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Abstract: We consider the rate distortion problem with side information at the decoder posed and
investigated by Wyner and Ziv. Using side information and encoded original data, the decoder must
reconstruct the original data with an arbitrary prescribed distortion level. The rate distortion region
indicating the trade-off between a data compression rate R and a prescribed distortion level A was
determined by Wyner and Ziv. In this paper, we study the error probability of decoding for pairs
of (R, A) outside the rate distortion region. We evaluate the probability of decoding such that the
estimation of source outputs by the decoder has a distortion not exceeding a prescribed distortion
level A. We prove that, when (R, A) is outside the rate distortion region, this probability goes to
zero exponentially and derive an explicit lower bound of this exponent function. On the Wyner-Ziv
source coding problem the strong converse coding theorem has not been established yet. We prove
this as a simple corollary of our result.

Keywords: source coding with side information at the decoder; the rate distortion region; exponent
function outside the rate distortion region; strong converse theorem

1. Introduction

For single or multi terminal source coding systems, the converse coding theorems state that at
any data compression rates below the fundamental theoretical limit of the system the error probability
of decoding cannot go to zero when the block length n of the codes tends to infinity. On the other
hand, the strong converse theorems state that, at any transmission rates exceeding the fundamental
theoretical limit, the error probability of decoding must go to one when n tends to infinity. The former
converse theorems are sometimes called the weak converse theorems to distinguish them with the
strong converse theorems.

In this paper, we study the strong converse theorem for the rate distortion problem with side
information at the decoder posed and investigated by Wyner and Ziv [1]. We call the above source
coding system the Wyner and Ziv source coding system (the WZ system). The WZ system is shown in
Figure 1. In this figure, the WZ system corresponds to the case where the switch is close. In Figure 1,
the sequence (X", Y") represents independent copies of a pair of dependent random variables (X, Y)
which take values in the finite sets X and ), respectively. We assume that (X, Y) has a probability
distribution denoted by pxy. The encoder ¢(") outputs a binary sequence which appears at a rate
R bits per input symbol. The decoder function ¢(") observes ¢(") (X") and Y" to output a sequence
Z". The t-th component Z; of Z" fort = 1,2, - - - , n take values in the finite reproduction alphabet Z.
Letd: X x Z — [O, oo) be an arbitrary distortion measure on X x Z. The distortion between x" € X"
and z" € Z" is defined by
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Figure 1. Source encoding with a fidelity criterion with or without side inforamion at the decoder.

In general, we have two criteria on d(X", Z"). One is the excess-distortion probability of decoding
defined by

P (o™, p(M; A) := Pr {id(x”,z”) > A} : )
The other is the average distortion defined by
1 n—rn 1 ¢ n n n n
Ay :=E |—d(X"Z")| = =Y d(xpzg) | Pr{X" = x",Z" = 2"}
n (xzyexnxzn [ M=

1
:E Z Z d(xk,zk)Pr{Xk = Xj, Zk = Zk} .
k=1 (xp2) €EX X 2

A pair (R, A) is e-achievable for pxy if there exist a sequence of pairs { (¢, (")}, 5 such that
for any 6 > 0 and any n with n > no= ny (¢, 9)

1
~loglle™ | < R+6, B (o, p";n) <,

where ||¢(") || stands for the range of cardinality of ¢("). The rate distortion region Rwz(e|pxy) is
defined by

Rwz(elpxy) = { (R, A) : (R, A) is e-achievable for pxy } .

Furthermore, set
Rwz(pxy) :== [ Rwz(elpxy)-

e>0

On the other hand, we can define a rate distortion region based on the average distortion criterion,
a formal definition of which is the following. A pair (R, A) is achievable for pxy if there exist a sequence
of pairs { (¢, (M)}, such that for any § > 0 and any n with n > ng= ny(9),

%logH(p(")H <R+, AW <A+
The rate distortion region Rwz( pxy) is defined by
Rwz(rxy) := { (R,A) : (R,A) is achievable for pxy } .
If the switch is open, then the side information is not available to the decoder. In this case the

communication system corresponds to the source coding for the discrete memoryless source (DMS)
specified with px. We define the rate distortion region Rpys(px) in a similar manner to the definition
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of ﬁwz(pxy). We further define the region Rpys(¢|px), € € (0,1) and Rpwms(px), respectively in
a similar manner to the definition of Rwz(¢e|pxy) and Rwz(pxy)-

Previous works on the characterizations of Rpwms(px), Rowms(e|px), e € (0,1), and Rpwms(px)
are shown in Table 1. Shannon [2] determined ﬁDMS(pX). Subsequently, Wolfowiz [3] proved that
Roms(px) = Roms(px). Furthermore, he proved the strong converse theorem. That is, if (R, A) ¢
Rpwms(px), then for any sequence {((p("),l[)("))};ozl of encoder and decoder functions satisfying
the condition

lim sup 1 log||¢™|| <R, (2)
n—oo N
we have
lim P (9", p(M; A) = lim Pr {1d(X”,Z”) > A} = 1. 3)
n—sco n—oo Ny

The above strong converse theorem implies that, for any ¢ € (0,1),

Rowms(px) = Rowms(px) = Rowms(epx)-

Csiszar and Korner proved that in Equation (3), the probability Pff” (¢, »(M; A) converges to
one exponentially and determined the optimal exponent as a function of (R, A).

The previous works on the coding theorems for the WZ system are summarized in Table 1.
The rate distortion region Rwz(pxy) was determined by Wyner and Ziv [1]. Csiszar and Korner [4]
proved that Rwz(pxy) = Rwz(pxy). On the other hand, we have had no result on the strong converse
theorem for the WZ system.

Main results of this paper are summarized in Table 1. For the WZ system, we prove that if (R, A) is
out side the rate distortion region Rwz(pxy), then we have that for any sequence { ("), p(")}*_ of

encoder and decoder functions satisfying the conditionin Equation (2), the quantity Pgn) (@, p(m; A)
goes to zero exponentially and derive an explicit lower bound of this exponent function. This result
corresponds to Theorem 3 in Table 1. As a corollary from this theorem, we obtain the strong converse
result, which is stated in Corollary 2 in Table 1. This results states that we have an outer bound with
O(1y/n) gap from the rate distortion region Rywz(pxy)-

Table 1. Previous results on the converse coding theorems for DMS, WZ. Main results in the present
paper on WZ are also included.

Characterization of
the Rate Distortion Region

Shannon [2] (1959) Wolfowitz [3] (1966)
DMS (Explicit form of Rpms(px)) (Rowms (elpx) = Roms(px)
Wolfowitz [3] (1966) DMS €1Px) =~ DMSIPX

(Roms(px) = Roms(px)) forany ¢ € (0,1))

Strong Converse Strong Converse Exponent

Csiszéar and Korner [4] (1981)
(The optimal exponent)

Corollary 2
ST T O
Wz P WZAPXY gap (Lower bound F of

Csiszér and Korner [4] (1981)  the rate distortion region,

Rwz(pxy) = Rwz(pxy))  Rwz(elpxy) = Rwz(pxy)
forany e € (0,1))

the opt. exp. G)

To derive our result, we use a new method called the recursive method. This method is a general
powerful tool to prove strong converse theorems for several coding problems in information theory.
In fact, the recursive method plays important roles in deriving exponential strong converse exponent
for communication systems treated in [5-8].
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2. Source Coding with Side Information at the Decoder

In the following argument, the operations E,[-] and Vary[-], respectively, stand for the expectation
and the variance with respect to a probability distribution p. When the value of p is obvious from the
context, we omit the suffix p in those operations to simply write E[-] and Var[-]. Let X and ) be finite
sets and { (X3, Yt)};’o:l be a stationary discrete memoryless source. For eacht = 1,2, - - -, the random
pair (X, Y;) takes values in X' x ), and has a probability distribution

pxy = {pxy(X,¥)}xy)cxxy -
We write 1 independent copies of {X;};- ; and {Y;};- ;, respectively, as
Xt'=X,Xp, -, Xpand Y = Y1, Yo, -+, Yy,

We consider a communication system depicted in Figure 2. Data sequences X" is separately
encoded to ¢(")(X") and is sent to the information processing center. At the centerm the decoder
function ") observes (") (X") and Y" to output the estimation Z" of X". The encoder function ¢(")
is defined by

¢(n)3Xn*>Mn:{112/"';Mn}~ (4)

Let Z be a reproduction alphabet. The decoder function (") is defined by
P My, x YN — 2N (5)

Letd : X x Z — [0,00) be an arbitrary distortion measure on X x Z. The distortion between
x" € X" and z"' € Z" is defined by

The excess-distortion probability of decoding is

Pg”)(qo(”)/#’(");A) —Pl‘{ld(X",Z”) > A}, ©6)

n

where Z" = (") (¢(") (X™),Y™"). The average distortion A(") between X" and Z" is defined by
A = 1g [d(X",ZM)] := 1 Zn:Ed(Xt 7).
n ’ n= ’

In the previous section, we gave the formal definitions of Rwz(¢| pxy), € € (0,1), Rwz(pxy),
and Rwz(pxy). We can show that the above three rate distortion regions satisfy the following property.

X ) Pz
¢ rate R Ld

v

Figure 2. Wyner—Ziv source coding system.

Y?’l
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Property 1.
(a) The regions Rwz(e|pxy), € € (0,1), Rwz(pxy), and Rwz(pxy) are closed convex sets of R%, where
R2 := {(R,A) : R >0,A > 0}.

(b) Rwz(e|pxy) has another form using (n, €)-rate distortion region, the definition of which is as follows.
We set

Rwz(n,elpxy) = {(R,A) : There exists ('™, p"™) such that
Liogllg| <R, B (o), pl;a) <),

which is called the (n, €)-rate distortion region. Using Rwz(n, €|pxy), Rwz(€|pxy) can be expressed as
Rwz(elpxy) = cl ( U N sz(n,€|ny)> ,
m>1n>m

where cl(-) stands for the closure operation.

Proof of this property is given in Appendix A.

It is well known that Rwz(pxy) was determined by Wyner and Ziv [1]. To describe their result
we introduce auxiliary random variables U and Z, respectively, taking values in finite sets I/ and Z.
We assume that the joint distribution of (U, X, Y, Z) is

puxyz(u,x,y,z) = pu(u) pxju(xu)py x (y[x) pzjuy (zlu, v).
The above condition is equivalent to
U XY, X< (UY) - Z
Define the set of probability distribution p = pyxyz by

P(pxy) :=={p =puxyz : U] < [X ][+ LU= X <Y, X < (UY) < Z},
P (pxy) ={p=puxyz: U| < |X|+1L, U+ X< Y, Z=¢(UY)forsomedp:UxY — Z}.

By definitions, it is obvious that P*(pxy) C P(pxy). Set

R(p) = {(R,A):R,A >0, R > L(X;U[Y),A>Eud(X,Z)},

Rpxy) = U RM@.R'(pxy):= U Rp).
PEP (pxy) peP*(pxy)

We can show that the above functions and sets satisfy the following property:

Property 2.

(a) The region R (pxy) is a closed convex set of R
(b) For any pxy, we have

R(pxy) = R*(pxy)-

Proof of Property 2 is given in Appendix C. In Property 2 Part (b), R(pxy) is regarded as another
expression of R*(pxy). This expression is useful for deriving our main result. The rate region
Rwz(pxy) was determined by Wyner and Ziv [1]. Their result is the following:
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Theorem 1 (Wyner and Ziv [1]).

Rwz(pxy) = R*(pxy) = R(pxy)-
On Rwz(pxy), Csiszdr and Korner [4] obtained the following result.

Theorem 2 (Csiszar and Korner [4]).

Rwz(pxy) = Rwz(pxy) = R*(pxy) = R(pxy)-

We are interested in an asymptotic behavior of the error probability of decoding to tend to one
asn — oo for (R,A) ¢ Rwz(pxy). To examine the rate of convergence, we define the following
quantity. Set

Pgn)(fp(”),lp(");A) =1- Pén)(¢("),lp(”);A),

G(")(R,A|pxy) = min <—1> longn)((p(”),gb(”);A).
(¢(n),¢(n>); n
(1/n)log|le™ | <R

By time sharing, we have that

nGM (R, A +mGm (R, A
ny> < ( |PXY)n+m ( |PXY)' @

( )Choosing R = R’ and A = A’ in Equation (7), we obtain the following subadditivity property on
{G"(R, Alpxy) }nx1:

G(n+m) nR+mR’ nA+mA’
n+m ' n4+m

nG™ (R, Alpxy) +mG"™ (R, Alpxy)

(n+m) <
G (R, Alpxy) < T

7

which together with Fekete’s lemma yields that G(") (R, A|pxy) exists and satisfies the following:

lim G*(R, Alpxy) = inf G (R, Alpxy).
n=

n—oo
Set
G(R,Alpxy) == lim GU(R, Alpxy),

G(pxy) = {(R,A,G): G > G(R,Alpxy)}.

The exponent function G(R, A|pxy) is a convex function of (R, A). In fact, from Equation (7),
we have that for any « € [0, 1]

G(aR +aR’,aN +ah |pxy) < aG(R,A|lpxy) +&G(R', N |pxy),

where & = 1 — a. The region G(pxy) is also a closed convex set. Our main aim is to find an explicit
characterization of G(pxy). In this paper, we derive an explicit outer bound of G (pxy) whose section
by the plane G = 0 coincides with Rwz(pxy)-
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3. Main Results

In this section, we state our main results. We first explain that the rate distortion region R (pxy)
can be expressed with two families of supporting hyperplanes. To describe this result, we define two
sets of probability distributions on U xX xY xZ by

Pan(pxy) := {puxyz : U] < |X|,U &= X < Y, X < (U,Y) + Z}.
Q= {g = quxyz: U| < |X|}.

Letji =1 — u. We set

RW(pxy):= min {al,(X;U[Y)+ uEd(X;Z)},
PEPh(pxy)

Ren(pxy) = () {(R,A): iR+ pA > RM (pxy)}.
#elo,1]

Then, we have the following property:

Property 3. For any pxy, we have
Ren(pxy) = Ripxy)- ®)

Proof of Property 3 is given in Appendix D. For i € [0,1] and A, « > 0, define

A
w;ﬁp)(x,y,zw)
QX(X)QY\XU(}AX:”)‘IZ\UYX(ZWI%X) _ ‘IX\Yu(xh/r”)
=lo + A |filog ———————— +ud(x,z) |,
[ px (0) Py V020 I, ) Flog = vy A
1,A K A
QM) (glpxy) = —log By [exp { —awlf (X, v, ZJ) }],
Q) (py) = min Q) (gl pxy),
qeQ
QWA (pyy) — Aa(fiR + uA)
(wAe) (3 — Pxy K H
FUWAS (AR + ul[pxy) - @ Apa .
Furthermore, set
F(R Alpxy) = sup  FPM (AR + uA|pxy),
1ef0,1],A,6>0

G(pxy) == {(R,A,G): G > F(R,Alpxy)}-

We next define a functions serving as a lower bound of F(R,A|pxy). For each p = pyxyz €
Psn(pxy), define

PX\Yu(xWr u)
px|y(xly)

QWA (p) := —logE, [exp {—Aw}(f)(X,Y,Z]U)H .

@y (x,y,2lu) = [ﬁ log +ud(x,2)] ,

Furthermore, set

QWM (pyy) == min QW (p),
PEPsh(pxy)
QWM (pxy) — AR + pA)
5+A(1+ ) ’

FM (uR + fis|pxy) =
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F(R Alpxy) == sup FUM(AR+ uh|pxy).
/\20,}46[0,1]

We can show that the above functions satisfies the following properties:

Property 4.

(a) The cardinality bound |U| < |X| appearing in Q is sufficient to describe the quantity QUMY (pxy).
Furthermore, the cardinality bound (U| < |X| in Pg, (pxy) is sufficient to describe the quantity

QEM (pxy).
(b) Forany R, A > 0, we have

F(R,Alpxy) > F(R, Alpxy).

(c) Fix any p = puxy € Pen(pxy) and u € [0,1]. For A € [0,1], QW) (p) exists and is nonnegative.

For p =puxyz € Psu(pxy), define a probability distribution p) = P(L?))(yz by

p(u,x,y,z) exp {—/\GJ,E,”)(x, y,z|u)}
E, [exp {f)\a;,(,”)(x, Y,Z|U)H

pM(u,x,y,2) =

Then, for A € [0,1/2], QN (p) is twice differentiable. Furthermore, for A € [0,1/2], we have

d -~
AN (p) = E [0l (XY, 2y,

2
d ()(V//\)(p) = —Varp(A) |:d7;(7y) (Xr Y/Z|u)} :

The second equality implies that Q) (p) is a concave function of A € [0,1/2].
(d) For (u,A) € [0,1] x [0,1/2], define

oM (pxy) == (PO Var,w [a;,(]‘)(x, Y’Z|U)} ’
X Pen(pxy):
Q) (p)
:O(Vr)‘)(pxy)
and set
o=plpxy)i=  max o0 (pxy).

(u,A)€[0,1]x[0,1/2]

Then, we have p(pxy) < co. Furthermore, for any (u,A) € [0,1] x [0,1/2],

N A2
QWA (pxy) > ARM (pxy) — 7P(PXY)- )

(e) Foreveryt € (0,(1/2)p(pxy)), the condition (R + T,A+ T) & R(pxy) implies

- p(pxy) 2 ( T )
F(R,A > . >0,
( |PXY) 10 8 P(PXY)

where g is the inverse function of 9(a) := a + (1/5)a?,a > 0.

Proof of Property 4 Part (a) is given in Appendix B. Proof of Property 4 Part (b) is given in
Appendix E. Proofs of Property 4 Parts (c), (d), and (e) are given in Appendix F.
Our main result is the following:
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Theorem 3. Forany R, A > 0, any pxy, and for any (¢, (") satisfying (1/n)log||¢\™|| < R, we have
P (9", p"; 8) < Sexp {—nF(R, Alpxy)} (10)

It follows from Theorem 3 and Property 4 Part (d) that if (R, A) is outside the rate distortion
region, then the error probability of decoding goes to one exponentially and its exponent is not below
F(R, Alpxy).

It immediately follows from Theorem 3 that we have the following corollary.

Corollary 1. For any R, A > 0 and any pxy, we have
G(R,Alpxy) = F(R, Alpxy). (11)
Furthermore, for any pxy, we have
G(pxv) € G(pxy) :={(R,A,G): G > F(R,Alpxy)} . (12)

Proof of Theorem 3 will be given in the next section. The exponent function in the case of A =0
can be obtained as a corollary of the result of Oohama and Han [9] for the separate source coding
problem of correlated sources [10]. The techniques used by them is a method of types [4], which is not
useful for proving Theorem 3. In fact, when we use this method, it is very hard to extract a condition
related to the Markov chain condition U <+ X < Y, which the auxiliary random variable U € U/
must satisfy when (R, A) is on the boundary of the set R(pxy). Some novel techniques based on the
information spectrum method introduced by Han [11] are necessary to prove this theorem.

From Theorem 3 and Property 4 Part (e), we can obtain an explicit outer bound of Rwz(¢|pxy)
with an asymptotically vanishing deviation from Rwz(pxy) = R(pxy). The strong converse theorem
immediately follows from this corollary. To describe this outer bound, for x > 0, we set

Ripxy) =#(1,1) ;= {(R=x,A—x): (R A) € R(pxy)},

which serves as an outer bound of R(pxy). For each fixed € € (0,1), we define x,= x, (¢, p(pxy)) by

Kn = p(pxy)?9 <\/w(lpoxy)10g <15_£>> (13)
@ \/10'0(5XY) log (1 58) + %log (15{5) .

Step (a) follows from ¥(a) = a + (1/5)a?. Since x, — 0 as n — oo, we have the smallest positive
integer ny = no(e, p(pxy)) such that x, < (1/2)p(pxy) for n > ngy. From Theorem 3 and Property 4
Part (e), we have the following corollary.

Corollary 2. For each fixed € € (0,1), we choose the above positive integer ny = ng (e, p(pxy)) Then, for any
n > ngy, we have

Rwz(n,elpxy) € R(pxy) — kn(1,1).

The above result together with

Rwz(elpxy) = cl ( U N sz(n,€|}7xy)> ,

m>1n>m
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yields that for each fixed ¢ € (0,1), we have

Rwz(elpxy) = Rwz(pxy) = R(pxy)-

Proof of this corollary will be given in the next section.

The direct part of coding theorem, i.e., the inclusion of R(pxy) € Rwz(¢|pxy) was established
by Csiszér and Korner [4]. They proved a weak converse theorem to obtain the inclusion Rwz(pxy)
C R(pxy)- Until now, we have had no result on the strong converse theorem. The above corollary
stating the strong converse theorem for the Wyner—Ziv source coding problem implies that a long
standing open problem since Csiszdr and Korner [4] has been resolved.

4. Proof of the Main Results

In this section, we prove Theorem 3 and Corollary 2. We first present a lemma which upper
bounds the correct probability of decoding by the information spectrum quantities. We set

Su 1= @ (X, 2 = (") (X7), Y.

It is obvious that
Sp o X" YL X" (S, YY) & ZM

Then, we have the following:

Lemma 1. For any 5 > 0 and for any (¢, p(")) satisfying (1/n)log ||¢(™ || < R, we have

pl") (oM, p; A) < pg, xnynzn {

(1) /~on
1 an(X )
> = XA T
12 518 () 9
(ii) 7 n
1 Qyn‘s XW(Y |San )
> - n
R A Ol I (1
(iii)
S 110 Qxﬂ‘snynzn(Xn|sn/Yn/Zn) (16)
1= s (X7 (S0, YT)
(iv) n n
1 an‘s yn(X ‘Sn/Y )
R+n>-1 i , 17
1= O T e (XTY) 1)
A> %logexp {d(X”,Z”)}} +4e M. (18)

The probability distribution and stochastic matrices appearing in the right members of Equation (18) have
a property that we can select them arbitrary. In Equation (14), we can choose any probability distribution Qgg,
18,7 s My x X" — V" In Equation (16),

Myx Y x Z" — XM In Equation (17), we can choose any

on X". In Equation (15), we can choose any stochastic matrix ngh;,)
(iii)
X1|S, Y Zn

stochastic matrix ngs yn s My X Y — X

we can choose any stochastic matrix Q

Proof of this lemma is given in Appendix G.

Lemma 2. Suppose that, for each t =1,2,- - -, n, the joint distribution pg,xtyn of the random vector S, X'Y"
is a marginal distribution of pg, xnyn. Then, fort =1,2,--- ,n, we have the following Markov chain:



Entropy 2018, 20, 352 11 of 32

Xi ¢ S Xy o vt (19)

or equivalently that 1(Xy; Y=1S, X! ~1Y]") = 0.
Proof of this lemma is given in Appendix H. Fort =1,2,- -+ ,n,setu; := (s, x'~ ,ytﬂ) Let U; :=
(Su, X'"1, Y!'.;) be a random vector taking values in M,, x X'~! x Y. From Lemmas 1 and 2,

we have the following:

Lemma 3. For any 5 > 0 and for any (¢, (")) satisfying (1/n)log ||¢(™|| < R, we have the following:

Pgn) (q)(”l), l/J(n),' A) < Ps,xnynzn {

QW (xy)
1 f
21 %8 (X)

12 QYI:IUtXt(YtWt’ X¢)

Z* 10 7
1 ”t; 8 Py, |x, (Y| Xt)

(20)

(i)
p > 1 ilog Qx,(uviz (XelUs, Y, Zt)
on t=1 pXt\Uth (Xt|Ut, Yt)

n

Q (i) (X¢|Uy, Yr)
R+n>— 1 Zl Xl Ui

Px. |y, (Xe|Ye)

A> = 2 loged(X"Zf)} +4e ",
=

where for each t = 1,2,- - -, n, the following probability distribution and stochastic matrices:

(i) ~(ii) iii (iv)
QXt’ QY[‘U}Xt QXt|LIthZt d QXt‘U[Yt

appearing in the first term in the right members of Equation (21) have a property that we can choose their
values arbitrary.

Proof. On the probability distributions appearing in the right members of Equation (18), we take the

following choices. In Equation (14), we choose ngq so that

") = Hl QR (X1). @)
=
In Equation (15), we choose Qgﬂ 5, xn SO that
QU g, (Y"1, X") = ]_[Qms v, (Ve X Y0 ) HQ;ij LX), @)
In Equation (16), we choose Q;f i, ynzn SO that
Qs yizn (X180, Y", Z1) 1’[ QY xr-1ypz, (XilSa XY, 22)

= H QY iz, (Xe U Z). (23)
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In Equation (16), we note that
n n - =1 yny @ - t—1 yn
pxnis,yr (X" [Sn, Y") = prt\snxfflw(xﬂsmx Y1) = prt\snxtflytn(xﬂsmx YY)
t=1 t=1

n
= 1—_[ pXt‘Ufo (Xt|utl Yt) (24)
t=1

Step (a) follows from Lemma 2. In Equation (17), we choose Q X so that

|S Y1‘l
Q;:?Sﬂyn (Xn|snlyn HQX 1S, Xt 1yn Xt|Sn/Xt_1/Yt HQX |UyY; Xt|ut/Yt)‘ (25)

From Lemma 1 and Equations (21)-(25), we have the bound of Equation (21) in Lemma 3. O

To evaluate an upper btound of Equation (21) in Lemma 3, we use the following lemma, which is
well known as the Cramér’s bound in the large deviation principle.

Lemma 4. For any real valued random variable A and any 6 > 0, we have
Pr{A <a} <exp|[(0a+logE[exp(—0A)])].

Here, we define a quantity which serves as an exponential upper bound of Pg”) (o), p(m),
Foreacht=1,2,---,n,let Q, be asetof all

_ (i) ~(ii) iii (iv)
Qt - (QXt,QY[‘utXt QX¢|UthZt QXf‘U[Yt)

Set

Let P(")(pxy) be a set of all probability distributions ps,xnynzn on My x X" x Y" x Z" having
the form:

ps,xnynzn (s, x",y",z") = pg, xn (s {H PX:Y xt;yt)} pznyns, (2" y",5).

For simplicity of notation, we use the notation p") for p S, Xnynzn € P (pxy). We assume that
PUXYZ; = Ps,xtyrz, is a marginal distribution of p™. For t = 1,2,--- ,n, we simply write p; =
pu,x,v,z,- For p e P (pxy) and Q" € 9", we define

0
ﬁ px, (X¢) Py.|x; (Yel Xe)
=1 | QR (X)) Qg (Yil X, L)
AB

0 i
X ﬁ Pxijury, (Xt Ur, Ye) ﬁ APXt\Yf(thYt) o H(X1,21)
Q;Zl\uty,zt(xt|ut,Yt,Zt) =1 Q;,V\)y,u,(XtWhYt)

where, foreacht = 1,2, - -, n, the following probability distribution and stochastic matrices:

QA (p"), Q" |pxy) = —logE )
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(i) (i) (iif) (iv)
QXt’ QXt\Uth’ QXt\UthZt’ QY¢|X¢U¢

appearing in the definition of Q49 (p("), Q"|pxy) are chosen so that they are induced by the joint
distribution q; = qu;,x,v,z, € 9t-
By Lemmas 3 and 4, we have the following proposition:

Proposition 1. For any u € [0,1], A, 8 > 0, any q¢" € Q", and any (¢\"), ") satisfying
(1/n)log ||¢™|| < R, we have

n n n ~ - 1 n n ~
P (o, 9;) < Sexp{ <n 1+ (3 Ao | LM, Q) ~ A6(ER + )| }.

Proof. When QM) (p(), Q" pxy) < nAB(fiR + uA), the bound we wish to prove is obvious. In the
following argument, we assume that Q(#A0) (p("), Q"|pxy) > nA8(fiR + pA). We define five random
variables A;i =1,2,---,5by

1 LC 1 Qg;z(xt) Qg/ltlﬁxtut(yt‘xtr ut)

1 n
Al = — O /AZ = - 10
YT t; & ox, (X1) n t; 8 Py x, (Y[ Xe)

(iii)
Az = 1 i log QXt|UthZt(Xt|ut’ Ye, Zi)
ni= px iy (XelUe, Ye)

(v)
A= L3 10g Sl XL 1Y
f=
ni= Px, v, (Xe[Ye)

,As = 1 i log (X Ze),
=

By Lemma 3, for any (9", (")) satisfying (1/n) log ||¢(™|| < R, we have

P (@), 9 A) < pg,xmynzn{A; < ypfori=1,2,3, Ay < R+1, As < A} + e
< ps,xnynzn{ A1+ Axy+ Az + A(j1As + pAs) < A(AR+puA) + B+ Aj)y} +4e™ ™M
= ps,xnynzn{A < a} +4e™ M, (26)

where we set

A:=A14+ Ay + Az + A(jiAg + uAs),
a:= AR+ uA)+ 3+ Aj)y.

Applying Lemma 4 to the first term in the right member of Equation (26), we have
P (oM, p(); A) < exp [(ea +10gE (1 [exp(—GA)})] 4 de
= exp {n{/\e(ﬁR + b)) + (34 Ap)oy —%Q(“'W) (r™, Q" lpxy) H +4e ", 27)
We choose 7 so that

1
—1 = AB(AR + ) +6(3 + Ap)y — QA (p™), Q% |py). (28)
Solving Equation (28) with respect to 77, we have

WA (p(m), Q" pxy) — AB(IR + )
14+ (3+An)d

]7:
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For this choice of 77 and Equation (27), we have

PE")(go(”),lp(”);A) < 5e M

1

=5 exp{ —n[l+ @+ Ame] " | (P, Q" pxy) — AB(AR + VA)} } :

completing the proof. [

Set

1
OwA) = inf ' QWA (p(n) on .
Q¥ (pxy) o el (r™, Q"pxy)

By Proposition 1, we have the following corollary.

Corollary 3. Forany y € [0,1],A > 0, forany 6 > 0, and for any (¢, ") satisfying (1/n) log ||p™ || <
R, we have

We shall call Q(#*?) (pxy) the communication potential. The above corollary implies that the
analysis of Q(V’)"e) xy) leads to an establishment of a strong converse theorem for Wyner-Ziv
y p g yn

(1A.8) _ i
() (n) (n). Q¥ (pxy) — AO(AR + pd)
P (9™ y ’A)SSQXP{ ”l 1+ (3+An)6

source coding problem. In the following argument, we drive an explicit lower bound of Qo) (Pxy)-
We use a new technique we call the recursive method. The recursive method is a powerful tool to drive
a single letterized exponent function for rates below the rate distortion function. This method is also
applicable to prove the exponential strong converse theorems for other network information theory
problems [5-7]. Set

‘Ft = (pr|Ufo/Qt>/ ‘Ft = {‘Fl}f:]

Foreacht =1,2,---,n, define a function of (u¢, x¢, yt,z¢t) € Uy x X x) X Z by

f](:il'/\'e) (xt, Yt, ze|uy)

Afi 4
_ ) opx () P (velx) Py, (Xe|ue, yi) Px|y, (xXt|yt) o Ad(xy20)
QR (x1) Q(Y‘:ﬁxtut(ytlxt,ut) le‘)utyrzt(xtlut,yt,m) Q%)y,u,(xdut/yt)

By definition, we have

exp { —QM) (p"), Q" pxy) |

LY
— Zpsnyn (s,y™") Z pxnzn|snyn(x”,z”|s,y”)Hf;_f: )(xt,yt,zt|ut). (29)
s,y XMz =1

Foreacht=1,2,---,n, we define the conditional probability distribution

A0 A0 n
p(l/l ) = { (1A9) (xtrztlsly )}

XtZHS, Yym Ft PX'Zt\SnY”;}" (xtzt sy EXE X ZEx My x Y1

by

t
A0 — A0
Py (215, 2= G s,y Pz, v (6 2 s,y TT AL (e i il )

i=1
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where

t
A0
Cils,y") =Y pxoztisn (2 15,y [ LA (ot i 2if) (30)

xt zt i=1
are constants for normalization. Fort = 1,2, - - - , n, define

A0
o (s,5") == Cils, y")C Y (5,9, (31)
where we define Cy(s,y") = 1 for (s,y") € M, xY". Then, we have the following lemma:

Lemma 5. Foreacht = 1,2,--- ,n, and for any (s, y" x',z') € M, xY" x X! x Zt, we have

P e (62 ") = <<1>£’3£’9> (5,9") P gy (72 s )
XPX,Zt\Sanle"<xf/Zl‘|s Xy )f(y,A,G (xt, Yt zt|ue). (32)
th(,}}:-)rle tzt p)?t)\lezt 13, Yn; Ft- (L2 s,y
xtz
XPx,z,|snxt-1yn (Xt 2t s, xtflfztflfy")f%'w) (xt, Y, zt|ue). (33)

Furthermore, we have

exp{ QA (), Q”Ipxy)} Y psvn(s,y") cht’}?'e (s, 9). (34)
Syn

The equality in Equation (34) in Lemma 5 is obvious from Equations (29)—(31). Proofs of
Equations (32) and (33) in this lemma are given in Appendix I. Next, we define a probability
distribution of the random pair (S,, Y") taking values in M, xY" by

t
A0 /\9
Pé” o ) (s, y")= G s, (s,y" ]_[q#}, y") (35)

i=1
where C; is a constant for normalization given by
! wA, 9
1’1
ZPS Y” 5 y Hq)l]n
sy"

i=1

Fort=1,2,---,n,define

A0 ~ o~
AP = GiE (36)
where we define Cy = 1. Set
A0 A0
PéZXthZ e (XY 2) = P e (i X1, e, 22)
A0) A0 _ _
= Z psyyn ]:t 1 S y )ng‘ 1Z)r 1|S yn ]:t l(xt /Zt l|S/yn) (37)
Y11

t—1 t—1 n
><thz,|xtflzf*15nw(xt/Zt|x 28,y

Then, we have the following:
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Lemma 6.
,AL0)
exp {_Q(V,/\,G)(p(n),gn|pxy } HAt;‘l]_‘t , (38)
20 by A
AV = ) ny‘, Z p&txfy)tzt o (2t e, 2) FR) (e g 2 ). (39)
trXt Y4t

Proof. By the equality Equation (34) in Lemma 5, we have

5 noo n A
exp {_Q(u,w)(p(n>,9n|pxy)} — ¢, =[[GC1 @ AL, (40)
t=1 t=1
Step (a) follows from the definition in Equation (36) of A t}}? ") We next prove Equation (39) in
Lemma 6. Multiplying Ag 7t H) — = C;/C;_1 to both sides of Equation (35), we have
A0 A0
AP IO (s, ") (41)
=C- @A) (g,
= t1PSnY"Sy H i Fi (s,y")
A0 ,A,0)
= P (s "R (5,7 42)

Taking summations of Equations (41) and (42) with respect to (s, y"), we have

A0 A0 A0
AP = ng"yn;t L5,y @) (s,ym)
sy"

(@) (wA0) )y (wA0) =1 t—1|. |1
= ps Y”", Ft-1 S y pxt 17t— 1‘5 yn]:t 1(x /Z |S/y )
s,y" xt 7t

1 A0
XPx,z,|xt-17t-1s, v (%, ze|x 1 2! 1/54/")](%‘ )(xt/ytthWt)

A0) A0 — _
= Z Z psyyn L Ft=1 S y )Pg?f 1Z)t 1|5nyn Ft— 1(xt 1/Zt 1|5/3/n)

sty zy yt=1z-1
XPX, 7| Xt-17t-15, Y7 (xt,ze|x' 1,27 sy )f]-'t (xt/ytrzt|”t)

(b) A0 A0
= Z pl(/];thY)tZt Lt 1(”1‘/ xt/]/trzt)f](,-ﬂ )(xt,yt,zt|ut).
Ut,Xt,Yt, 2t

Step (a) follows from Equation (33) in Lemma 5. Step (b) follows from the definition in Equation (37)

(1A0)
f UtXthZf;]:tfl. D

The following proposition is a mathematical core to prove our main result.

Proposition 2. For 6 € [0,1), we choose the parameter « such that

0 o

Then, for any A > 0, u € [0,1] and for any 6 € [0,1), we have
(mAR)
QWA (pyy) > Qi(pxy) (44)

1+«
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Proof. Set

0, = {9 = quxvz : U] < [My|| X" 1Y),
AOF ™M (pxy) i= min QFA) (g]pxy).

qE€Cn
Then, by Lemma 6, we have
(pA8) _ (wA0)
At,]:t = Z putXthZt - 1 (u, xt,yt,Zt>f]:t (Xt,yt,2t|ut)
U, Xt,Yt, 2t
ht=1,2,- ively ch = h (k0)
Foreacht =1,2,---,n, werecursively choose q; = q,x,y,z, so that qu,x,v,z, = putX YiZp -1 and
t tr

(i) (i) (iii) (iv) L.
choose QX,/ Qm XU th\um X and QXt‘Ytut appearing in

A,0)
f (s (xt/]/t/Zt’ut)
0

Afi
— ) Px (xt)  Puix (ye]xe) Pxi|uy: (xelue, ye) ( Pxi|vi (xt]ye) o Mnd(xezt)
)

QU0 (x0) Qg o) Qi iz, Gl e 20) \ Q5 (s v

such that they are the distributions induced by qy;,x,y,7,- Then, foreacht = 1,2, - - -, n, we have the
following chain of inequalities:

i apd(x,ze) ) ?
A0 _ g | px(0)  pux 061X pxu (XU Yo Py (XA
L7 TN ax (Xe) gy xu, (el X, Ur) Gx, 0y, (Xel U, Ye, Ze) (XU, Yr)

Al
th [Y: Uy

i AR
_E px, (Xe)  Pyx, (YelX) Ox,uy (XelUs, V) Py, (Xe[Ye)e (i)
TN ax (Xe) gy xu, (Ve X, Ur) Gx, 0y, (Xel U, Ye, Ze) (X:|Us, Yy)

Al
th YUy

X { pXt\Uth(Xt|ut’ Yi) }9] (45)

th‘uth (Xt | Ut, Yt)
1-6

o)
Afl —Aud(Xp,Ze) ) T-9
(a) . Px,(Xe) Py x, (YelXt) Gz, (Ze|Us, Ye) Py, (Xe[Ye)e™ Kela)
i th (Xt) th|XtLIt (Yt|Xt’ ut) th\UtXth (Zt|ut/ Xt’ Yt) (Xt|Ut, Yt)

Afi
th|YtUt

0
pXt|Uth(Xt|ut/Yt) ([A 0 )
X E = _ 1 _ 9 Q H, 129

( " { x|y, (Xe| U, Ye) P { ( ) (qi|PXY)}

(A ) () (l‘/\ ) (A )
® oxp {_Q (%|PXY)} < exp{ (PXY)} @ exp {_Q (pxy) }

1+« 14+« 1+«

Step (a) follows from Holder’s inequality and the following identity:

th‘UtYf (Xt|Ut, Yt) _ th‘UtYf (Zt|Ut, Yt)

= fort=1,2,---,n
axuyvizy(XelUs, Yo, Zt)  qzu,x,y, (Ze|Us, X, i)

Step (b) follows from Equation (43). Step (c) follows from the definition of (A),(f ) (pxy). Step (d)

follows from that by Property 4 Part (a), the bound |U/| < |X|, is sufficient to describe ng‘ ’A'a)( PXY)-
Hence, we have the following:



Entropy 2018, 20, 352 18 of 32

1
70(}‘//\!9) (”) n
e (™, Q"lpxy)

L (ur0) & QU (pxy)

> =AM (p), Q" pxy) 2_2 Zlog/\tp 2 1+a (#6)

n

Step (a) follows from Equation (38) in Lemma 6. Step (b) follows from Equation (45). Since
Equation (46) holds for any 7 > 1 and any p(") € P(") (pyxy), we have

AN
QM) (pyy) > M

1+a
Thus, we have Equation (44) in Proposition 2. [
Proof of Theorem 3: For 6 € [0,1), set
0 «
S R @
Then, we have the following:
10 5 @ Q¥ (pxy) — AG(AR + pd)
n & Pgn)(¢(”),¢(”);A) B 1+6(3+An)
O T QWA (pxy) — g (AR + pd) _ QU (pxy) — Aa(iR + pd))
- 1+ 15 (B +Am) 14+a+a(3+Aj)

FHA® (AR + uA|pxy).

Step (a) follows from Corollary 3. Step (b) follows from Proposition 2 and Equation (47). Since the
above bound holds for any positive A > 0, u € [0,1], and « > 0, we have

1 5
710g > F(R,A|pxy)
n {PE”)<¢<">,¢<">;A> }

Thus, Equation (10) in Theorem 3 is proved. O

Proof of Corollary 2: Since g is an inverse function of ¢, the definition in Equation (13) of «, is

equivalent to
K 10 5
——— | = lo < > . (48
g (P(PXY)) \/”P(PXY) & 1—¢ )

By the definition of ng = ny(¢, p(pxy)), we have thatx, < (1/2)p(pxy) for n > ny. We assume
that for n > ng, (R,A) € Rwz(n,€|pxy)- Then, there exists a sequence { (¢, (")) },>,,, such that
for n > ng, we have

%10g||4)(”)H <R, P{ (g, pM; ) <e
Then, by Theorem 3, we have
1—e< Pgn)(q)(”),lp(”),‘A) < 5exp {—nF(R,Alpxy)} (49)

for any n > ng. We claim that for n > ng, we have (R + x,, A + k,) € R(pxy). To prove this claim,
we suppose that (R + x,+, A + k,+ ) does not belong to R (pxy) for some n* > ny. Then, we have the
following chain of inequalities:
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(a) * n*
Sexp (-1 F(R, Blpx)] < Sexp |~ EE0) 2 (B

(b) ~n'p(pxy) 10 5 _ l—eN| __
= 5exp 10 mplrxy) 10g<1—5)] =5exp {log< 5 )} =1-= (50)

Step (a) follows from x,+ < (1/2)p(pxy) and Property 4 Part (e). Step (b) follows from
Equation (48). The bound of Equation (50) contradicts Equation (49). Hence, we have (R + &, A+x;)
€R(pxy) or equivalent to

(R,A) € R(pxy) — xa(1,1)

for n > ng, which implies that for n > ny,

Rwz(n,elpxy) € R(pxy) — xu(1,1),
completing the proof. O

5. Conclusions

For the WZ system, we have derived an explicit lower bound of the optimal exponent function
on the correct probability of decoding for for (R, A) ¢ Rwz(pxy). We have described this result in
Theorem 3. The determination problem of the optimal exponent remains to be resolved. This problem is
our future work.

In this paper, we have treated the case where X and ) are finite sets. Extension of Theorem 3
to the case where X and Y are arbitrary sets is also our future work. Wyner [12] investigated
the characterization of the rate distortion region in the case where & and )Y are general sets and
{(Xt,Yt)}52, is a correlated stationary memoryless source. This work may provide a good tool to
investigate the second future work.

Acknowledgments: I am very grateful to Shun Watanabe for his helpful comments.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Properties of the Rate Distortion Regions

In this Appendix, we prove Property 1. Property 1 Part (a) can easily be proved by the definitions
of the rate distortion regions. We omit the proofs of this part. In the following argument, we prove
Part (b).

Proof of Property 1 Part (b): We set

Rwz(m,elpxy) = [ Rwz(nelpxy).

n>m

By the definitions of Rwz(m, ¢|pxy) and Rwz(e|pxy), we have that Rwz(m,elpxy) C
Rwz(€e|pxy) for m > 1. Hence, we have that

U Rwz(m,elpxy) € Rwz(elpxy)- (A1)

m>1
We next assume that (R, A) € Rwz(e|pxy)- Set
Rivz(elpxr) == {(R+5,8) : (R,A) € Ruvz(elpxy) )

Then, by the definitions of Rwz (1, € |pxy) and Rwz( €|pxy), we have that, for any é > 0, there
exists ng(¢, 8) such that for any n > no(e,d), (R+6,A) € Rwz(n, €|pxy), which implies that
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RO (elpxy) € () Rwz(nelpxy)

n>ng(e,d)

= Rwz(no(e,6),elpxy) C cl ( U sz(mrgpxy)> :

m>1
Here, we assume that there exists a pair (R, A) belonging to Rwz(¢|pxy) such that
(R, A) ¢ cl < U RWZ<mr£|pXY)> .
m>1
Since the set in the right hand side of Equation (A3) is a closed set, we have

(R+5,A) ¢ cl ( U sz(m,e|pxy)>

m>1

20 of 32

(A2)

(A3)

(A4)

for some small § > 0. Note that (R +6,A) € R‘(f,)z(d pxy)- Then, Equation (A4) contradicts

Equation (A2). Thus, we have

U Rwz(m, elpxy) € Rwz(elpxy) C ( U RWZ(mI€|PXY)> :

m>1 m>1

Note here that Rwz(¢|pxy) is a closed set. Then, from Equation (A5), we conclude that

Rwz(elpxy) =l ( U sz(mr€|PXY)> =l ( U N sz(”f€|PXY)> ,

m>1 m>1n>m
completing the proof. O

Appendix B. Cardinality Bound on Auxiliary Random Variables

Set
R (pxy):= min {al(X;U|Y)+ uEd(X,Z)},
9€Psn(Pxy)
RW(pxy):= min {al(X;U|Y)+ puEd(X,2)},
9€P(pxy)

Since P, (pxy) € P(pxy), it is obvious that
RW (pxy) = RM (pxy).
We first prove the following lemma.
Lemma Al.
R (pxy) = R (pxy).

To prove Lemma Al, we set

Pi(pxy) == {91 = quxy : U] < |X],qxy = pxy. U < X & Y},
Q1(pxy) = {91 = quxy : U] < |X[+1,q9xy = pxy, U < X < Y},
2 (quxy) = {92 = 9zjuxy : quxyz = (quxy,92), X < (U,Y) < Z}.

(A5)

(A6)
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By definition, it is obvious that

Pan(pxy) = {4 = (01,2) : 01 € Palpxy), 02 € Qa(q1)}, (A7)
P(p XY) ={1=(91,92) - 1 € Qi(pxy) 92 € Qa(q1)}- (A8)
Proof of Lemma A1: Since we have Equation (A6), it suffices to show R (pxy) < R (pxy) to

prove Lemma Al. We bound the cardinality |U/| of U to show that the bound |U/| < |X| is sufficient to
describe R(*) (pxy)- We first observe that, by Equation (A8), we have

R min min L (X;U]Y) +uE (X, Z
R pxv) = 71€Q1(pxy) 2€92(q1) {]J 171 ) p (91.72) ( )}

= min {qul(X ulY) +p min E(qwz)d(X,Z)}

1€ (pxy) 72€92(q1)
= min il (X;U|Y) + uE A(X,Z
qlte(ny){‘u a1 (G UIY) 4 HE (g, 45 (1)) )}

where
7 = 492(01) = azuy = {a97juy @ w )}y cuxyxz
is a conditional probability distribution that attains the following optimization problem:

min E

d(X, Z).
72€Q2(q1)

(91,92)

Observe that

=Y qu(u)qxu(x|u), (A9)

uel

filg, (X UJY) + pE (g 0y ( =) pu(uw)r(qaxu(-lu), (A10)
ueld

where

7T(‘1X|u('|u)) = 2 QX\u(x|“)Py|X(y|x)‘7}|uy(z|”r]/)
(xyz)eXXYXZ

i (x|u) pg(y)e—yd(x,z)

px(x) NG
Z PY|X(y|x)QX|u(x|”)

XeX

x log

For each u € U, 7(qx)y(+|u)) is a continuous function of gx|y;(+|u). Then, by the support lemma,
Ul <X =1+1=|X]
is sufficient to express | X'| — 1 values of Equation (A9) and one value of Equation (A10). O

Next, we give a proof of Property 4 Part (a).

Proof of Property 4 Part (a): We first bound the cardinality |U/| of U in Q to show that the bound
U| < |X] is sufficient to describe Q#A) (pyxy). Observe that

=Y qu(u)gxu(x|u), (A11)

ueld
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eXp‘{_()HA“ (qlpxy) } Y qu() ) (gx,qxy 2 (-, [w)), (A12)

ueld

where

H(”’A'“)(QX/ QXYZ|U('/V u)) = Z ‘JXYZ\u(xryrZ\”) exp{ ocw[(m;‘)(x,y,z|u)}.
(xy.2)

EXXYXZ
The value of gx included in TT#4) (gy, axyz|u(+ +, -|u)) must be preserved under the reduction
of U. For each u € U, 1Y (gx, axyz|u(- -, -[u)) is a continuous function of qxyz|y (-, -, -[u). Then,

by the support lemma,
Ul < [X[-1+1=|X|

is sufficient to express |X'| — 1 values of Equation (A11) and one value of Equation (A12). We next
bound the cardinality || of U in Pg,(pxy) to show that the bound |U/| < |X| is sufficient to describe
QWY (pxy). Observe that

=), pu(u)pxju(xlu), (A13)
ueld
eXP{ } Y pu(u )(px, pxyzju (s -lu)), (A14)
ueld

where

0N (px, pxvzu (o) == Y prvzu(ey,zlu) exp { =20y (e y, 2lu) §

(xy,2)
EXXYXZ

The value of py included in IT*Y) (py, Pxyzju(* -, -|u)) must be preserved under the reduction

of U. For each u € U, T1+N (px, Pxyzju(, + |u)) is a continuous function of pxyz|y (-, -, -|u). Then, by
the support lemma,
Ul < |X]-1+1=[X]

is sufficient to express | X | — 1 values of Equation (A13) and one value of Equation (A14). [

Appendix C. Proof of Property 2

In this Appendix, we prove Property 2. Property 2 Part (a) is a well known property. Proof of this
property is omitted here. We only prove Property 2 Part (b).

Proof of Property 2 Part (b): Since P*(pxy) € P(pxy), it is obvious that R*(pxy) € R(pxy)-
Hence it suffices to prove that R(pxy) € R*(pxy). We assume that (R,A) € R(pxy). Then, there
exists p € P(pxy) such that

R > I,(U; X|Y) and A > E,d(X, Z). (A15)

On the second inequality in Equation (A15), we have the following;:

A>Bpd(X,Z)= ), pur(uy) [Z pzuy (zlw,y) (Z d(er)PX|UY(x|”/?/)>]

(wy)eUxy z€Z xeX

> Y pur(uy) llz‘%lg ( Y d(er)quy(xWr]/))]

(wy)eUxy XEX
= ), rur(wy) (Z d(x,2") pxjuy (x[u, y)) (Al6)
(wy)eUxy xeX
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where z* = z*(u,y) is one of the minimizers of the function

Y d(x, z)pxjuy (x[u, y).
xeX

Define ¢ : U x Y — Z by ¢(u,y) = z*. We further define g = quxyz by quxy = Puxy.q9z =
dg(u,y)- It is obvious that

g€ P*(pxy)and R > Ip(X;U\Y) = Iq(X;U|Y). (A17)
Furthermore, from Equation (A16), we have

From Equations (A17) and (A18), we have (R,A) € R*(pxy). Thus R(pxy) € R*(pxy)
is proved. O

Appendix D. Proof of Property 3

In this Appendix, we prove Property 3. From Property 2 Part (a), we have the following lemma.

Lemma A2. Suppose that (R, A) does not belong to R( pxy). Then, there exist € > 0 and u* € [0,1] such
that for any (R, A) € R(pxy) we have

~

(R —=R)+u*(A—A)—e>0.

Proof of this lemma is omitted here. Lemma A2 is equivalent to the fact that if the region R (pxy)
is a convex set, then for any point (R, A) outside the region R(pxy), there exits a line which separates
the point (R, A) from the region R(pxy). Lemma A2 will be used to prove Equation (8) in Property 3.

Proof of Equation (8) in Property 3: We first recall the following definitions of P (pxy) and Pg,(pxy):

P(pXY) = {PUXYZ : |u| S |X| -I—l,U & X < Y/X e (UIY) A Z}r
Pen(pxy) == {puxyz : U] < |X]|,U < X < Y, X & (U,Y) < Z}.

We prove Rg,(pxy) € R(pxy). We assume that (R,A) ¢ R(pxy). Then, by Lemma A2, there
exist e > 0 and p* € [0,1] such that for any (R,A) € R(pxy), we have

A R+u*A < g*R+pu*A —e.
Hence, we have

R+ u*A < min "R+ u*AY — €
FRAWAS o gmin T RTIEA)

—

2 min {7 LU X|Y) + pEpd(X, Z)} — €
PEP(pxy)

< min  {@ LU X]Y) + @ Epd(X,Z)} —e = R¥) (pxy) —e. (A19)
PEPsn(pxy)

Nas

Step (a) follows from the definition of R(pxy). The inequality in Equation (A19) implies that
(R,A) ¢ Ran(pxy)- Thus, Ren(pxy) € R(pxy) is concluded. We next prove R( pxy) € Ren(pxy)-
We assume that (R, A) € R(pxy). Then, there exists g € P (pxy) such that

R > L(XU|Y),A > Ed(X,Z). (A20)
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Then, for each u € [0,1] and for (R, A) € R(pxy), we have the following chain of inequalities:

@)
AR+ uA > aly(X; U|Y) + uEqd(X, Z)

. _ b
> min [aL,(GUJY) + pEd(X,Z)] = R® (pxy) 2 RO (pyy).
q€P(pxy)

Step (a) follows from Equation (A20). Step (b) follows from Lemma Al. Hence, we have R(pxy)
- Rsh(PXY)' O

Appendix E. Proof of Property 4 Part (b)
In this Appendix, we prove Property 4 Part (b). We have the following lemma.

Lemma A3. Forany p € [0,1], A > 0, « € [0, %] and any q = quxy € Q(py|x), there exists p =

puxyz € Psn(pxy) such that )
Q%) (gl pxy) = aQEY (p). (A21)

This implies that for any p € [0,1], A > 0, a € [0, /\Lﬂ]’ we have

Q) (pxy) > aQWM (pyy). (A22)

Proof. Since Equation (A22) is obvious from Equation (A21), we only prove Equation (A21).
We consider the case where (p, A, «) satisfies (y,A) € [0,1], A > 0, and a € [0, 1%\] In this case,
we have

Afi— <

A
% A, (A23)

<
1—1TA

R R

For each g = quxyz € Q, we choose p = puxyz € Psn(pxy) so that pyx = quix and pzjuy =
qzjuy- Then, for any (u, A, a) satisfying p € [0,1], A > 0,and &« € [0, 1 1111, we have the following chain
of inequalities:

exp {001 gl )

[ Adl _ 13
_p |1 px(X)  prx(MIX)  azuy (ZIUY) pxﬁ‘y(xm Apd(X,Z)
1) ax(X) ayxu (YIX, U) gzjuyx (Z|U, Y, X) X\, )

qx|uy(

[ Ay
=E {pUXYZ(X Y2, U pX|Y(X|Y i } px\uy (X]U, Y)} ]
q

quxyz(X,Y,Z,U) px‘uy (X|U,Y) ‘1X\uy (XU, Y)
_ d ,% X
(2) E puxyz(X,Y,Z,U) Px\y<X|Y Al (X2) PX|UY(X\U Y) ™
U7 [ quxvz (XY, Z,U) pX‘uy (X|U,Y) ‘7X|uy(X\U Y)
ARt

) x|u,y) ) M b)
o)) e )

Step (a) follows from Holder’s inequality. Step (b) follows from Equation (A23) and
Holder’s inequality. O
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Proof of Property 4 Part (b): We have the following chain of inequalities:

QA (pyy) — Aa(fiR + pA)

F(R,Alpxy) =  sup -
uel0,1],A,a>0 1+ (4+paA)a
() _ i
> sup  sup (pxy) = Aa(fR + pA)

Hel0U A0 ef0, 1] 1+ (4+ph)a

—
o
Nasd

a[QFY (pxy) — AR + )]
14+ (44 aA)a

Y

sup sup
e1AZ0ae0, 1]

wp 20 (pxy) ~AER 4 )
b, 54+ A(1+f)

=

= F(R, Alpxy)-

Step (a) follows from Lemma A3. Step (b) follows from

o 1
sup - = N
xe01] 1+ @A +aMa 5+A(1+7)

completing the proof. [
Appendix E. Proof of Property 4 Parts (c), (d), and (e)
In this Appendix, we prove Property 4 Parts (c), (d), and (e). We first prove Parts (c) and (d).

Proof of Property 4 Parts (c) and (d): We first prove Part (c). We first show that for each p € P, (pxy)
and p € [0,1], QN (p) exists for A € [0,1]. On a lower bound of exp[—Q Y (p)], for A € [0,1], we
have the following:

pxy(xly) 7™
eXP[—Q(V'A)(P)] = Z pUXYZ(”/ x,}/,Z) [%] e HAd(x2) (A25)
(1,%,y,2) Px|uy 'Y
CUXXXYXZ
(a)
= Y. puxvz(u, xr]/rZ)PX\Y(x\]/)efd(x'z)- (A26)
(u,xy,2)
EUXX XY XY

Step (a) follows from that, for u, A € [0,1],

A
pxpr(21) ' —pAd(x,2) > —d(xz)
Py y) | > pxjy (xly)e 402,

It is obvious that the lower bound of Equation (A26) of exp[—QY) (p)] takes some positive
value. This implies that Q) (p) exists for A € [0, 1]. We next show that QY (p) > 0 for A € [0,1].
On upper bounds of exp[—Q#4) (p)] for A € [0,1], we have the following chain of inequalities:
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pxiv(xly) ]”

PX|UY(X|”/3/)

—

a

exp[—Q(# M (p)] < ) puxyz(u,x,Y,z) l

Na?

(uxy,z)
EUXXXYXZ
1—fA A
= X ruywypxy vk (xly)
(u,x,y)
ceUXX XY
1-fiA A
(b)
< ) puv(ny) (Z pxjuy (x|u, y)) (Z ny(xly>>
(wy)eUxy xeX xeX
= Z puy(u,y) = 1 (A27)
(wy)eUxy

Step (a) follows from Equation (A25) and e #*(x2) < 1. Step (b) follows from iA € [0,1] and
Holder’s inequality. We next prove that that, for each p € Py, (pxy) and i € [0,1], QWA (p) is twice
differentiable for A € [0,1/2]. For simplicity of notations, set

a:=(uxyz),A=UXYZ),A=UXXXYXZ,
@ (x,y,2[u) = 6(a), QN (p) := E(A).

Then, we have

QU (p) =§(A) = —log

pa (a)e—AGW] . (A28)
acA

The quantity p(M) (a) = pi{\) (a),a € Ahas the following form:

By simple computations, we have

g(A) =W

Y pla) 1 Y P

acA acA

&'(A) = —e%N | Y pla)p(b) {c(a) — Q(b)}ze—)x{g(u)-i-g(b)}]
abed 2
_ ) {c(a) () ) ’
pM (a)p™M (b )—2 -Yr pM(a)g(a)| <0. (A30)
abeA acA acA

On upper bound of —¢”(A) > 0 for A € [0,1/2], we have the following chain of inequalities:

acA acA

= ot \/ —2A¢(a) / <./e2gA) &(27) /ZP

ac A

(2 VeXA) [y p(a)ct(a). (A31)
acA
)

Step (a) follows from Equation (A30). Step (b) follows from Equation (A29). Step (c) follows from
Cauchy-Schwarz inequality and Equation (A28). Step (d) follows from that §(2A) > 0 for 2A € [0,1].
Note that ¢(A) exists for A € [0,1/2]. Furthermore, we have the following:
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p(a)s*(a) < oo.
acA

Hence, by Equation (A31), g” (
lower bound Equation (9) of O

By the Taylor expansion of {(A) =
p € Psn(pxy) and for some v € [0,

exists for A € [0,1/2]. We next prove Part (d). We derive the
y). Fixany (u,A) € [0,1] x [0,1/2] and any p € Pg,(pxy)-

)
M (pxy
QA (p) with respect to A around A = 0, we have that, for any
Al

QY (p) = £(0) + & (OA + 28" (1A

) A2 )
= AE, [w;")(x, Y,Z|u)} — 5 Var ) [wff‘)(x, Y,Z|U)}

(a) A2
>ARM (pxy) = 5 Var, [ca,(f‘)(x, Y,Z|U)] . (A32)

Step (a) follows from p € Pg,(pxy),

E, [w,(, (XY, z|u)} AL (X;U|Y) + pEpd(X, Z),

and the definition of R (pxy). Let (Vopt, Popt) € [0, A] X Psn(pxy) be a pair which attains o) (pxy).
By this definition, we have that

QFMN (popt) = QUM (pxy) (A33)
and that, for any v € [0, ],
\ 0 (x,v,z|u)| < V. 0 (x v, z|u)] = oM A34
arp(”)t wPopt( [ | ) — arp(‘/opt) wpopt( r s | ) o (pXY) ( )
op opt

On lower bounds of Q*") (pxy), we have the following chain of inequalities:

B N (b) A2
Q#Y (pxy) @ QWM (popt) = ARW) (pxy) — *Var ) {w( ) (X,Y, Z|U)}

2 op Popt
(©) 22 (d) A2
> ARM (pxy) — TP(H/A)(PXY) > ARW (pxy) — 5 P(pxy)-

—

Step (a) follows from Equation (A33). Step (b) follows from Equation (A32). Step (c) follows from
Equation (A34). Step (d) follows from the definition of p(pxy). O

We next prove Part (e). For the proof we use the following lemma.

Lemma A4. When t € (0, (1/2)p], the maximum of

1 1 .,
5121 {2‘”\ + ”}
for A € (0,1/2] is attained by the positive Ag satisfying

1
8(Ao) = £AF + Ao = %. (A35)

Let g(a) be the inverse function of 9(a) for a > 0. Then, the condition of Equation (A35) is equivalent to
Ao = g(%) The maximum is given by
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L f_ 1 _Ppe_P (T
5+2A0{ 2pA0+TAO}_10/\O_1Og o)

By an elementary computation we can prove this lemma. We omit the detail.

Proof of Property 4 Part (e): By the hyperplane expression Rq,(pxy) of R(pxy) stated Property 3 we
have that when (R+ 7,A + 7) ¢ R(pxy), we have

A(R+7)+p (A +1) < RW (pxy)

or equivalent to
RUD (pxy) = (F*R+p*8) > T (A36)

for some u* € [0,1]. Then, for each positive 7, we have the following chain of inequalities:

F(R Alpxy) = sup FWN(@"R+pAlpxy)

A(01/2]
_ sp 2(pxy) —AER+ )
A€(0,1/2] 5+A(1+7%)

@) 1 1 .
> sup ——— {—p)\z + AR (pxy) —/\(ﬁ*R‘f‘V*A)}
Ae(01/2) 0 T2A L 2

(b) 1 { 1 2 (C) p 2 T
> sup —-pA +T/\} =g (-).
A€(01/2] 5427 2 10 Y

Step (a) follows from Property 4 Part (d). Step (b) follows from Equation (A36). Step (c) follows from
Lemma A4. [0

Appendix G. Proof of Lemma 1

To prove Lemma 1, we prepare a lemma. Set

n
A, = {x” : llogp)((;;i(x) > —17},
o Qyn(xm)

Ap = Ay x My x Y" x 2", AS := AS x M, x V" x Z",
n n
By = (s,x",y") : llog (Ii;f"\xn(y - > =10,
n QY"|X”Sn (yn|xnr5>

B, =B, x Z",BS := B x 2",

pxns,yn (x"[s, y") -

(iii) P i €
an|5nynzn (X |5:3/ ,Z )
Dy i={(s,x",5") 5= 9 ("), Qs o (3"15,5") < Mue" prupyn (3”13},
Dy :=D, x 2",D5 := D x Z".

C, = {(s,x”,y”,z”) : %log

Then, we have the following lemma:
Lemma A5.

ps,xnynzn (A;) < e’"”,psnxnwz" (B;) < e*nﬂ/
ps,xnynzn (C;) < e_nﬂ,psnxnynzn (D;) < e M,
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Proof. We first prove the first inequality. We have the following chain of inequalities:

ps,xnynzn(AG) = pxn (A7) = ) px,(x
xne AS
< Z efnﬂQ 7117] Z Q
xneAC

Step (a) follows from the definition of .4,,. We next prove the second inequality. We have the
following chain of inequalities:

ps,xnynzn(By) = pSnX"Y”(cha)(i

Nas

Y psuxn(s X" pynxn (v ")
(s,x,ym)eBg

—

b) i
< X e "psxs, xn)Q(Yli)\snxn (y"s, x")
(s,xn,yn)EBS

<e M Z Psnxn 5,X )Qyn|5 Xn(yn\srx”) =e M,

1M
XMy

Step (a) follows from the Markov chain S, <> X" <> Y". Step (b) follows from the definition of B;,.
On the third inequality, we have the following chain of inequalities:

sz (CE Y pxus,yn (X5, 4" ps,yuzn (s, 4", 2")

(s,xmym,z")eCs

—
Na?

INS

Y, e Qg;il\)snynzn (x"[s,y", 2" )ps,ynzn (s,y",2")

(s,xmym,zn)eCs

e Y QR v (15 2 ps vz (s, ) = €L
s,x",y",z

Step (a) follows from the Markov chain X" <+ 5,Y" <> Z". Step (b) follows from the definition of
Cy. We finally prove the fourth inequality. We have the following chain of inequalities:

ps,xrynzn (D) = ps,xmyn (D)= ) Y pxnyn (X" [y pyn (")
SEMu (a7 )z () =s,
pxcnpyn (2" |y")
S(l/Mn)einn

X Qi gy n (2" 154"

Y Qs (s, y )y (v)
(xy™m): () (x")=s,
pxnjyn (X" |y")
<(1/M,)e~

<° M Z Z an\s yr (X8, ") pyn (y") = e ™.
n seM, x

e ™M

My seMy

O

Proof of Lemma 1: We set
&, = {(s,x”,y”,z”) : %d(X”,Z”) < A}.

Set R(") := (1/n)log M,,. By definition, we have
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PSWX”Y”Z” (An M Bn n Cn M Dn N En)
() (xn
1 Q ﬂ(X )
= nynyzn > —log = X s
Ps,xnynz {77 = g pxn (X7
1 log Qg;i)‘xns(yn‘xns)
n pynjxn (Y"[X)
1 og Qg?nl\)snynzn(xﬂsnwzn)
Tn Pxnis,yn (X"[SpY")
1 QQZ?W (XS, Y")

RM™W 49> "1lo ,
1= O T ey (XY

/1

A> % log exp {d(X", Z")}} . (A37)

Then, for any (¢, (") satisfying
R™ = %logMn <R,

we have

ps, xrynzn (An 0 By N Cy N Dy NEy)
< Ps,,xnynzn{ﬂ > %108 ij ((;(:))
1 Q;Z‘XHS(Y”\XHS)
=008 e (YTX)
Qs (XIS, Z)
=0T e (XS, YY)
1 Qs (X7[SaY")

R >
2 O T e (XY

A > % log exp {d(X”,Z")}} . (A38)
Hence, it suffices to show
P (9™, i, pM; A) < ps, xryn (A N By N Co Dy N Ey) + 4
to prove Lemma 1. By definition, we have

P((;n)(q)(n)/ l/)(”),A) — PSHX"Y"Z” (5n> .

Then, we have the following;:

Pgn)(<P(n)r1/’(")f'A) = ps,xnynzn (En)
= Ps,xnynzn (-An NB,NC,NDy N Sn) + ps,xnynzn ([.An NnNB,NC,N Dn]c n En)
< ps,xnynzn (An N By NCi N Dy N ER) + ps, xnynzn (A5) + ps,xnynzn (By)
+ps,xnynzn (Cy) + ps,xnynzn (Dy)
(a)
S psnxnynzn (AVI n Bn N Cn n Dn N ((/‘n) +4e7"'7

Step (a) follows from Lemma A5. O
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Appendix H. Proof of Lemma 2
In this Appendix, we prove Lemma 2.
Proof of Lemma 2: We have the following chain of inequalities:
I(Xp Y S, XY = H(Y S, Xy — H(YF 1S, XY
< HOXY) — HOY s, xmye) @ (X — LX)

(b) HY'Tx1) — HY X1 = o.

—
=

Step (a) follows from that S, = ¢(")(X") is a function of X". Step (b) follows from the memoryless
property of the information source {(X;, ;) }52,. O

Appendix I. Proof of Lemma 5
In this Appendix, we prove Equations (32) and (33) in Lemma 5.

(1,A.0)

U2 g 2l for =

Proofs of Equations (32) and (33) in Lemma 5: By the definition of p
1,2,---,n, we have

t
A0 n — n n A0
P%Zq;nyn (X2 s, y") = C7 s,y pxigzrs, v (X2 I,y )Hfg Vxiyizilu).  (A39)

i=1

Then, we have the following chain of equalities:

A (@ _ d
P (2 sy = € sy ez, (72 s,y T T
i=1

f%'/\'e) (xi, i, zi|ui)

~ _ A6)
= C (5, Y Pxi-1zis e (X 2 s,y H A0 (s, i )

X P,z xt-1z-15yn (Xt 2t %' L sy )ff,' g (xtryt|”t)

®) Ce-1(5,¥")  (ur0) (x'1
T Ci(s,yn) Pxiztsnpentt

27 s,y
1o A8
X Px, 2y xt-1zt-15,yn (xe 2t 2 1r511/")fj(rt (e, 1, 22l ue)
AB A8
= (CD;EV )(S/yn)) pg?t lz)t l\SnY” Ft—1 (xt/ytlzt|ut)
X th\zt|xfflszlsnw(xt/2t|x Sz sy )f]:t (xtfyt/ZtWt) (A40)

Steps (a) and (b) follow from Equation (A39). From Equation (A40), we have

A8 A8
©§Zt )(S Y )P%qu) Yn(xt,zt|s,y") (A41)
A0 L
= P sy ynr (7 1Is,y )
- A,0)
X Pxzyxi-iz-tsyn (X 26120,y D (e, ). (A42)

Taking summations of Equation (A41) and (A42) with respect to x!, z, we obtain

,AL0) A0) 1 _#-1
CDE,FP =L pxyf 17118, Yn; Ft- (2 s )
xt,zt
t—1 (n,7.0)
XPX,zt\thlztflsnw(xtrzt|x ,Z )f (xt, Y, zeur),

completing the proof. O
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