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Abstract: Kidney image enhancement is challenging due to the unpredictable quality of MRI images,
as well as the nature of kidney diseases. The focus of this work is on kidney images enhancement
by proposing a new Local Fractional Entropy (LFE)-based model. The proposed model estimates
the probability of pixels that represent edges based on the entropy of the neighboring pixels, which
results in local fractional entropy. When there is a small change in the intensity values (indicating the
presence of edge in the image), the local fractional entropy gives fine image details. Similarly, when
no change in intensity values is present (indicating smooth texture), the LFE does not provide fine
details, based on the fact that there is no edge information. Tests were conducted on a large dataset
of different, poor-quality kidney images to show that the proposed model is useful and effective.
A comparative study with the classical methods, coupled with the latest enhancement methods,
shows that the proposed model outperforms the existing methods.
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1. Introduction

As one’s living style changes, various unexpected health issues arise in the same proportion.
To find solutions to such diseases, new devices and systems have been developed. Despite the
availability of new systems that help find cures to diseases, new problems have appeared due to
complex diseases and the inherent limitations of the systems’ capacities [1]. One such sensitive issue is
kidney segmentation and its shape analysis for disease identification, in which MRI systems generate
very poor quality images in the initial phase of body scan procedure. Although the systems generate
good quality images after some time, it is hard to predict an accurate time and a suitable number of
images to acquire good-quality MRI images. As a result, finding quality images is time-consuming and
labor-intensive. Besides, common diseases such as Acute Kidney Injury (AKI) and Chronic Kidney
Disease (CKD) affect the quality of the images and the shape of the kidney identified [1]. This is due
to the swelling of neighboring tissues of the kidney. As a result, this makes the process of kidney
enhancement more complex and challenging.

The image shown in Figure 1a is an example of a poor quality image generated by an MRI system
in which the pixels of the kidney’s area and other surrounding tissues appear the same. Figure 1b–f,
respectively, shows image enhancement results from various methods including the Adjust Intensity
Values (AIV) [2], the Contrast Limited Adaptive Histogram Equalization (CLAHE) [2], the Histogram
Equalization (HISTEQ) [2], the Riesz fractional [3], and Tsallis entropy method [4]. It is noted that
methods such as the AIV, CLAHE Riesz fractional, and Tsallis entropy did not improve the edge
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details of the kidney compared to the input image (Figure 1a); on the other hand, the HISTEQ method
enhanced the details of both kidney’s boundaries and other surrounding regions in the image. AIV,
CLAHE, and HISTEQ are classical methods that are often taken as the basis for the development
of newer methods [2]. However, these methods are best employed when the whole image is to be
enhanced, thus affecting the image globally. Although the Riesz fractional and Tsallis entropy fractional
methods are effective for enhancing low-contrast text images, they are not made for kidney images
enhancement [3]. As a result, we can confirm that the existing state-of-the-art methods achieve good
results for enhancing images, albeit with a global effect on the image. However, in the case of kidney
imaging, the images contain different levels of quality at different regions; therefore, there is a need for
developing a model that considers local information for enhancing edge details in kidney MRI images.
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Figure 1. Challenges for kidney image enhancement. (a) Input low contrast kidney image (b) AIV [2],
(c) CLAHE [2], (d) HISTEQ [2], (e) Riesz fractional [2], and (f) Tsallis entropy [4]..

Existing studies have proposed a number of methods for kidney image enhancement. For example,
Kang et al. [5] proposed a new feature-reduction method for ultrasound B-mode imaging using the
multiscale analysis. The boundaries and borders are emphasized via edge coherence and contrast
enhancement. The whole process involves diffusion filtering for reducing the effect of speckle noise.
However, the main goal of this method is to reduce speckle noise rather than enhancing low contrast
images or poor quality images as proposed in this work. Zhang et al. [6] proposed an efficient, small
blob-detection method using intensity, local convexity, and shape information. To identify and detect
the blob, the method enhances the low contrast information in the kidney images. The method
explores local convexity for enhancing details in the kidney images. The scope of the method is
limited to a specific dataset and its applications. In a different study, Baselice et al. [7] proposed
an enhanced Wiener filter for ultrasound image restoration. The main target of the method is to reduce
the speckle noise effect by exploring Local Gaussian Marko Random filed. In addition, the method
adapts the Wiener filter, such that it tunes its kernel to combine the edges and for preservation
with effective noise reduction. However, the method is developed for a specific application, which
is noise removal, not enhancing poor quality kidney images. Koyuncu and Ceylan [8] proposed
a hybrid tool for the enhancement of abdominal CT images as a pre-processing step before tumor
segmentation. The method proposed block matching and 3D filtering for the denoising and elimination
of Gaussian noise. Then, linking the spiking cortical model has been used for the removal of internal
fat tissue. Finally, the method uses the Otsu algorithm for removing redundant parts of the image.
The method focuses on particular noise and parts of the image for enhancement. Gungor and
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Karagoz [9] proposed the homogeneity map method for speckle reduction in diagnostic ultrasound
images. The local homogeneity map is generated based on local statistics of the window formed.
The method explores diffusion and gradient information, along with statistics for enhancing the images.
However, the method works as denoising filter for removing noise. Recently, Roy et al. [10] proposed
a model for text detection and recognition in video frames using Fractional Poisson enhancement.
The method explores generalized fractional calculus to enhance the quality of the images that are
obtained by Laplacian operation. The method considers the edges and their neighboring information
in deriving a mathematical model. Again, the method is developed for removing the effect of Laplacian
noise but not for improving poor quality kidney images. Similarly, Raghunandan et al. [3] proposed
the Riesz fractional-based model for enhancing license plate detection and recognition, which usually
suffers from low contrast and low resolution. The model implements the convolution operation
between the Riesz fractional derivative and the input images by enhancing the edge strengths in it.
The model is good for the images with text information but not for the images of kidney, which suffer
from poor quality affected by unknown causes.

In the light of the above discussion, it is noted that most methods focus on denosing and
speckle noise removal for enhancing the kidney images. These methods explored different filters for
reducing noise. Besides, the methods use binarization algorithm for obtaining a binary image, such
that the method can enhance high contrast information in the kidney images. These methods are
good for enhancing the whole image but not for the enhancement of local information in the image.
Similarly, few methods addressed the issues of low contrast and poor quality of images by proposing
fractional-based models. However, the scope of such methods is limited to specific applications such as
text detection and recognition. Therefore, we can conclude that none of these methods have addressed
the issue relating to the poor quality of kidney images and explored generalized models for enhancing
such images. In addition, most methods use global information for enhancing the images but not local
information. Hence, there is a scope for developing a generalized model for enhancing poor quality
kidney images affected by several adverse factors such as MRI systems, diseases, and noise. Thus,
in this paper, we propose a generalized and new model for enhancing poor quality kidney images
based on Local Fractional Entropy (LFE). Motivated by the methods [3,10–13] that indicate that the
Fractional calculus has an ability to enhance low contrast information, we explore the same methods
in new way for addressing the issue of poor quality kidney images. The main advantage of LEF is
that if the image contains small change in the intensity values, it is capable of detecting them as edges
through probability and local entropy. More details are discussed in the subsequent section.

The remainder of this paper is prepared as follows: Section 2 describes Local Fractional Entropy
for kidney images, Section 3 discusses the experimental results for validating the proposed model,
and, finally, Section 4 presents the conclusion and future work.

2. Proposed Model

As pointed out in the previous section, when there is a significant difference between intensity
values in the image, it is easier to enhance the edge details. However, when there is a small change
in intensity values due to factors such as noise, disease, neighboring tissues, and scanning systems,
enhancing edge details can be challenging. Inspired by methods [3,10,11] in which fractional calculus
has been explored for enhancing text detection and recognition performance, we propose the local
fractional entropy model for extracting the above observation.

Local Fractional Entropy

For each pixel in the image, the proposed model derives local fractional entropy based on
frequency details of the input image. As a result, the proposed model enhances each pixel in which the
gray-level changes are insignificant without affecting high frequency details.

For a continuous function ϕ in [a, b], and for a variable u in [a, b], the local fractional integral is
defined by the following formula [14–17].



Entropy 2018, 20, 344 4 of 10

I(α) ϕ(u) = 1
Γ(1+α)

∫ b
a ϕ(u) (du)α, (1)

in which Γ is Euler gamma function, and 0 < α ≤ 1 is the fractional power operator.
The discrete form of (1) is given by:

I(α) ϕ(u) = 1
Γ(1+α)

lim
∆uk→0

∑n−1
k=0 ϕ(uk)(∆uk)

α, (2)

in which ∆uk = uk+1 − uk, u0 = a.
Recently, fractional entropies have been suggested by many authors (see [18,19]) for solving

fractional nonlinear problems (see [20–23]).
We consider Tsallis entropy as local fractional entropy for enhancing the fractional integral

operators. The pixel’s probability in the input image is denoted by ϕ. The Tsallis entropy is defined as

Eα(ϕ(u)) =
∫ b

a (ϕ(u))α du −1
1−α . (3)

Hence, in the discrete form we have

Eα(ϕ(u)) = 1
1−α

(
n−1
∑

k=0
ϕα(uk)− 1

)
(4)

By considering the derivative with respect to ϕ for both sides of (4), we obtain

Éα(ϕ(u)) = α
1−α

n−1
∑

k=0
ϕα−1(uk) . (5)

The power function ϕα in (2) has the following local fractional integral:

I(α) ϕα(u) = 1
Γ(1+α)

lim
∆uk→0

n−1
∑

k=0
ϕα(uk)(∆uk)

α . (6)

In our study, we consider distance between pixels is equal to 1, so that the approximation of limit
part of (6) will be as follows:

lim
∆uk→0

(∆uk)
α = 1.

Thus, we have

I(α) ϕα(u) = 1
Γ(1+α)

lim
∆uk→0

n−1
∑

k=0
ϕα(uk) . (7)

By taking the derivative with respect to ϕ for both sides of (7), we attain

Í(α) ϕα(u) = α
Γ(1+α)

lim
∆uk→0

n−1
∑

k=0
ϕα−1(uk) . (8)

To consider the local fractional entropy for image enhancement as the convolution of (5) and (8),
we need the following preparation:

G := Í(α)ϕα(uk) ∗ Éα(ϕ(uk)). (9)

Thus, we obtain the local fractional convolution operator

G = α2

(1−α)Γ(1+α)

(
n−1
∑

k=0

1
ϕ1−α(uk)

)
, ϕ(uk) 6= 0. (10)
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From (10), we have the following enhancing coefficient of local fractional entropy of order α (this
is the contribution of our study):

Gk =
α2

(1−α)Γ(1+α)
ϕk

α−1 , k = 0, 1, 2, . . . , n− 1, (10)

in which ϕk
α−1 = ϕ α−1(uk) is the local fractional probability of the pixel.

By using the local fractional entropy operator (Gk), we construct a Local Fractional Entropy (LFE).
The enhanced image IF is given by:

IF = Gk · I (11)

in which I is the input image.
The fractional power values (α) of the proposed G operator is defined by the range of 0 < α ≤ 1.
The above steps work well, because contrast enhancement of the input image is determined at

each pixel depending on the probability of the pixel, which controls the changes in the gray values of
the input image. Figure 2 shows a poor-quality input image with its enhanced counterpart, as well
as graphs of their distribution of probability of pixels. It is noted from the enhanced image shown in
Figure 2a that the contrast between background and boundary pixels of the kidney image is increased
compared to the input image. This shows that the proposed model improves the overall quality of the
image. It is evident from Figure 2b that the distribution of pixels’ probabilities for the input image
before enhancement appears to be dense. Similarly, the distribution of pixels’ probabilities appears
to be scattered in the enhanced image, which means the contrast has been stretched. Therefore, we
can conclude that the low-contrast pixels, which represent boundaries of the kidney, are enhanced
and hence result in scattered probability distribution with the same frequencies of the input image.
Figure 3 shows the enhancing effect of the proposed model for a few more poor-quality kidney images.
Input images are shown in Figure 3a, while the enhanced images are shown in Figure 3b.
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3. Experimental Results

To the best of our knowledge, there is no standard dataset for kidney image enhancement in
the existing literature. We have assembled our own dataset from an existing dataset of kidney MRI
images provided by Assiut University, Egypt [24]. Each set captures the kidney of a patient suffering
from a kidney disease. As mentioned in the introduction section, the MRI system generates very
poor-quality image slices at the beginning of a body scan. Thus, we manually chose the first 10
poor-quality image slices from each patient. This gave us a total of 100 images from 10 datasets of
different patients. It is noted that each image poses different level of quality issues. Therefore, we
believe the considered dataset is complex and ready to be used for evaluation, as it covers wide range
of poor quality kidney images.

Since the dataset is new, creating ground truth is not an easy task; therefore, we prefer to use
standard, no-reference measures that do not require ground truth images, namely, BRISQUE [25] and
NIQE [26]. The BRISQUE, which is a no-reference image quality measure, compares the image that is
to be analyzed with a default model calculated from different images of natural scenes. This outputs
non-negative scalar value for every input image; images are usually in the range of [0, 100]. Lower
values represent better perceptual quality of image. In general, BRISQUE predicts the score with the
help of a support vector regression model. Naturalness Image Quality Evaluator (NIQE), which is
also a no-reference image quality measure, calculates score for an image using the naturalness image
quality evaluator (NIQE). A smaller score specifies the best perceptual image quality.

In the proposed model, the key parameter is α, in which the performance of the proposed model
changes according to its value; therefore, we compute the average BRISQUE score for a predefined
sample images from our dataset by varying the values of α. Changes in αwill lead to changes in the
probability of the enhanced image, which in turn lead to changes in the BRISQUE score. The proposed
model chooses the value of αwhen the BRISQUE score touches the lowest value. As shown in Figure 4,
BRISQUE gives the lowest score at 0.7 of the α. The same value is considered for all experimentation
in this work. Note that the values of BRISQUE change rapidly with respect to small changes in α. This
fluctuating behavior reflects the effect of fractal entropy on each pixel’s value of the enhanced image.
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Figure 4. Determining the value for α empirically. Average BRISQUE measure of predefined samples
is calculated for different values of α.

To show the efficacy of the proposed model, we implement the basic and recent methods for
comparative study. We hypothesized that if the basic methods work well, the latest methods should work
well too, because most of the recent methods directly and indirectly use the same basic idea for enhancement.
Therefore, the proposed method is compared with the results from the classical methods [2], namely, Adjust
Intensity Values to Specified Range (AIV), Contrast-Limited Adaptive Histogram Equalization (CLAHE),
and Histogram Equalization (HISTEQ). These are quite common methods and considered as state-of-the-art
methods for enhancement. In addition, Tsallis entropy method [4] proposed a new mathematical model by
using the convolution of fractional Tsallis entropy for image denoising. Raghunandan et al. [3] proposed
the fractional Riesz model for enhancing license plate images. This method explores fractional calculus for
enhancing license plate images but not poor quality kidney images.

Qualitative testing results of the proposed and current existing methods for different poor quality
kidney images are shown in Figure 5, in which the classical methods showed better results compared
to Ragunandan et al. [3], as the latter was developed with a specific application in mind, which is
enhancement of license plate images. When we compare the results of the proposed method and the
basic methods, the proposed model gives better results. This is valid, because all basic methods are
global methods and work well for the images affected by single cause with the same degree. On the
other hand, the proposed model is suitable for images that are influenced by multiple adverse factors,
resulting in varying quality at different regions of the same image. This is because the proposed model
considers local information for enhancing pixels.
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compared to the existing methods. This shows that the proposed model is better than the existing 
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methods. This is because the basic methods suffer from inherent limitations such as global 
thresholding, while in case of Riesz fractional-based method, the parameters are tuned according to 

Figure 5. Qualitative results of the proposed and existing methods. (a) Input kidney images with
different complexities, (b) Adjust Intensity Values to Specified Range (AIV), (c) Contrast-Limited
Adaptive Histogram Equalization (CLAHE), (d) Histogram Equalization (HISTEQ), (e) Tsallis entropy,
(f) Riesz fractional , and (g) proposed method.

Quantitative results of the proposed and existing methods are reported in Table 1, in which it
can be noted that the best score of the BRISQUE and the NIQUE are obtained by the proposed model
compared to the existing methods. This shows that the proposed model is better than the existing
methods. In terms of BRISQUE, AIV is the second best compared to the proposed model, and CLAHE
is the second best at NIQUE compared to the proposed model. In the same way, the HISTEQ and the
Riesz fractional report the worst results in terms of BRISQUE and NIQUE compared to other methods.
This is because the basic methods suffer from inherent limitations such as global thresholding, while in
case of Riesz fractional-based method, the parameters are tuned according to the text in license plates
images. Furthermore, the proposed model does not depend much on specific content of the image;
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rather, it explores probability of pixels using local information. Thus, this method is independent of
dataset and applications. In other words, the proposed model can be used for enhancing other medical
images affected by poor quality. Therefore, it can be deduced that the proposed model outperforms
the existing methods in terms of applications, as well as BRISQUE and NIQUE scores.

Table 1. The enhancement performance of the proposed and existing methods.

Methods BRISQUE NIQE

Histogram Equalization [2] 41.35 8.65
CLAHE [2] 38.85 7.08

AIV [2] 25.95 7.10
Riesz Fractional [3] 41.93 10.01
Tsallis entropy [4] 37.03 6.04
Proposed method 22.37 6.32

4. Conclusions

In this paper, we have proposed a new model for enhancing poor-quality kidney images based on
Local Fractional Entropy. The proposed model works by considering the probability of pixels at and
near the edges of the identified areas in the image. Since the proposed model uses fractional calculus,
it has the ability to enhance the edge information in which there is little intensity difference rather than
expecting a significant difference. In addition, the proposed model can work with images that have
different regions suffering from different degrees of low quality, since it considers local information
for enhancing edge pixels. Experimental results on different poor-quality kidney images show that
the proposed model is effective and useful. Further, the comparative study with the state-of-the-art
methods shows that the proposed model is better than existing methods in terms of BRISQUE and
NIQUE. For future studies, this model could be applied to the segmentation and disease identification
of kidney images.
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