrB[ψ

′] implies that there exists some invertible
transformation VB ∈ Transf(B; S) such that the relation ψ′ = VBψ or the relation ψ = VBψ′ holds.

The proof is provided in Appendix H. In conclusion, we obtained the following

Corollary 1 (Purification). Let S be a closed system, let A be an agent in S, and let B = A′ be its maximal
adversary. If the monoid Act(B; S) is regular, then every state ρ ∈ St(SA) has a purification ψ ∈ St(S), i.e.,
a state such that ρ = TrB[ψ]. Moreover, the purification is essentially unique: if ψ′ ∈ St(S) is another state
with TrB[ψ] = ρ, then there exists a reversible transformation VB ∈ Act(B; S) such that the relation ψ′ = VBψ

or the relation ψ = VBψ′ holds.

10. Example: Group Representations on Quantum State Spaces

We conclude the paper with a macro-example, involving group representations in closed-system
quantum theory. The point of this example is to illustrate the general notion of purification introduced
in this paper and to characterize the sets of mixed states associated with different agents.

As system S, we consider a quantum system with Hilbert spaceHS, possibly of infinite dimension.
We let St(S) be the set of pure quantum states, and let G(S) be the group of all unitary channels.
With this choice, the total system is closed and satisfies the Physical Conservation of Information.

Suppose that agent A is able to perform a group of transformations, such as e.g., the group of
phase shifts on a harmonic oscillator, or the group of rotations of a spin j particle. Mathematically,
we focus our attention on unitary channels arising from some representation of a given compact
group G. Denoting the representation as U : G→ Lin(HS) , g 7→ Ug, the group of Alice’s actions is

GA =
{
Ug(·) = Ug ·U†

g : g ∈ G
}

. (84)

The maximal adversary of A is the agent B = A′ who is able to perform all unitary channels V
that commute with those in GA, namely, the unitary channels in the group

GB :=
{
V ∈ G(S) : V ◦ Ug = Ug ◦ V ∀g ∈ G

}
. (85)

Specifically, the channels V correspond to unitary operators V satisfying the relation

VUg = ω(V, g) UgV ∀g ∈ G , (86)

where, for every fixed V, the function ω(V, ·) : G→ C is a multiplicative character, i.e., a one-dimensional
representation of the group G.

Note that, if two unitaries V and W satisfy Equation (86) with multiplicative characters ω(V, ·)
and ω(W, ·), respectively, then their product VW satisfies Equation (86) with multiplicative character
ω(VW, ·) = ω(V, ·)ω(W, ·). This means that the function ω : GB × G → C is a multiplicative
bicharacter: ω(V, ·) is a multiplicative character for G for every fixed V ∈ GB, and, at the same time,
ω(·, g) is a multiplicative character for GB for every fixed g ∈ G.
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The adversarial group GB contains the commutant of the representation U : g 7→ Ug, consisting of
all the unitaries V such that

VUg = UgV ∀g ∈ G . (87)

The unitaries in the commutant satisfy Equation (86) with the trivial multiplicative character
ω(V, g) = 1, ∀g ∈ G. In general, the adversarial group may contain other unitary operators,
corresponding to non-trivial multiplicative characters. The full characterization of the adversarial
group is provided by the following theorem:

Theorem 3. Let G be a compact group, let U : G→ Lin(H) be a projective representation of G, and let GA be
the group of channels GA := {Ug ·U†

g g ∈ G}. Then, the adversarial group GB is isomorphic to the semidirect
product An U′, where U′ is the commutant of the set {Ug : g ∈ G}, and A is an Abelian subgroup of the
group of permutations of Irr(U), the set of irreducible representations contained in the decomposition of the
representation Ug.

The proof is provided in Appendix I, and a simple example is presented in Appendix J.
In the following, we will illustrate the construction of the state space SA in a the prototypical

example where the group G is a compact connected Lie group.

Compact Connected Lie Groups

When G is a compact connected Lie group, the characterization of the adversarial group is
simplified by the following theorem:

Theorem 4. If G is a compact connected Lie group, then the Abelian subgroup A of Theorem 3 is trivial, and all
the solutions of Equation (86) have ω(V, g) = 1 ∀g ∈ G.

The proof is provided in Appendix K.
For compact connected Lie groups, the the adversarial group coincides exactly with the

commutant of the representation U : G → Lin(HS). An explicit expression can be obtained in
terms of the isotypic decomposition [78]

Ug =
⊕

j∈Irr(U)

(
U(j)

g ⊗ IMj

)
, (88)

where Irr(U) is the set of irreducible representations (irreps) of G contained in the decomposition of U,
U(j) : g 7→ U(j)

g is the irreducible representation of G acting on the representation spaceRj, and IMj is
the identity acting on the multiplicity spaceMj. From this expression, it is clear that the adversarial
group GB consists of unitary gates V of the form

V =
⊕

j∈Irr(U)

(
IRj ⊗Vj

)
, (89)

where IRj is the identity operator on the representation spaceRj, and Vj is a generic unitary operator
on the multiplicity spaceMj.

In general, the agents A and B = A′ do not form a dual pair. Indeed, it is not hard to see that the
maximal adversary of B is the agent C = A′′ that can perform every unitary channel U (·) = U ·U†,
where U is a unitary operator of the form

U =
⊕

j∈Irr(U)

(
Uj ⊗ IMj

)
, (90)
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Uj being a generic unitary operator on the representation spaceRj. When A and B form a dual par,
the groups GA and GB are sometimes called gauge groups [79].

It is now easy to characterize the subsystem SA. Its states are equivalence classes of pure states
under the relation |ψ〉〈ψ| 'A |ψ′〉〈ψ′| iff

∃UB ∈ GB such that |ψ′〉 = UB|ψ〉 . (91)

It is easy to see that two states in the same equivalence class must satisfy the condition

TrB(|ψ′〉〈ψ′|) = TrB(|ψ〉〈ψ|) , (92)

where the “partial trace over agent B” is TrB is the map

TrB(ρ) :=
⊕

j∈Irr(U)

TrMj [Πj ρ Πj] , (93)

Πj being the projector on the subspaceRj ⊗Mj.
Conversely, it is possible to show that the state TrB(|ψ〉〈ψ|) completely identifies the equivalence

class [|ψ〉〈ψ|]A.

Proposition 16. Let |ψ〉, |ψ′〉 ∈ HS be two unit vectors such that TrB(|ψ〉〈ψ|) = TrB(|ψ′〉〈ψ′|). Then, there
exists a unitary operator UB ∈ GB such that |ψ′〉 = UB|ψ〉.

The proof is provided in Appendix L.

We have seen that the states of system SA are in one-to-one correspondence with the density
matrices of the form TrB(|ψ〉〈ψ|), where |ψ〉 ∈ HS is a generic pure state. Note that the rank of the
density matrices ρj in Equation (A109) cannot be larger than the dimensions of the spacesRj andMj,
denoted as dRj and dMj , respectively. Taking this fact into account, we can represent the states of SA as

St(SA) '
{

ρ =
⊕

j∈Irr(U)

pj ρj : ρj ∈ QSt(Rj) , Rank(ρj) ≤ min{dRj , dMj}
}

, (94)

where {pj} is a generic probability distribution. The state space of system SA is not convex, unless
the condition

dMj ≥ dRj ∀j ∈ Irr(U) (95)

is satisfied. Basically, in order to obtain a convex set of density matrices, we need the total system S to
be “sufficiently large” compared to its subsystem SA. This observation is a clue suggesting that the
standard convex framework could be considered as the effective description of subsystems of “large”
closed systems.

Finally, note that, in agreement with the general construction, the pure states of system S are
“purifications" of the states of the system SA. Every state of system SA can be obtained from a pure
state of system S by “tracing out" system SB. Moreover, every two purifications of the same state are
connected by a unitary transformation in GB.

11. Conclusions

In this paper, we adopted rather minimalistic framework, in which a single physical system was
described solely in terms of states and transformations, without introducing measurements. Or at least,
without introducing measurements in an explicit way: of course, one could always interpret certain
transformations as “measurement processes", but this interpretation is not necessary for any of the
conclusions drawn in this paper.
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Our framework can be interpreted in two ways. One way is to think of it as a fragment of
the larger framework of operational-probabilistic theories [8,11–13], in which systems can be freely
composed and measurements are explicitly described. The other way is to regard our framework as
a dynamicist framework, meant to describe physical systems per se, independently of any observer.
Both approaches are potentially fruitful.

On the operational-probabilistic side, it is interesting to see how the definition of subsystem
adopted in this paper interacts with probabilities. For example, we have seen in a few examples that
the state space of a subsystem is not always convex: convex combination of allowed states are not
necessarily allowed states. It is then natural to ask: under which condition is convexity retrieved?
In a different context, the non-trivial relation between convexity and the dynamical notion of system
has been emerged in a work of Galley and Masanes [80]. There, the authors studied alternatives to
quantum theory where the closed systems have the same states and the same dynamics of closed
quantum systems, while the measurements are different from the quantum measurements. Among
these theories, they found that quantum theory is the only theory where subsystems have a convex
state space. These and similar clues are an indication that the interplay between dynamical notions
and probabilistic notions plays an important role in determining the structure of physical theories.
Studying this interplay is a promising avenue of future research.

On the opposite end of the spectrum, it is interesting to explore how far the measurement-free
approach can reach. An interesting research project is to analyze the notions of subsystem, pure
state, and purification, in the context of algebraic quantum field theory [22] and quantum statistical
mechanics [32]. This is important because the notion of pure state as an extreme point of the convex
set breaks down for type III von Neumann algebras [81], whereas the notions used in this paper
(commutativity of operations, cyclicity of states) would still hold. Another promising clue is the
existence of dual pairs of non-overlapping agents, which amounts to the requirement that the set
of operations of each agent has trivial center and coincides with its double commutant. A similar
condition plays an important role in the algebraic framework, where the operator algebras with trivial
center are known as factors, and are at the basis of the theory of von Neumann algebras [82,83].

Finally, another interesting direction is to enrich the structure of system with additional features,
such as a metric, quantifying the proximity of states. In particular, one may consider a strengthened
formulation of the Conservation of Information, in which the physical transformations are required
not only to be invertible, but also to preserve the distances. It is then interesting to consider how the
metric on the pure states of the whole system induces a metric on the subsystems, and to search for
relations between global metric and local metric. Also in this case, there is a promising precedent,
namely the work of Uhlmann [84], which led to the notion of fidelity [85]. All these potential avenues
of future research suggest that the notions investigated in this work may find application in a variety
of different contexts, and for a variety of interpretational standpoints.
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Appendix A. Proof That Definitions (20) and (21) Are Well-Posed

We give only the proof for definition (20), as the other proof follows the same argument.

Proposition A1. If the transformations S , S̃ , T , T̃ ∈ Act(A; S)′′ are such that [S ]A = [S̃ ]A and [T ]A =

[T̃ ]A, then [S ◦ T ]A = [S̃ ◦ T̃ ]A.

Proof. Let (S1,S2, . . . ,Sm) ⊂ Act(A; S)′′ and (T1, T2, . . . , Tn) ⊂ Act(A; S)′′ be two finite sequences
such that

S1 = S , Sm = S̃ , DegA′(Si) ∩DegA′(Si+1) 6= ∅ ∀i ∈ {1, . . . , m− 1},
T1 = T , Tn = T̃ , DegA′(Tj) ∩DegA′(Tj+1) 6= ∅ ∀j ∈ {1, . . . , n− 1}. (A1)

Without loss of generality, we assume that the two finite sequences have the same length m = n.
When this is not the case, one can always add dummy entries and ensure that the two sequences have
the same length: for example, if m < n, one can always define Si := Sm for all i ∈ {m + 1, . . . , n}.

Equation (A1) mean that for every i and j there exist transformations Bi, B̃i, Cj, C̃j ∈ Act(A; S)′

such that

Bi ◦ Si = B̃i ◦ Si+1,

Cj ◦ Tj = C̃j ◦ Tj+1. (A2)

Using the above equalities for i = j, and using the fact that transformations in Act(A; S)′ commute
with transformations in Act(A; S)′′, we obtain(

Bi ◦ Ci
)
◦
(
Si ◦ Ti

)
=
(
Bi ◦ Si

)
◦
(
Ci ◦ Ti

)
=
(
B̃i ◦ Si+1

)
◦
(
C̃i ◦ Ti+1

)
=
(
B̃i ◦ C̃i

)
◦
(
Si+1 ◦ Ti+1

)
. (A3)

In short, we proved that

DegA′(Si ◦ Ti) ∩DegA′(Si+i ◦ Ti+1) 6= ∅ ∀i ∈ {1, . . . , n− 1} . (A4)

To conclude, observe that the sequence (S1 ◦ T1,S2 ◦ T2, . . . ,Sn ◦ Tn) satisfies S1 ◦ T1 = S ◦ T ,
Sn ◦ Tn = S̃ ◦ T̃ , and Equation (A4). By definition, this means that the transformations S ◦ T and
S̃ ◦ T̃ are in the same equivalence class.

Appendix B. The Commutant of the Local Channels

Here, we show that the commutant of the quantum channels of the form A ⊗ IB consists of
quantum channels of the form IA ⊗B.

Let C ∈ Chan(S) be a quantum channel that commutes with all channels of the form A⊗ IB,
with A ∈ Chan(A). For a fixed unit vector |α〉 ∈ HA, consider the erasure channel Aα ∈ Chan(A)

defined by

Aα(ρ) = |α〉〈α| Tr[ρ] ∀ρ ∈ Lin(A) . (A5)
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Then, the commutation condition C ◦ (Aα ⊗ IB) = (Aα ⊗ IB) ◦ C implies

C
(
|α〉〈α| ⊗ |β〉〈β|

)
= C

[(
Aα ⊗ IB

)(
|α〉〈α| ⊗ |β〉〈β|

)]
=
(
Aα ⊗ IB

)[
C
(
|α〉〈α| ⊗ |β〉〈β|

)]
= |α〉〈α| ⊗ TrA

[
C
(
|α〉〈α| ⊗ |β〉〈β|

)]
∀|β〉 ∈ HB . (A6)

Tracing over B on both sides of Equation (A6), we obtain

TrB

[
C
(
|α〉〈α| ⊗ |β〉〈β|

)]
= |α〉〈α| . (A7)

The above relation implies that the state C
(
|α〉〈α| ⊗ |β〉〈β|

)
is of the form

C
(
|α〉〈α| ⊗ |β〉〈β|

)
= |α〉〈α| ⊗ B(|β〉〈β|) , (A8)

for some suitable channel B ∈ Chan(B). Since |α〉 and |β〉 are arbitrary, we obtained C = IA ⊗B.

Appendix C. Subsystems Associated to Finite Dimensional Von Neumann Algebras

Here, we prove the statements made in the main text about quantum channels with Kraus
operators in a given algebra.

Appendix C.1. The Commutant of Chan(A)

The purpose of this subsection is to prove the following theorem:

Theorem A1. Let A be a von Neumann subalgebra of Md(C), d < ∞, and let Chan(A) be the set of quantum
channels with Kraus operators in A. Then, the commutant of Chan(A) is the set of channels with Kraus operators
in the algebra A′. In formula,

Chan(A)′ = Chan(A′) . (A9)

The proof consists of a few lemmas, provided in the following.

Lemma A1. Every channel D ∈ Chan(A)′ must satisfy the condition

Pl ◦ D ◦ Pk = 0 ∀l 6= k , (A10)

where Pk is the CP map Pk(·) := Πk ·Πk, and Πk is the projector on the subspaceHAk ⊗HBk in Equation (31).

Proof. Consider the quantum channel C ∈ Chan(A) defined as

C :=
⊕

k

(
|αk〉〈αk| TrAk ⊗IBk

)
◦ Pk , (A11)
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where each |αk〉 is a generic (but otherwise fixed) unit vector in HAk and IBk is the identity map
on Lin(HBk ). By definition, every channel D ∈ Chan(A)′ must satisfy the condition C ◦ D = D ◦ C.
In particular, we must have

D(|αk〉〈αk| ⊗ |βk〉〈βk|) = (D ◦ C)(|αk〉〈αk| ⊗ |βk〉〈βk|)
= (C ◦ D)(|αk〉〈αk| ⊗ |βk〉〈βk|)

=
⊕

l

(
|αl〉〈αl | ⊗ TrAl

[
(Pl ◦ D)(|αk〉〈αk| ⊗ |βk〉〈βk|)

])
. (A12)

Applying the CP map Pl on both sides of the above equality, we obtain the relation

(Pl ◦ D)(|αk〉〈αk| ⊗ |βk〉〈βk|) = |αl〉〈αl | ⊗Ml(|αk〉〈αk| ⊗ |βk〉〈βk|) , (A13)

whereMl is the map from Md(C) to Lin(HAl ) defined asMl := TrAl ◦Pl ◦ D.
Note that the right-hand side of Equation (A13) depends on the choice of vector |αl〉, which is

arbitrary. On the other hand, the left-hand side does not depend on |αl〉. Hence, the only way that the
two sides of Equation (A13) can be equal for k 6= l is that they are both equal to 0. Moreover, since |αk〉
and |βk〉 are arbitrary vectors inHAk andHBk , respectively, Equation (A13) implies the relation

(Pl ◦ D)(ρ) = 0 ∀ρ ∈ Lin(HAk ⊗HBk ) , ∀l 6= k . (A14)

Since ρ is an arbitrary operator in Lin(HAk ⊗HBk ), we conclude that the relation Pl ◦ D ◦ Pk = 0
holds for every l 6= k.

Lemma A2. Every channel D ∈ Chan(A)′ must satisfy the conditions

D ◦ Pk = Pk ◦ D ◦ Pk ∀k (A15)

and

Pk ◦ D = Pk ◦ D ◦ Pk ∀k . (A16)

In short: D ◦ Pk = Pk ◦ D for every k.

Proof. Define Dk := D ◦ Pk. Then, the Cauchy–Schwarz inequality yields∣∣∣〈φ|Πi Dk(ρ)Πj |φ〉
∣∣∣ ≤ √〈φ|Πi Dk(ρ)Πi |φ〉 〈φ|ΠjDk(ρ)Πj |φ〉

≤
√
〈φ|(Pi ◦ D ◦ Pk)(ρ) |φ〉 〈φ|(Pj ◦ D ◦ Pk)(ρ) |φ〉 . (A17)

Thanks to Lemma A1, we know the right-hand side is 0 unless i = j = k. Since the vector |φ〉
is are arbitrary, the condition |〈φ|Πi Dk(ρ)Πj |φ〉| = 0 implies the relation Πi Dk(ρ)Πj = 0. Using
this fact, we obtain the relation

(D ◦ Pk)(ρ) = Dk(ρ)

= ∑
i,j

Πi Dk(ρ)Πj

= Πk Dk(ρ)Πk

= (Pk ◦ D ◦ Pk)(ρ) , (A18)

valid for arbitrary density matrices ρ, and therefore for arbitrary matrices in Md(C). In conclusion,
Equation (A16) holds.
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The proof of Equation (A15) is analogous to that of Equation (A16), with the only difference that it
uses the adjoint map, which for a generic linear map L : Lin(HS)→ Lin(HS) is defined by the relation

Tr[L†(O) ρ] := Tr[OL(ρ)] ∀O ∈ Md(C) , ∀ρ ∈ Md(C) . (A19)

Specifically, we define the map D̃k := Pk ◦ D. Then, we obtain the relation∣∣∣ 〈φ| D̃k(ΠiρΠj) |φ〉
∣∣∣ = ∣∣∣Tr

[
D̃†

k (|φ〉〈φ|)ΠiρΠj
]∣∣∣

=

∣∣∣∣Tr
[(√

D̃†
k (|φ〉〈φ|)Πi

√
ρ

) (
√

ρΠj

√
D̃†

k (|φ〉〈φ|
)]∣∣∣∣

≤
√

Tr
[
D†

k (|φ〉〈φ|)ΠiρΠi
]

Tr
[
D†

k (|φ〉〈φ|)ΠjρΠj
]

=
√
〈φ| D̃k(ΠiρΠi) |φ〉 〈ψ| D̃k(ΠjρΠj) |ψ〉

=
√
〈φ| (Pk ◦ D ◦ Pi)(ρ) |φ〉 〈ψ| (Pk ◦ D ◦ Pj)(ρ) |ψ〉 , (A20)

where the right-hand side is 0 unless i = j = k (cf. Lemma A2). Since the condition
| 〈φ| D̃k(ΠiρΠj) |φ〉| = 0, ∀|φ〉 ∈ HS implies the condition D̃k(ΠiρΠj) = 0, we obtained the relation

D̃k(ΠiρΠj) = 0 unless i = j = k . (A21)

Using this fact, we obtain the equality

(Pk ◦ D)(ρ) = D̃k(ρ)

= ∑
i,j
D̃k(ΠiρΠj)

= (D̃k ◦ Pk)(ρ)

= (Pk ◦ D ◦ Pk)(ρ) . (A22)

Since the equality holds for every ρ, this proves Equation (A16).

Lemma A2 guarantees that the linear map D ◦ Pk sends Lin(Rk ⊗Mk) into itself. It is also easy
to see that the map D ◦ Pk has a simple form:

Lemma A3. For every channel D ∈ Chan(A)′, one has

D ◦ Pk = (IAk ⊗Bk) ◦ Pk ∀k, (A23)

where IAk is the identity map from Lin(HAk ) to itself, and Bk is a quantum channel from Lin(HAk ) to itself.

Proof. Straightforward extension of the proof in Appendix B.

Using the notion of adjoint, we can now prove the following

Lemma A4. For every channel D ∈ Chan(A)′, the adjoint D† preserves the elements of the algebra A, namely
D†(C) = C for all C ∈ A.

Proof. Let C be a generic element of A. By Equation (31), one has the equality

C =
⊕

k

(Ck ⊗ IBk ) =
⊕

k

Pk(C). (A24)
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Using Lemma A3 and the definition of adjoint, we obtain

Tr[D†(C) ρ] = Tr[CD(ρ)]
= ∑

k
Tr[Pk(C)D(ρ)]

= ∑
k

Tr[C (Pk ◦ D)(ρ)]

= ∑
k

Tr[C (Pk ◦ D ◦ Pk)(ρ)]

= ∑
k

Tr
[
Pk(C) (D ◦ Pk)(ρ)

]
= ∑

k
Tr
{
(Ck ⊗ IBk ) [(IAk ⊗Bk) ◦ Pk](ρ)

}
, (A25)

having used Lemma A3 in the last equality. Then, we use the fact that the channel Bk is trace-preserving,
and therefore its adjoint B†

k preserves the identity. Using this fact, we can continue the chain of
equalities as

Tr[D†(C)] = ∑
k

Tr
{
[Ck ⊗B†

k (IBk )] Pk(ρ)
}

= ∑
k

Tr
[
(Ck ⊗ IBk ) Pk(ρ)

]
= ∑

k
Tr
[
Pk(Ck ⊗ IBk ) ρ

]
= Tr

[(⊕
k

Ck ⊗ IBk

)
ρ

]
= Tr[Cρ] , (A26)

having used Equation (A24) in the last equality. Since the equality holds for every density matrix ρ,
we proved the equality D†(C) = C.

We are now in position to prove Theorem A1.

Proof of Theorem A1. Let D be a quantum channel in Chan(A)′. Then, Lemma A4 guarantees that the
adjoint D† preserves all operators in the algebra A. Then, a result due to Lindblad [86] guarantees that
all the Kraus operators of D belong to the algebra A′. This proves the inclusion Chan(A)′ ⊆ Chan(A′).

The converse inclusion is immediate: if a channel D belongs to Chan(A′), it commutes with all
channels in Chan(A) thanks to the block diagonal form of the Kraus operators (cf. Equations (32)
and (33)).

Appendix C.2. States of Subsystems Associated to Finite Dimensional Von Neumann algebras

Here, we provide the proof of Proposition 5, adopting the notation B := A′.
The proof uses the following lemma:

Lemma A5 (No signalling condition). For every channel D ∈ Chan(B), one has TrB ◦D = TrB.

Proof. By definition, the partial trace channel TrB can be written as

TrB =
⊕

k

(IAk ⊗ TrBk ) ◦ Pk. (A27)
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For every channel D ∈ Chan(B), we have

TrB ◦D =
⊕

k

(IAk ⊗ TrBk ) ◦ Pk ◦ D

=
⊕

k

(IAk ⊗ TrBk ) ◦ (IAk ⊗Bk) ◦ Pk

=
⊕

k

[
IAk ⊗ (TrBk ◦Bk)

]
◦ Pk

=
⊕

k

(IAk ⊗ TrBk ) ◦ Pk

= TrB, (A28)

where the second equality follows from Lemma A3, and the third equality follows from the fact that
Bk is trace-preserving.

Proof of Proposition 5. Suppose that ρ and σ are equivalent for A. By definition, this means that there
exists a finite sequence (ρ1, ρ2, . . . , ρn) such that

ρ1 = ρ , ρn = σ , and DegB(ρi) ∩DegB(ρi+1) 6= ∅ ∀i ∈ {1, 2, . . . , n− 1} . (A29)

The condition of non-trivial intersection implies that, for every i ∈ {1, 2, . . . , n− 1}, one has

Di (ρi) = D̃i (ρi+1) , (A30)

where Di and D̃i are two quantum channels in Chan(B). Tracing over B on both sides we obtain
the relation

(TrB ◦Di) (ρi) = (TrB ◦D̃i) (ρi+1) , (A31)

and, thanks to Lemma A5, TrB[ρi] = TrB[ρi+1]. Since the equality holds for every i ∈ {1, . . . , n− 1},
we obtained the condition TrB[ρ] = TrB[σ]. In summary, if two states ρ and σ are equivalent for A,
then TrB[ρ] = TrB[σ].

To prove the converse, it is enough to define the channel D0 ∈ Chan(B) as

D0(ρ) :=
⊕

k

TrBk [Pk(ρ)]⊗ βk , (A32)

where each βk is a fixed (but otherwise generic) density matrix in Lin(HBk ). Now, if the equality
TrB[ρ] = TrB[σ] holds, then also the equality D0(ρ) = D0(σ) holds. This proves that the intersection
between DegB(ρ) and DegB(σ) is non-empty, and therefore ρ and σ are equivalent for A.

Appendix C.3. Transformations of Subsystems Associated to Finite Dimensional von Neumann algebras

Here, we prove that all transformations of system SA are of the form A =
⊕

kAk, where each Ak
is a quantum channel from Lin(HAk ) to itself. The proof is based on the following lemmas:

Lemma A6. For every channel C ∈ Chan(A), one has the relation

Pk ◦ C = (Ak ⊗ IBk ) ◦ Pk , (A33)

where Ak is a quantum channel from Lin(HAk ) to itself.
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Proof. Let

C(ρ) = ∑
i

Ci ρ C†
i , Ci =

⊕
k

(Cik ⊗ IBk ) (A34)

be a Kraus representation of channel C. The preservation of the trace amounts to the condition

I = ∑
i

C†
i Ci

=
⊕

k

(
∑

i
C†

ikCik ⊗ IBk

)
, (A35)

which implies

∑
i

C†
ikCIk = IAk ∀k . (A36)

Now, we have

(Pk ◦ C)(ρ) = ∑
i
(Cik ⊗ IBk )Pk(ρ) (Cik ⊗ IBk )

†

= (Ak ⊗ IBk ) [Pk(ρ)] , (A37)

where the channel Ak is defined as

Ak(σ) := ∑
i

Cik σ C†
ik ∀σ ∈ Lin(HAk ) . (A38)

Since the density matrix ρ in Equation (A37) is arbitrary, we proved the relation Pk ◦ C =

(Ak ⊗ IBk ) ◦ Pk.

Lemma A7. For two channels C, C ′ ∈ Chan(A), letAk andA′k be the quantum channels defined in Lemma A6.
Then, the following are equivalent:

1. TrB ◦ C = TrB ◦ C ′,
2. Ak = A′k for every k.

Proof. 2 =⇒ 1. For channel C, we have

TrB ◦ C =
⊕

k

(IAk ⊗ TrBk ) ◦ Pk ◦ C

=
⊕

k

(IAk ⊗ TrBk ) ◦ (Ak ⊗ IBk ) ◦ Pk

=
⊕

k

(Ak ⊗ TrBk ) ◦ Pk . (A39)

Similarly, for channel C ′, we have

TrB ◦ C ′ =
⊕

k

(A′k ⊗ TrBk ) ◦ Pk . (A40)

Clearly, if Ak and A′k are equal for every k, then the partial traces TrB ◦ C and TrB ◦ C ′ are equal.
1 =⇒ 2. Suppose that partial traces TrB ◦ C and TrB ◦ C ′ are equal. Then, Equations (A39) and (A40)

imply the equality

(Ak ⊗ TrBk ) ◦ Pk = (A′k ⊗ TrBk ) ◦ Pk ∀k . (A41)
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In turn, the above equality implies Ak = A′k, ∀k, as one can easily verify by applying both sides
of Equation (A41) to a generic product operator Xk ⊗Yk, with Xk ∈ Lin(HAk ) and Yk ∈ Lin(HBk ).

Lemma A8. Two channels C, C ′ ∈ Chan(A) are equivalent for A if and only if TrB ◦ C = TrB ◦ C ′.

Proof. Suppose that C and C ′ are equivalent for A. By definition, this means that there exists a finite
sequence (C1, C2, . . . , Cn) ⊂ Chan(A) such that

C1 = C , Cn = C ′ , DegB(Ci) ∩DegB(Ci+1) 6= ∅ ∀i ∈ {1, . . . , n− 1} . (A42)

This means that, for every i, there exist two channels Di, D̃i ∈ Chan(B) such that

Di ◦ Ci = D̃i ◦ Ci+1 . (A43)

Tracing over B on both sides, we obtain

TrB ◦Di ◦ Ci = TrB ◦ D̃i ◦ Ci+1 , (A44)

and, using the no signalling condition of Lemma A5,

TrB ◦ Ci = TrB ◦ Ci+1 . (A45)

Since the above relation holds for every i, we obtained the equality TrB ◦ C = TrB ◦ C ′.
Conversely, suppose that TrB ◦ C = TrB ◦ C ′. Then, Lemma A7 implies the equality

Ak = A′k ∀k , (A46)

where Ak and A′k are the quantum channels defined in Lemma A6.
Now, let D0 be the channel in Chan(B) defined in Equation (A32). By definition, we have

D0 ◦ C =
⊕

k

(IAk ⊗ βk TrBk ) ◦ Pk ◦ C

=
⊕

k

(IAk ⊗ βk TrBk ) ◦ (Ak ⊗ IBk ) ◦ Pk (A47)

=
⊕

k

(Ak ⊗ βk TrBk ) ◦ Pk .

Similarly, we have

D0 ◦ C =
⊕

k

(A′k ⊗ βk TrBk ) ◦ Pk . (A48)

Since Ak and A′k are equal for every k, we conclude that D0 ◦ C is equal to D0 ◦ C ′. This means
that the intersection between Deg(C) and Deg(C ′) is non-empty, and, therefore C is equivalent to C ′
modulo B.

Combining Lemmas A7 and A8, we obtain the following corollary:

Corollary A1. For two channels C, C ′ ∈ Chan(A), let Ak and A′k be the quantum channels defined in
Lemma A6. Then, the following are equivalent:

1. C and C ′ are equivalent for A,
2.

⊕
kAk =

⊕
kA′k.
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Proof. By Lemma A8, C and C ′ are equivalent for A if and only if the condition TrB ◦C = TrB ◦C ′
holds. By Lemma A7, the condition TrB ◦C = TrB ◦C ′ holds if and only if one has Ak = A′k for every k.
In turn, the latter condition holds if and only if the equality

⊕
kAk =

⊕
kA′k holds.

In summary, the transformations of system SA are characterized as

Transf(SA) =
⊕

k

Chan(Ak) , (A49)

where Chan(Ak) is the set of all quantum channels from Lin(HAk ) to itself.
To conclude, we observe that the transformations of SA act in the expected way. To this purpose,

we consider the restriction map

πA : Chan(A)→
⊕
k

Chan(Ak) , C 7→
⊕
k

Ak , (A50)

where Ak is defined as in Lemma A6.
Using the restriction map, we can prove the following propositions:

Proposition A2. For every channel C ∈ Chan(A), we have the relation

TrB ◦ C = πA(C) ◦ TrB . (A51)

In words, evolving system S with C and then computing the local state of system SA is the same as
computing the local state of system SA and then evolving it with πA(C).

Proof. Using Lemma A6, the proof is straightforward:

TrB ◦ C =
⊕

k

(IAk ⊗ TrBk ) ◦ Pk ◦ C

=
⊕

k

(IAk ⊗ TrBk ) ◦ (Ak ⊗ IBk ) ◦ Pk

=
⊕

k

Ak ◦ (IAk ⊗ TrBk ) ◦ Pk (A52)

=

(⊕
k

Ak

)
◦
[⊕

l

(IAl ⊗ TrBl ) ◦ Pl

]
= πA(C) ◦ TrB .

Proposition A3. For every pair of channels C1, C2 ∈ Chan(A), we have the homomorphism relation

πA(C1 ◦ C2) = πA(C1) ◦ πA(C2) . (A53)

Proof. Let us write the channels πA(C1), πA(C2), and πA(C1 ◦ C2) as

πA(C1) =
⊕

k

A1k , πA(C2) =
⊕

k

A2k , and πA(C1 ◦ C2) =
⊕

k

A12k . (A54)
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With this notation, we have

(A12k ⊗ IBk ) ◦ Pk = Pk ◦ C1 ◦ C2

= (A1k ⊗ IBk ) ◦ Pk ◦ C2

= (A1k ⊗ IBk ) ◦ (A2k ⊗ IBk ) ◦ Pk

=
[
(A1k ◦ A2k)⊗ IBk

]
◦ Pk ∀k . (A55)

From the above equation, we obtain the equality A12k = A1k ◦ A2k for all k. In turn, this equality
implies the desired result:

πA(C1) ◦ πA(C2) =

(⊕
k

A1k

)
◦
(⊕

l

A2l

)
=
⊕

k

A1k ◦ A2k

=
⊕

k

A12k

= πA(C1 ◦ C2) . (A56)

Appendix D. Basis-Preserving and Multiphase-Covariant Channels

Appendix D.1. Proof of Theorem 1

Here, we prove that the monoid of multiphase covariant channels on S (denoted as MultiPCov(S))
and the monoid of basis-preserving channels on S (denoted as BPres(S)) are one the commutant of
the other.

The proof uses a few lemmas, the first of which is fairly straightforward:

Lemma A9. BPres(S)′ ⊆ MultiPCov(S).

Proof. Every unitary channel of the form Uθ = Uθ · U†
θ is basis-preserving, and therefore every

channel C in the commutant of BPres(S) must commute with it. By definition, this means that C is
multiphase covariant.

To prove the converse inclusion, we use the following characterization of multiphase
covariant channels:

Lemma A10 (Characterization of MultiPCov(S)). A channelM ∈ Chan(S) is multiphase covariant if and
only if it has a Kraus representation of the form

M(ρ) =
r

∑
i=1

MiρM†
i +

d

∑
k=1

∑
j 6=k

p(j|k) |j〉〈k| ρ|k〉〈j| , (A57)

where each operator Mi is diagonal in the computational basis, and each p(j|k) is non-negative.

Proof. Let M ∈ Lin(HS⊗HS) be the Choi operator of channelM. For a multiphase covariant channel,
the Choi operator must satisfy the commutation relation [87,88]

[M, Uθ⊗Uθ] = 0 ∀θ ∈ [0, 2π)⊗d . (A58)
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This condition implies that M must have the form

M = ∑
s,t

Mss,tt |s〉〈t| ⊗ |s〉〈t|+ ∑
k

∑
j 6=k

Mjk,jk |j〉〈j| ⊗ |k〉〈k| , (A59)

where the d× d matrix [Γs,t] := [Mss,tt]s,t∈{1,...,d} is positive semidefinite and each coefficient Mst,st is
non-negative. Then, Equation (A57) follows from diagonalizing the matrix Γ and using the relation
M(ρ) = Tr[M (I ⊗ ρT)], where ρT is the transpose of ρ in the computational basis.

From Equation (A57), one can show every multiphase covariant channel commutes with every
basis-preserving channel:

Lemma A11. MultiPCov(S) ⊆ BPres(S)′.

Proof. Let B ∈ BPres(S) be a generic basis-preserving channel, and letM ∈ MultiPCov(S) be a generic
multiphase covariant channel. Using the characterization of Equation (A57), we obtain

M◦B(ρ) = ∑
i

MiB(ρ)M†
i + ∑

k
∑
j 6=k

p(j|k)|j〉〈k|B(ρ)|k〉〈j|

= ∑
i
B(MiρM†

i ) + ∑
k

∑
j 6=k

p(j|k)|j〉〈k|B(ρ)|k〉〈j|

= ∑
i
B(MiρM†

i ) + ∑
k

∑
j 6=k

p(j|k)|j〉 〈k|ρ|k〉 〈j|

= ∑
i
B(MiρM†

i ) + ∑
k

∑
j 6=k

p(j|k)B(|j〉〈j|) 〈k|ρ|k〉

= B
(

∑
i

MiρM†
i + ∑

k
∑
j 6=k

p(j|k)|j〉 〈k|ρ|k〉 〈j|
)

= B ◦M(ρ) ∀ρ ∈ Lin(S) . (A60)

The second equality used the fact that the Kraus operators of B are diagonal in the computational
basis [71,72] and therefore commute with each operator Mi. The third equality uses the relation
〈k|B(ρ)|k〉 = 〈k|ρ|k〉, following from the fact that B preserves the computational basis [71,72].

Summarizing, we have shown that the multiphase covariant channels are the commutant of the
basis-preserving channels:

Corollary A2. MultiPCov(S) = BPres(S)′.

Note that Corollary A2 implies the relation

MultiPCov(S)′ = BPres(S)′′ ⊇ BPres(S) . (A61)

To conclude the proof of Theorem 1, we prove the converse inclusion:

Lemma A12. MultiPCov(S)′ ⊆ BPres(S).

Proof. A special case of multiphase covariant channel is the erasure channelMk defined byMk(ρ) =

|k〉〈k| for every ρ ∈ Lin(S). For a generic channel C ∈ MultiPCov(S)′, one must have

C(|k〉〈k|) = C ◦Mk(|k〉〈k|) =Mk ◦ C(|k〉〈k|) = |k〉〈k| . (A62)

Since the above condition must hold for every k, the channel C must be basis-preserving.
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Combining Lemma A12 and Equation (A61), we obtain:

Corollary A3. MultiPCov(S)′ = BPres(S).

Putting Corollaries A2 and A3 together, we have an immediate proof of Theorem 1.

Appendix D.2. Proof of Equation (55)

Here, we show that the transformations on system SA are classical channels. To construct the
transformations of SA, we have to partition the double commutant of Act(A; S) = MultiPCov(S) into
equivalence classes.

First, recall that MultiPCov(S)′′ = MultiPCov(S) (by Theorem 1). Then, note the following property:

Lemma A13. If two channelsM,M̃ ∈ MultiPCov(S) satisfy the condition

〈k|M(|j〉〈j|) |k〉 = 〈k| M̃(|j〉〈j|) |k〉 , (A63)

then [M]A′ = [M̃]A′ .

Proof. Define the completely dephasing channel D = ∑k |k〉〈k| · |k〉〈k|. Clearly, D is basis-preserving.
Using the idempotence relation D ◦D = D, we obtain(

D ◦M
)
(ρ) =

(
D ◦D ◦M

)
(ρ)

=
(
D ◦M◦D

)
(ρ)

=
(
D ◦M

) (
∑

j
|j〉〈j| 〈j|ρ|j〉

)
= ∑

j
〈j|ρ|j〉 D

(
M(|j〉〈j|)

)
= ∑

j,k
〈j|ρ|j〉 〈k|M(|j〉〈j|)|k〉 |k〉〈k| . (A64)

Likewise, we have (
D ◦ M̃

)
(ρ) = ∑

j,k
〈j|ρ|j〉 〈k|M̃(|j〉〈j|)|k〉 |k〉〈k| . (A65)

If condition (A63) holds, then the equality D ◦M = D ◦ M̃ holds, meaning that Deg(M) and
Deg(M̃) have non-empty intersection. Hence,M and M̃must be in the same equivalence class.

The converse of Lemma A13 holds:

Lemma A14. If two channels M,M̃ ∈ MultiPCov(S) are in the same equivalence class, then they must
satisfy condition (A63).

Proof. If M and M̃ are in the same equivalence class, then there exists a finite sequence
(M1,M2, . . . ,Mn) such that

M1 =M , Mn = M̃ , ∀i ∈ {1, . . . , n− 1} ∃Bi, B̃i ∈ BPres(S) : Bi ◦Mi = B̃i ◦Mi+1 .
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The above condition implies

l〈k|Mi(ρ) |k〉 = Tr[Mi(ρ) |k〉〈k|] = 〈k| Bi ◦Mi(ρ) |k〉 = 〈k| B̃i ◦Mi+1(ρ) |k〉
= 〈k|Mi+1(ρ) |k〉 , (A66)

for all i ∈ {1, . . . , n− 1} and for all ρ ∈ Lin(ρ). In particular, choosing ρ = |j〉〈j| we obtain

〈k|Mi(|j〉〈j|) |k〉 = 〈k|Mi+1(|j〉〈j|) |k〉 ∀i ∈ {1, . . . , n− 1} , ∀j, k ∈ {1, . . . , d} . (A67)

Hence, Equation (A63) follows.

Appendix E. Classical Systems and the Resource Theory of Coherence

Here, we consider agents who have access to various types of free operations in the resource
theory of coherence. We start from the types of operations that give rise to classical systems, and then
show two examples that do not have this property.

Appendix E.1. Operations That Lead to Classical Subsystems

Consider the following monoids of operations

1. Strictly incoherent operations [41], i.e., quantum channels T with the property that, for every
Kraus operator Ti, the map Ti(·) = Ti · Ti satisfies the condition D ◦ Ti = Ti ◦ D, where D is the
completely dephasing channel.

2. Dephasing covariant operations [38–40], i.e., quantum channels T satisfying the condition
D ◦ T = T ◦ D.

3. Phase covariant channels [40], i.e., quantum channels T satisfying the condition T ◦ Uϕ = Uϕ ◦
T , ∀ϕ ∈ [0, 2π), where Uϕ is the unitary channel associated with the unitary matrix Uϕ =

∑k eikϕ |k〉〈k|.
4. Physically incoherent operations [38,39], i.e., quantum channels that are convex combinations of

channels T admitting a Kraus representation where each Kraus operator Ti is of the form

Ti = Uπi Uθi Pi , (A68)

where Uπi is a unitary that permutes the elements of the computational basis, Uθi is a
diagonal unitary, and Pi is a projector on a subspace spanned by a subset of vectors in the
computational basis.

5. Classical channels i.e., channels satisfying T = D ◦ T ◦ D.

We now show that all the above operations define classical subsystems according to our construction.
The first ingredient in the proof is the observation that each of the monoids 1–5 contains the

monoid of classical channels. Then, we can apply the following lemma:

Lemma A15. Let M ⊆ Chan(S) be a monoid of quantum channels, and let M′ be its commutant. If M contains
the monoid of classical channels, then M′ is contained in the set of basis-preserving channels.

Proof. Consider the erasure channel Ck defined by Ck(ρ) := |k〉〈k| Tr[ρ], ∀ρ ∈ Lin(HS). Clearly,
the erasure channel is a classical channel. Then, every channel B ∈ M′ must satisfy the condition

B(|k〉〈k|) = B ◦ Ck(|k〉〈k|) = Ck ◦ B(|k〉〈k|) = |k〉〈k| . (A69)

Since k is generic, this implies that B must be basis-preserving.

Furthermore, we have the following
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Lemma A16. Let Act(A; S) ⊆ Chan(S) be a set of quantum channels that contains the monoid of classical
channels. If two quantum states ρ, σ ∈ St(S) are equivalent for A, then they must have the same diagonal
entries. Equivalently, they must satisfy D(ρ) = D(σ).

Proof. Same as the first part of the proof of Proposition 7. Suppose that Condition 1 holds, meaning
that there exists a sequence (ρ1, ρ2, . . . , ρn) such that

ρ1 = ρ , ρn = σ , ∀i ∈ {1, . . . , n− 1} ∃Bi , B̃i ∈ Act(B; S) : Bi(ρi) = B̃i(ρi+1) , (A70)

where Bi and B̃i are channels in the commutant Act(A; S)′. The above equation implies

〈k|Bi(ρi)|k〉 = 〈k|B̃i(ρi+1)|k〉 . (A71)

Now, we know that the commutant Act(A; S)′ consists of basis-preserving channels (Lemma A15).
Since every basis-preserving channel satisfies the relation 〈k|B(ρ)|k〉 = 〈k|ρ|k〉 [71,72], we obtain that
all the density matrices (ρ1, ρ2, . . . , ρn) must have the same diagonal entries, namely D(ρ1) = D(ρ2) =

· · · = D(ρn).

Now, we observe that the completely dephasing channel D is contained in the commutant of
all the monoids 1–5. This fact is evident for the monoids 1, 2 and 5, where the commutation with D
holds by definition. For the monoid 3, the commutation with D has been proven in [38,39], and for the
monoid 4 it has been proven in [40].

Since D is contained in the commutant of all the monoids 1–5, we can use the following
obvious fact:

Lemma A17. Let Act(A; S) ⊆ Chan(S) be a monoid of quantum channels and suppose that its commutant
Act(A; S)′ contains the dephasing channel D. If two quantum states ρ, σ ∈ St(S) satisfy D(ρ) = D(σ),
then they are equivalent for A.

Proof. Trivial consequence of the definition.

Combining Lemmas A16 and A17, we obtain the following

Proposition A4. Let Act(A; S) ⊆ Chan(S) be a monoid of quantum channels on system S. If Act(A;S)
contains the monoid of classical channels, and if the the commutant Act(A; S)′ contains the completely dephasing
channel D, then two states ρ, σ ∈ St(S) are equivalent for A if and only if D(ρ) = D(σ).

Proof. Same as the proof of Proposition 7.

Proposition A4 implies that the states of the subsystem SA are in one-to-one correspondence with
diagonal density matrices. Since the conditions of the proposition are satisfied by all the monoids 1–5,
each of these monoids defines the same state space.

The same result holds for the transformations:

Proposition A5. Let Act(A; S) ⊆ Chan(S) be a monoid of quantum channels. If Act(A;S) contains the
monoid of classical channels, and if the the commutant Act(A; S)′ contains the completely dephasing channel D,
then two transformations S , T ∈ Transf(S) are equivalent for A if and only if D ◦ T ◦ D = D ◦ T ◦ D.

Proof. Same as the proofs of Lemmas A13 and A14.

Proposition A5 implies that the transformations of subsystem SA can be identified with classical
channels. Hence, system SA is exactly the d-dimensional classical subsystem of the quantum system S.
In summary, each of the monoids 1–5 defines the same d-dimensional classical subsystem.
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Appendix E.2. Operations That Do Not Lead to Classical Subsystems

Here, we show that our construction does not associate classical subsystems with the monoids
of incoherent and maximally incoherent operations. To start with, we recall the definitions of these
two subsets:

1. The maximally incoherent operations are the quantum channels T that map diagonal density
matrices to diagonal density matrices, namely T ◦ D = D ◦ T ◦ D, where D is the completely
dephasing channel.

2. The Incoherent operations are the quantum channels T with the property that, for every Kraus
operator Ti, the map Ti(·) = Ti · Ti sends diagonal matrices to diagonal matrices, namely
Ti ◦ D = D ◦ Ti ◦ D.

Note that each set of operations contains the set of classical channels. Hence, the commutant of
each set of operation consists of (some subset of) basis-preserving channels (by Lemma A15).

Moreover, both sets of operations 1 and 2 contain the set of quantum channels Cψ defined by
the relation

Cψ(ρ) = |1〉〈1| 〈ψ|ρ|ψ〉+
I − |1〉〈1|

d− 1
Tr[(I − |ψ〉〈ψ|) ρ] ∀ρ ∈ Lin(HS) , (A72)

where |ψ〉 ∈ HS is a fixed (but otherwise arbitrary) unit vector. The fact that both monoids contain the
channels Cψ implies a strong constraint on their commutants:

Lemma A18. The only basis-preserving quantum quantum channel B ∈ BPres(S) satisfying the property
B ◦ Cψ = Cψ ◦ B for every |ψ〉 ∈ HS is the identity channel.

Proof. The commutation property implies the relation

(Cψ ◦ B) (|ψ〉〈ψ|) = (B ◦ Cψ) (|ψ〉〈ψ|)
= B(|1〉〈1|)
= |1〉〈1| , (A73)

where we used the fact that B is basis-preserving. Tracing both sides of the equality with the projector
|1〉〈1|, we obtain the relation

1 = 〈1|(Cψ ◦ B) (|ψ〉〈ψ|)|1〉
= 〈ψ| B(|ψ〉〈ψ|) |ψ〉 , (A74)

the second equality following from the definition of channel Cψ. In turn, Equation (A74) implies the
relation B(|ψ〉〈ψ|) = |ψ〉〈ψ|. Since |ψ〉 is arbitrary, this means that B must be the identity channel.

In summary, the commutant of the set of incoherent channels consists only of the identity channel,
and so is the the commutant of the set of maximally incoherent channels. Since the commutant is
trivial, the equivalence classes are trivial, meaning that the subsystem SA has exactly the same states
and the same transformations of the original system S. In short, the subsystem associated with the
incoherent (or maximally incoherent) channels is the full quantum system.

Appendix F. Enriching the Sets of Transformations

Here, we provide a mathematical construction that enlarges the sets of transformations in the
“baby category” with objects S, SA, and SB. This construction provides a realization of a catagorical
structure known as splitting of idempotents [73,74].
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As we have seen in the main text, our basic construction does not provide transformations
from the subsystem SA to the global system S. One could introduce such transformations by hand,
by defining an embedding [63]:

Definition A1. An embedding of SA into S is a map EA : St(SA)→ St(S) satisfying the property

TrB ◦EA = ISA . (A75)

In other words, EA associates a representative to every equivalence class ρ ∈ St(SA).

A priori, embeddings need not be physical processes. Consider the example of a classical system,
viewed as a subsystem of a closed quantum system as in Section 4.3. An embedding would map each
classical probability distribution (p1, p2, . . . , pd) into a pure quantum state |ψ〉 = ∑k ck |k〉 satisfying
the condition |ck|2 = pk for all k ∈ {1, . . . , d}. If the embedding were a physical transformation, there
would be a way to physically transform every classical probability distributions into a corresponding
pure quantum state, a fact that is impossible in standard quantum theory.

When building a new physical theory, one could postulate that there exists an embedding EA that
is physically realizable. In that case, the transformations from SA to S would be those in the set

Transf(SA → S) =
{
T ◦ EA : T ∈ Transf(S)

}
, (A76)

and similarly for the transformations from SB to S. The transformations from SA to SB would be those
in the set

Transf(SA → SB) =
{

TrA ◦T ◦ EA : T ∈ Transf(S)
}

, (A77)

and similarly for the transformations from SB to SA. In that new theory, the old set of transformations
from SA should be replaced by the new set:

T̃ransf(SA) =
{

TrB ◦T ◦ EA : T ∈ Transf(S)
}

, (A78)

so that the structure of category is preserved. Similarly, the old set of transformations from SB to SB
should be replaced by the new set .

T̃ransf(SB) =
{

TrA ◦T ◦ EB : T ∈ Transf(S)
}

. (A79)

When this is done, the embeddings define two idempotent morphisms PA := EA ◦ TrB and
PB := EB ◦ TrA, i.e., two morphisms satisfying the conditions

PA ◦ PA = PA and PB ◦ PB = PB . (A80)

The partial trace and the embedding define a splitting of idempotents, in the sense of Refs. [73,74].
The splitting of idempotents was considered in the categorical framework as a way to define general
decoherence maps, and, more specifically, decoherence maps to classical subsystems [74,89].

Appendix G. The Total System as a Subsystem

For every system satisfying the Non-Overlapping Agents Requirement, the system S can be
regarded as a subsystem:
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Proposition A6. Let S be a system satisfying the Non-Overlapping Agents Requirement, let Amax be the
maximal agent, and SAmax be the associated subsystem. Then, one has SAmax ' S, meaning that there exist two
isomorphisms γ : St(S)→ St (SAmax) and δ : Transf(S)→ Transf (SAmax) satisfying the condition

γ(T ψ) = δ(T ) γ(ψ) , ∀ψ ∈ St(S) , ∀T ∈ Transf(S) . (A81)

Proof. The Non-Overlapping Agents Requirement guarantees that the commutant Act(Amax; S)′

contains only the identity transformation. Hence, the equivalence class [ψ]Amax contains only the
state ψ. Hence, the partial trace TrA′max

: ψ 7→ [ψ]Amax is a bijection from St(S) to St (SAmax). Similarly,
the equivalence class [T ]Amax contains only the transformation T . Hence, the restriction πAmax :
T 7→ [T ]Amax is a bijective function between Transf(S) and Transf (SAmax). Such a function is an
homomorphism of monoids, by Equation (20). Setting δ := πAmax and γ := TrA′max

, the condition (A81)
is guaranteed by Equation (21).

Appendix H. Proof of Proposition 15

By definition, the condition TrB[ψ] = TrB[ψ
′] holds if and only if there exists a finite sequence

(ψ1, ψ2, . . . , ψn) such that

ψ1 = ψ , ψn = ψ′ , ∀i ∈ {1, . . . , n− 1} ∃Vi , Ṽi ∈ Act(B; S) : Viψi = Ṽiψi+1 . (A82)

Our goal is to prove that there exists an adversarial action VB ∈ Act(B; S) such that the relation
ψ′ = VBψ or ψ = VBψ′ holds.

We will proceed by induction on n, starting from the base case n = 2. In this case, we have
DegB(ψ)∩DegB(ψ

′) 6= ∅. Then, the first regularity condition implies that there exists a transformation
VB ∈ Act(B; S) such that at least one of the relations VBψ = ψ′ and ψ = VBψ′ holds. This proves the
validity of the base case.

Now, suppose that the induction hypothesis holds for all sequences of length n, and suppose
that ψ and ψ′ are equivalent through a sequence of length n + 1, say (ψ1, ψ2, . . . , ψn, ψn+1). Applying
the induction hypothesis to the sequence (ψ1, ψ2, . . . , ψn), we obtain that there exists a transformation
V ∈ Act(B; S) such that at least one of the relations ψn = Vψ and ψ = Vψn holds. Moreover,
applying the induction hypothesis to the pair (ψn, ψn+1) we obtain that there exists a transformation
V ′ ∈ Act(B; S) such that ψn+1 = V ′ψn, or ψn = V ′ψn+1. Hence, there are four possible cases:

1. ψn = Vψ and ψn+1 = V ′ψn. In this case, we have ψn+1 = (V ′ ◦ V)ψ, which proves the
desired statement.

2. ψn = Vψ and ψn = V ′ψn+1. In this case, we have Vψ = V ′ψn+1, or equivalently DegB(ψ) ∩
DegB(ψn+1) 6= ∅. Applying the induction hypothesis to the sequence (ψ, ψn+1), we obtain the
desired statement.

3. ψ = Vψn and ψn+1 = V ′ψn. Using the second regularity condition, we obtain that there exists a
transformationW ∈ Act(B; S) such that at least one of the relations V =W ◦ V ′ and V ′ =W ◦ V
holds. Suppose that V =W ◦ V ′. In this case, we have

ψ = Vψn = (W ◦ V ′)ψn =Wψn+1 . (A83)

Alternatively, suppose that V ′ =W ◦ V . In this case, we have

ψn+1 = V ′ψn = (W ◦ V)ψn =Wψ . (A84)

In both cases, we proved the desired statement.
4. ψ = Vψn and ψn = V ′ψn+1. In this case, we have ψ = (V ◦ V ′)ψn+1, which proves the

desired statement.
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Appendix I. Characterization of the Adversarial Group

Here, we provide the proof of Theorem 3, proving a canonical decomposition of the elements of
the adversarial group. The proof proceeds in a few steps:

Lemma A19 (Canonical form of the elements of the adversarial group). Let U : g 7→ Ug be a projective
representation of the group G, let Irr(U) be the set of irreducible representations contained in the isotypic
decomposition of U, and let ω : G→ C be a multiplicative character of G. Then, the commutation relation

VUg = ω(g) UgV ∀g ∈ G (A85)

holds iff

1. The map U(j) 7→ ω U(j) is a permutation of the set Irr(U), denoted as π : Irr(U) → Irr(U). In other
words, for every irrep U(j) with j ∈ Irr(U), the irrep ω U(j) is equivalent to an irrep k ∈ Irr(U), and the
correspondence between j and k is bijective.

2. The multiplicity spacesMj andMπ(j) have the same dimension.
3. The unitary operator V has the canonical form V = UπV0, where V0 is an unitary operator in the

commutant U′ and Uπ is a permutation operator satisfying

Uπ

(
Rj ⊗Mj

)
=
(
Rπ(j) ⊗Mπ(j)

)
∀j ∈ Irr(U) . (A86)

Proof. Let us use the isotypic decomposition of U, as in Equation (88). We define

Vj,k := Πj V Πk , (A87)

where Πj (Πk) is the projector onto Rj ⊗Mj (Rk ⊗Mk). Then, Equation (A85) is equivalent to
the condition

Vj,k

(
U(k)

g ⊗ IMk

)
= ω(g)

(
U(j)

g ⊗ IMj

)
Vjk , ∀g ∈ G , ∀j, k , (A88)

which in turn is equivalent to the condition

〈α|Vj,k|β〉 U(k)
g = ω(g)U(j)

g 〈α|Vj,k|β〉 , ∀g ∈ G , ∀j, k , ∀|α〉 ∈ Mj , ∀|β〉 ∈ Mk , (A89)

where 〈α|Vj,k|β〉 is a shorthand for the partial matrix element (IRj ⊗ 〈α|)Vj,k (IRk ⊗ |β〉).
Equation (A89) means that each operator 〈α|Vj,k|β〉 intertwines the two representations U(k) and

ω U(j). Recall that each representation is irreducible. Hence, the second Schur’s lemma [78] implies
that 〈α|Vj,k |β〉 is zero if the two representations are not equivalent. Note that there can be at most
one value of j such that U(k) is equivalent to ω U(j). If such a value exists, we denote it as j = π(k).
By construction, the function π : Irr(U)→ Irr(U) must be injective.

When j = π(k), the first Schur’s lemma [78] guarantees that the operator 〈α|Vπ(k),k|β〉 is
proportional to the partial isometry Tπ(k),k that implements the equivalence of the two representations.
Let us write

〈α|Vπ(k),k |β〉 = Mα,β Tπ(k),k , (A90)
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for some M(k)
α,β ∈ C. Note also that, since the left-hand side is sesquilinear in |α〉 and |β〉, the right-hand

side should also be sesquilinear. Hence, we can find an operator Mπ(k),k : Mk → Mπ(k) such that

M(k)
α,β = 〈α|Mπ(k),k |β〉. Putting everything together, the operator V can be written as

V =
⊕

k∈Irr(U)

(
Tπ(k),k ⊗Mπ(k),k

)
. (A91)

Now, the operator V must be unitary, and, in particular, it should satisfy the condition VV† = I,
which reads ⊕

k∈Irr(U)

(
IRπ(k)

⊗Mπ(k),k M†
π(k),k

)
= I . (A92)

The above condition implies that: (i) the function π must be surjective, and (ii) the operator
Mπ(k),k must be a co-isometry. From the relation V†V, we also obtain that Mπ(k),k must be an isometry.
Hence, Mπ(k) is unitary.

Summarizing, the condition (A85) can be satisfied only if there exists a permutation π : Irr(U)→
Irr(U) such that, for every j,

1. the irreps ω U(k) and Uπ(k) are equivalent,
2. the multiplicity spacesMk andMπ(k) are unitarily isomorphic.

Fixing a unitary isomorphism Sπ(k),k : Mk → Mπ(k), we can write every element of the
adversarial group in the canonical form V = Uπ V0, where Uπ is the permutation operator

Uπ =
⊕

k∈Irr(U)

(
Tπ(k),k ⊗ Sπ(k),k

)
, (A93)

and V0 is an element of the commutant U′, i.e., a generic unitary operator of the form

V0 =
⊕

k∈Irr(U)

(
Ij ⊗V0,k

)
. (A94)

Conversely, if a permutation π exists with the properties that for every k ∈ Irr(U)

1. ω U(k) and U(π(k)) are equivalent irreps,
2. Mk andMπ(k) are unitarily equivalent,

and if the operator V has the form V = UπV0, with Uπ and V0 as in Equations (A93) and (A94), then V
satisfies the commutation relation (A85).

We have seen that every element of the adversarial group can be decomposed into the product of
a permutation operator, which permutes the irreps, and an operator in the commutant of the original
group representation U : G → Lin(H). We now observe that the allowed permutations have an
additional structure: they must form an Abelian group, denoted as A.

Lemma A20. The permutations π arising from Equation (A85) with a generic multiplicative character ω(V, ·)
form an Abelian subgroup A of the group of all permutations of Irr(U).

Proof. Let V and W be two elements of the adversarial group GB, let ω(V, ·) and ω(W, ·) be the
corresponding characters, and let πV and πW be the permutations associated with ω(V, ·) and ω(W, ·)
as in Theorem A19, i.e., through the relation

j = πV(k) ⇐⇒ U(j) is equivalent to ω(V, ·)U(k),

j = πW(k) ⇐⇒ U(j) is equivalent to ω(W, ·)U(k) . (A95)
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Now, the element VW is associated with the permutation πV ◦ πW , while the element WV is
associated with the permutation πW ◦ πV . On the other hand, the characters obey the equality

ω(VW, g) = ω(V, g)ω(W, g) = ω(WV, g) ∀g ∈ G . (A96)

Hence, we conclude that πV ◦ πW and πW ◦ πV are, in fact, the same permutation. Hence,
the elements of the adversarial group must correspond to an Abelian subgroup of the permutations
of Irr(U).

Combining Lemmas A19 and A20, we can now prove Theorem 3.

Proof of Theorem 3. For different permutations in A, we can choose the isomorphisms Sπ(k),k :Mk →
Mπ(k) such that the following property holds:

Sπ2◦π2(k),k = Sπ2(π1(k)),π1(k) Sπ1(k),k , ∀π1, π2 ∈ A . (A97)

When this is done, the unitary operators Uπ defined in Equation (A93) form a faithful
representation of the Abelian group A. Using the canonical decomposition of Theorem A19, every
element of V ∈ GB is decomposed uniquely as V = Uπ V0, where V0 is an element of the commutant U′.
Note also that the commutant U′ is a normal subgroup of the adversarial group: indeed, for every
element V ∈ GB we have VU′V† = U′. Since U′ is a normal subgroup and the decomposition
V = UπV0 is unique for every V ∈ GB, it follows that the adversarial group GB is the semidirect
product AnU′.

Appendix J. Example: The Phase Flip Group

Consider the Hilbert space HS = C2, and suppose that agent A can only perform the identity
channel and the phase flip channel Z , defined as

Z(·) = Z · Z , Z = |0〉〈0| − |1〉〈1| . (A98)

Then, the actions of agent A correspond to the unitary representation

U : Z2 → Lin(S) , k 7→ Uk = Zk . (A99)

The representation can be decomposed into two irreps, corresponding to the one-dimensional
subspacesH0 = Span{|0〉} andH1 = Span{|1〉}. The corresponding irreps, denoted by

ω0 : Z2 → C , ω(k) = 1,

ω1 : Z2 → C , ω(k) = (−1)k, (A100)

are the only two irreps of the group and are multiplicative characters.
The condition VUk = UkV yields the solutions

V = eiθ0 |0〉〈0|+ eiθ1 |1〉〈1| , θ0, θ1 ∈ [0, 2π) , (A101)

corresponding to the commutant U′. The condition VUk = (−1)k UkV yields the solutions

V = eiθ0 |0〉〈1|+ eiθ1 |1〉〈0| , θ0, θ1 ∈ [0, 2π) . (A102)

It is easy to see that the adversarial group GB acts irreducibly onHS.
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Let us consider now the subsystem SA. The states of SA are equivalence classes under the relation

|ψ〉 'A |ψ′〉 ∃V ∈ GB : |ψ′〉 = V|ψ〉 . (A103)

It is not hard to see that the equivalence class of the state |ψ〉 is uniquely determined by the
unordered pair {|〈0|ψ〉| , |〈1|ψ〉|}. In other words, the state space of system SA is

St(SA) =
{
{p, 1− p} , : p ∈ [0, 1]

}
. (A104)

Note that, in this case, the state space is not a convex set of density matrices. Instead, it is the
quotient of the set of diagonal density matrices, under the equivalence relation that two matrices with
the same spectrum are equivalent.

Finally, note that the transformations of system SA are trivial: since the adversarial group GB
contains the group GA, the group G(SA) = πA(GA) is trivial, namely

G(SA) =
{
ISA

}
. (A105)

Appendix K. Proof of Theorem 4

Let G be a connected Lie group, and let g be the Lie algebra. Since G is connected, the exponential
map reaches every element of the group, namely G = exp[ig].

Let h ∈ G be a generic element of the group, written as h = exp[iX] for some X ∈ g, and consider
the one-parameter subgroup H = {exp[iλX] , λ ∈ R}. For a generic element g ∈ H, the corresponding
unitary operator can be expressed as Ug = exp[iλK], where K ∈ Lin(S) is a suitable self-adjoint
operator. Similarly, the multiplicative character has the form ω(g) = exp[iλµ], for some real number
µ ∈ R.

Now, every element V of the adversarial group must satisfy the relation

V exp[iλK] = exp[iλ(K + µ IS)]V ∀λ ∈ R , (A106)

or equivalently,

exp[iλK] = V† exp[iλ(K + µ IS)]V ∀λ ∈ R . (A107)

Since the operators exp[iλK] and exp[iλ(K + µ IS)] are unitarily equivalent, they must have
the same spectrum. This is only possible if the operators K and K + µ IS have the same spectrum,
which happens only if µ = 0.

Now, recall that the one-parameter Abelian subgroup H is generic. Since every element of G is
contained in some one-parameter Abelian subgroup H, we showed that ω(g) = 1 for every g ∈ G.

To conclude the proof, observe that the map U(j) 7→ ω U(j) is the identity, and therefore induces
the trivial permutation on the set of irreps Irr(U). Hence, the group of permutations A induced by
multiplication by ω contains only the identity element.

Appendix L. Proof of Proposition 16

Proof. It is enough to decompose the two states as

|ψ〉 =
⊕

j∈Irr(U)

√
pj |ψj〉 and |ψ′〉 =

⊕
j∈Irr(U)

√
p′j |ψ

′
j〉 , (A108)
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where |ψj〉 and |ψ′j〉 are unit vectors inRj ⊗Mj. Using this decomposition, we obtain

TB(|ψ〉〈ψ|) =
⊕

j∈Irr(U)

pj ρj and TB(|ψ〉〈ψ|) =
⊕

j∈Irr(U)

p′j ρ′j , (A109)

where ρj (ρ′j) is the marginal of |ψj〉 (|ψ′j〉) on systemRj. It is then clear that the equality TB(|ψ〉〈ψ|) =
TB(|ψ′〉〈ψ′|) implies pj = p′j and ρj = ρ′j for every j. Since the states |ψj〉 and |ψ′j〉 have the same
marginal on systemRj, there must exist a unitary operator Uj :Mj →Mj such that

|ψ′j〉 = (IRj ⊗Uj) |ψj〉 . (A110)

We can then define the unitary gate

UB =
⊕

j∈Irr(U)

(
IRj ⊗Uj

)
, (A111)

which satisfies the property UB|ψ〉 = |ψ′〉. By the characterization of Equation (89), UB is an element
of GB.
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