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Abstract: We demonstrate that questions of convergence and divergence regarding shapes of
distributions can be carried out in a location- and scale-free environment. This environment is
the class of probability density quantiles (pdQs), obtained by normalizing the composition of the
density with the associated quantile function. It has earlier been shown that the pdQ is representative
of a location-scale family and carries essential information regarding shape and tail behavior of the
family. The class of pdQs are densities of continuous distributions with common domain, the unit
interval, facilitating metric and semi-metric comparisons. The Kullback–Leibler divergences from
uniformity of these pdQs are mapped to illustrate their relative positions with respect to uniformity.
To gain more insight into the information that is conserved under the pdQ mapping, we repeatedly
apply the pdQ mapping and find that further applications of it are quite generally entropy increasing
so convergence to the uniform distribution is investigated. New fixed point theorems are established
with elementary probabilistic arguments and illustrated by examples.

Keywords: convergence in Lr norm; fixed point theorem; Kullback–Leibler divergence; relative
entropy; semi-metric; uniformity testing

MSC: Primary 62E10; Secondary 62F03

1. Introduction

For each continuous location-scale family of distributions with square-integrable density, there
is a probability density quantile (pdQ), which is an absolutely continuous distribution on the unit
interval. Members of the class of such pdQs differ only in shape, and the asymmetry of their shapes
can be partially ordered by their Hellinger distances or Kullback–Leibler divergences from the class of
symmetric distributions on this interval. In addition, the tail behaviour of the original family can be
described in terms of the boundary derivatives of its pdQ. Empirical estimators of the pdQs enable
one to carry out inference, such as robust fitting of shape parameter families to data; details are in [1].

The Kullback–Leibler directed divergences and symmetrized divergence (KLD) of a pdQ with
respect to the uniform distribution on [0,1] is investigated in Section 2, with remarkably simple
numerical results, and a map of these divergences for some standard location-scale families is
constructed. The ‘shapeless’ uniform distribution is the center of the pdQ universe, as is explained in
Section 3, where it is found to be a fixed point. A natural question of interest is to find the invariant
information of the pdQ mapping, that is, the conserved information after the pdQ mapping is applied.
To this end, it is necessary to repeatedly apply the pdQ mapping to extract the information. Numerical
studies indicate that further applications of the pdQ transformation are generally entropy increasing,
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so we investigate the convergence to uniformity of repeated applications of the pdQ transformation,
by means of fixed point theorems for a semi-metric. As the pdQ mapping is not a contraction, the proofs
of the fixed point theorems are through elementary probabilistic arguments rather than the classical
contraction mapping principle. Our approach may shed light on future research in the fixed point
theory. Further ideas are discussed in Section 4.

2. Divergences between Probability Density Quantiles

2.1. Definitions

Let F denote the class of cumulative distribution functions (cdfs) on the real line R and for each
F ∈ F define the associated quantile function of F by Q(u) = inf{x : F(x) ≥ u}, for 0 < u < 1.
When the random variable X has cdf F, we write X ∼ F. When the density function f = F′ exists,
we also write X ∼ f . We only discuss F as absolutely continuous with respect to Lebesgue measure,
but the results can be extended to the discrete and mixture cases using suitable dominating measures.

Definition 1. Let F ′ = {F ∈ F : f = F′ exists and is positive}. For each F ∈ F ′, we follow [2] and
define the quantile density function q(u) = Q′(u) = 1/ f (Q(u)). Parzen called its reciprocal function
f Q(u) = f (Q(u)) the density quantile function. For F ∈ F ′, and U uniformly distributed on [0,1], assume
κ = E[ f Q(U)] =

∫
f 2(x) dx is finite; that is, f is square integrable. Then, we can define the continuous

pdQ of F by f ∗(u) = f Q(u)/κ, 0 < u < 1. Let F ′∗ ⊂ F ′ denote the class of all such F.

Not all f are square-integrable, and this requirement for the mapping f → f ∗ means that F ′∗ is
a proper subset of F ′. The advantages of working with f ∗s over f s are that they are free of location
and scale parameters; they ignore flat spots in F and have a common bounded support. Moreover,
f ∗ often has a simpler formula than f ; see Table 1 for examples.

Table 1. Quantiles of some distributions, their pdQs and divergences. In general, we denote xu =

Q(u) = F−1(u), but for the normal F = Φ with density φ, we use zu = Φ−1(u). The logistic quantile
function is only defined for u ≤ 0.5, but it is symmetric about u = 0.5. Lognormal(σ) represents the
lognormal distribution with shape parameter σ. The quantile function for the Pareto is for the Type II
distribution with shape parameter a, and the pdQ is the same for Type I and Type II Pareto models.

Q(u) f∗(u) I(U : f∗) I( f∗ : U) J(U , f∗)

Normal zu 2
√

π φ(zu) 0.153 0.097 0.250

Logistic ln(u/(1− u)) 6u(1− u) 0.208 0.125 0.333

Laplace ln(2u), u ≤ 0.5 2 min{u, 1− u} 0.307 0.193 0.500

t2
2u−1

{2u(1−u)}1/2
27{u(1−u)}3/2

3π 0.391 0.200 0.591

Cauchy tan{π(u− 0.5)} 2 sin2(πu) 0.693 0.307 1.000

Exponential − ln(1− u) 2(1− u) 0.307 0.193 0.500

Gumbel − ln(− ln(u)) −4u ln(u) 0.191 0.116 0.307

Lognormal (σ) e σ zu 2
√

π

eσ2/4
φ(zu) e−σ zu σ2

4 + 1
2 − ln(

√
2) - 1

4 + 3σ2

8

Pareto (a) (1− u)−1/a 2a+1
a (1− u)1+1/a 1+a

a − ln(2 + 1
a ) - (1+a)2

a(1+2a)

Power (b) u1/b 2b−1
b u1−1/b b−1

b − ln(2− 1
b ) - (b−1)2

b(2b−1)

Remark 1. Given that a pdQ f ∗ exists for a distribution with density f , then so does the cdf F∗ and quantile
function Q∗ = (F∗)−1 associated with f ∗. Thus, a monotone transformation from X ∼ F to X∗ ∼ F∗ exists; it is
simply X∗ = m(X) = Q∗(F(X)). For the Power(b) distribution of Table 1, f ∗b = fb∗ , where b∗ = 2− 1/b,
so mb(x) = Q∗b(Fb(x)) = xb/b∗ = xb2/(2b−1). For the normal distribution with parameters µ, σ, it is
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mµ,σ(x) = Φ((x − µ)/
√

2 σ). In general, an explicit expression for Q∗ that depends only on f or F (plus
location-scale parameters) need not exist.

2.2. Divergence Map

Next, we evaluate and plot the [3] divergences from uniformity. The [3] divergence of density f1

from density f2, when both have domain [0,1], is defined as

I( f1 : f2) :=
∫ 1

0
ln( f1(u)/ f2(u)) f1(u) du = E[ln( f1(U)/ f2(U)) f1(U)],

where U denotes a random variable with the uniform distribution U on [0,1]. The divergences from
uniformity are easily computed through

I(U : f ∗) = −
∫ 1

0
ln( f ∗(u)) du = −E[ln( f ∗(U))]

and

I( f ∗ : U ) =
∫ 1

0
ln( f ∗(u)) f ∗(u) du = E[ln( f ∗(U)) f ∗(U)].

Kullback ([4], p. 6) interprets I( f ∗ : U ) as the mean evidence in one observation V ∼ f ∗ for
f ∗ over U ; it is also known as the relative entropy of f ∗ with respect to U . The terminology directed
divergence for I( f1 : f2) is also sometimes used ([4], p. 7) with ‘directed’ explained in ([4], pp. 82, 85);
see also [5] in this regard.

Table 1 shows the quantile functions of some standard distributions, along with their pdQs,
associated divergences I(U : f ∗), I( f ∗ : U ) and symmetrized divergence (KLD) defined by J(U , f ∗) :=
I(U : f ∗) + I( f ∗ : U ). The last measure was earlier introduced in a different form by [6].

Definition 2. Given pdQs f ∗1 , f ∗2 , let d( f ∗1 , f ∗2 ) :=
√

I( f ∗1 : f ∗2 ) + I( f ∗2 : f ∗1 ). Then, d is a semi-metric on
the space of pdQs; i.e., d satisfies all requirements of a metric except the triangle inequality. Introducing the
coordinates (s1, s2) = (

√
I(U : f ∗) ,

√
I( f ∗ : U )), we can define the distance from uniformity of any f ∗ by

the Euclidean distance of (s1, s2) from the origin (0, 0), namely d(U , f ∗).

Remark 2. This d does not satisfy the triangle inequality: for example, if U , N and C denote the uniform,
normal and Cauchy pdQs, then d(U ,N ) = 0.5, d(N , C) = 0.4681 but d(U , C) = 1; see Table 1 and Figure 1.
However, d can provide an informative measure of distance from uniformity.

Figure 1 shows the loci of points (s1, s2) for some continuous shape families. The light dotted arcs
with radii 1/2, 1 and 2 are a guide to these distances from uniformity. The large discs in purple, red
and black correspond to U , N and C. The blue cross at distance 1/

√
2 from the origin corresponds to

the exponential distribution. Nearby is the standard lognormal point marked by a red cross. The lower
red curve is nearly straight and is the locus of points corresponding to the lognormal shape family.

The chi-squared(ν), ν > 1, family also appears as a red curve; it passes through the blue cross
when ν = 2, as expected, and heads toward the normal disc as ν → ∞. The Gamma family has the
same locus of points as the chi-squared family. The curve for the Weibull(β) family, for 0.5 < β < 3,
is shown in blue; it crosses the exponential blue cross when β = 1. The Pareto(a) curve is shown
in black. As a increases from 0, this line crosses the arcs distant 2 and 1 from the origin for
a = (2

√
2 + 1)/7 ≈ 0.547 and a = (

√
5 − 1)/2 ≈ 1.618, respectively, and approaches the exponential

blue cross as a→ ∞.
The Power(b) or Beta(b, 1) for b > 1/2 family is represented by the magenta curve of points

moving toward the origin as b increases from 1/2 to 1, and then moving out towards the exponential
blue cross as b→ ∞. For each choice of α > 0.5, β > 0.5 the locus of the Beta(α, β) pdQ divergences lies
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above the chi-squared red curve and mostly below the power(b) magenta curve; however, the U-shaped
Beta distributions have loci above it.

The lower green line near the Pareto black curve gives the loci of root-divergences from uniformity
of the Tukey(λ) with λ < 1, while the upper green curve corresponds to λ ≥ 1. It is known that
the Tukey(λ) distributions, with λ < 1/7, are good approximations to Student’s t-distributions for
ν > 0, provided λ is chosen properly. The same is true for their corresponding pdQs ([1], Section 3.2).
For example, the pdQ of tν with ν = 0.24 degrees of freedom is well approximated by the choice
λ = −4.063. Its location is marked by the small black disk in Figure 1; it is of distance 2 from uniformity.
The generalized Tukey distributions of [7] with two shape parameters also fill a large funnel shaped
region (not marked on the map) emanating from the origin and just including the region bounded by
the green curves of the Tukey symmetric distributions.

●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Divergences from Uniformity

s1
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Figure 1. Divergence from uniformity. The loci of points (s1, s2) = (
√

I(U : f ∗) ,
√

I( f ∗ : U ) ) is
shown for various standard families. The large disks correspond respectively to the symmetric
families: uniform (purple), normal (red) and Cauchy (black). The crosses correspond to the asymmetric
distributions: exponential (blue) and standard lognormal (red). More details are given in Section 2.2.

2.3. Uniformity Testing

There are numerous tests for uniformity, but as [8] points out, many are undermined by the
common practice of estimating location-scale parameters of the null and/or alternative distributions
when in fact it is assumed that these distributions are known exactly. In practice, this means that if a test
for uniformity is preceded by a probability integral transformation including parameter estimates, then
the actual levels of such tests will not be those nominated unless (often complicated and model-specific)
adjustments are made. Examples of such adjustments are in [9,10].

Given a random sample of m independent, identically distributed (i.i.d.) variables, each from
a distribution with density f , it is feasible to carry out a nonparametric test of uniformity by estimating
the pdQ with a kernel density estimator f̂ ∗m and comparing it with the uniform density on [0,1] using
any one of a number of metrics or semi-metrics. Consistent estimators f̂ ∗m for f ∗ based on normalized
reciprocals of the quantile density estimators derived in [11] are available and described in (Staudte [1],
Section 2). Note that such a test compares an arbitrary uniform distribution with an arbitrary member
of the location-scale family generated by f ; it is a test of shape only. Preliminary work suggests that
such a test is feasible. However, an investigation into such omnibus nonparametric testing procedures,
including comparison with bootstrap and other kernel density based techniques found in the literature,
such as [12–17], is beyond the scope of this work.



Entropy 2018, 20, 317 5 of 10

3. Convergence of Density Shapes to Uniformity via Fixed Point Theorems

The transformation f → f ∗ of Definition 1 is quite powerful, removing location and scale and
moving the distribution from the support of f to the unit interval. A natural question of interest is
to find the information in a density that is invariant after the pdQ mapping is applied. To this end,
it is necessary to repeatedly apply the pdQ mapping to extract the information. Examples suggest
that another application of the transformation f 2∗ := ( f ∗)∗ leaves less information about f in f 2∗ and
hence it is closer to the uniform density. Furthermore, with n iterations f (n+1)∗ := ( f n∗)∗ for n ≥ 2, it
seems that no information can be conserved after repeated ∗-transformation so we would expect that
f n∗ converges to the uniform density as n→ ∞. An R script [18] for finding repeated ∗-iterates of a
given pdQ is available as Supplementary Material.

3.1. Conditions for Convergence to Uniformity

Definition 3. Given f ∈ F ′, we say that f is of ∗-order n if f ∗, f 2∗, . . . , f n∗ exist but f (n+1)∗ does not.
When the infinite sequence { f n∗}n≥1 exists, it is said to be of infinite ∗-order.

For example, the Power(3/4) family is of ∗-order 2, while the Power(2) family is of infinite ∗-order.
The χ2

ν distribution is of finite ∗-order for 1 < ν < 2 and infinite ∗-order for ν ≥ 2. The normal
distribution is of infinite ∗-order.

We write µn :=
∫ ∞
−∞{ f (y)}n dy, κn =

∫ 1
0 { f n∗(x)}2 dx, n ≥ 1, and κ0 =

∫ ∞
−∞{ f (x)}2 dx. The next

proposition characterises the property of infinite ∗-order.

Proposition 1. For f ∈ F ′ and m ≥ 1, the following statements are equivalent:

(i) µm+2 < ∞,
(ii) µj < ∞ for all 1 ≤ j ≤ m + 2,
(iii) κj < ∞ and κj =

µjµj+2

µ2
j+1

for all 1 ≤ j ≤ m.

In particular, f is of infinite ∗-order if and only if µn < ∞, n ≥ 1.

Proof of Proposition 1. For each i, n ≥ 1, provided all terms below are finite, we have the following
recursive formula

νn,i :=
∫
{ f n∗(x)}i dx =

1
κi

n−1
νn−1,i+1, (1)

giving

κn =
1

∏n−1
j=0 κ

n+1−j
j

µn+2. (2)

(i)⇒ (ii) For 1 ≤ j ≤ m + 2,

µj =
∫ ∞

−∞
{ f (x)}j1{ f (x)>1}dx +

∫ ∞

−∞
{ f (x)}j1{ f (x)≤1}dx

≤
∫ ∞

−∞
{ f (x)}m+2dx +

∫ ∞

−∞
f (x)dx = µm+2 + 1 < ∞.

(ii)⇒ (iii) Use (2) and proceed with induction for 1 ≤ n ≤ m.
(iii)⇒ (i) By Definition 1, κ1 < ∞ means that κ0 < ∞. Hence, (i) follows from (2) with n = m.

Next, we investigate the involutionary nature of the ∗-transformation.

Proposition 2. Let f ∗ be a pdQ and assume f 2∗ exists. Then, f ∗ ∼ U if and only if f 2∗ ∼ U .
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Proof of Proposition 2. For r > 0, we have

∫ 1

0
| f 2∗(u)− 1|r du =

1
κr

1

∫ 1

0
| f ∗(x)− κ1|r f ∗(x) dx. (3)

If f ∗(u) ∼ U , then κ1 = 1 and (3) ensures
∫ 1

0 | f
2∗(u)− 1|rdu = 0, so f 2∗(u) ∼ U .

Conversely, if f 2∗(u) ∼ U , then using (3) again gives
∫ 1

0 | f
∗(x) − κ1|r f ∗(x) dx = 0.

Since f ∗(x) > 0 a.s., we have f ∗(x) = κ1 a.s. and this can only happen when κ1 = 1. Thus, f ∗ ∼ U ,
as required.

Proposition 2 shows that the uniform distribution is a fixed point in the Banach space of integrable
functions on [0,1] with the Lr norm for any r > 0. It remains to show that f n∗ has a limit and that the
limit is the uniform distribution. It was hoped that the classical machinery for convergence in Banach
spaces ([19], Chapter 10) would prove useful in this regard, but the *-mapping is not a contraction.
For this reason, although there are many studies of fixed point theory in metric and semi-metric spaces
(see, e.g., [20] and references therein), the fixed point Theorems 1, 2 and 3 shown below do not seem to
be covered in these general studies. Moreover, our proofs are purely probabilistic and non-standard in

this area. For simplicity, we use Lr−→ to stand for the convergence in Lr norm and P−→ for convergence
in probability as n→ ∞.

Theorem 1. For f ∈ F ′ with infinite ∗-order, the following statements are equivalent:

(i) f n∗ L2−→ 1;
(ii) For all r > 0, f n∗ Lr−→ 1;
(iii) µnµn+2

µ2
n+1
→ 1 as n→ ∞.

Remark 3. Notice that µn = E
{

f ∗(U)n−1}, n ≥ 1, are the moments of the random variable f ∗(U) with
U ∼ U . Theorem 1 says that the convergence of { f n∗ : n ≥ 1} is purely determined by the moments of
f ∗(U). This is rather puzzling because it is well known that the moments do not uniquely determine the
distribution ([21], p. 227), meaning that different distributions with the same moments have the same converging
behaviour. However, if f is bounded, then f ∗(U) is a bounded random variable so its moments uniquely specify
its distribution ([21], pp. 225–226), leading to stronger results in Theorem 2.

Proof of Theorem 1. It is clear that (ii) implies (i).
(i)⇒ (iii): By Proposition 1, κn = µnµn+2

µ2
n+1

. Now,

∫ 1

0
{ f n∗(x)− 1}2 dx = κn − 1, (4)

so (iii) follows immediately.

(iii)⇒ (ii): It suffices to show that f n∗ Lr−→ 1 for any integer r ≥ 4. To this end, since for a, b ≥ 0,
|a− b|r−2 ≤ ar−2 + br−2, we have from (4) that

∫ 1

0
| f n∗(x)− 1|rdx ≤

∫ 1

0
( f n∗(x)− 1)2( f n∗(x)r−2 + 1)dx = νn,r − 2νn,r−1 + νn,r−2 + κn − 1, (5)

where, as before, νn,r =
∫ 1

0 { f n∗(x)}rdx. However, applying (1) gives

νn,r =
µn+r

κr
n−1κr+1

n−2 . . . κn+r−1
0

and (2) ensures
µn+r = κn+r−2κ2

n+r−3 . . . κn+r−1
0 ,
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which imply
νn,r = κn+r−2κ2

n+r−3 . . . κr−1
n → 1

as n→ ∞. Hence, it follows from (5) that
∫ 1

0 | f
n∗(x)− 1|rdx → 0 as n→ ∞, completing the proof.

We write ‖g‖ = supx |g(x)| for each bounded function g.

Theorem 2. If f is bounded, then

(i) for all n ≥ 0, ‖ f (n+1)∗‖ ≤ ‖ f n∗‖ and the inequality becomes equality if and only if f n∗ ∼ U ;
(ii) f n∗ Lr−→ 1 for all r > 0.

Proof of Theorem 2. It follows from (4) that κn ≥ 1 and the inequality becomes equality if and only if
f n∗ ∼ U .

(i) Let Qn∗ be the inverse of the cumulative distribution function of f n∗, then f (n+1)∗(u) =
f n∗(Qn∗(u))

κn
≤ ‖ f n∗‖

κn
, giving ‖ f (n+1)∗‖ ≤ ‖ f n∗‖

κn
≤ ‖ f n∗‖. If f n∗ ∼ U , then Proposition 2 ensures that

f (n+1)∗ ∼ U , so ‖ f (n+1)∗‖ = ‖ f n∗‖. Conversely, if ‖ f (n+1)∗‖ = ‖ f n∗‖, then κn = 1, so f n∗ ∼ U .
(ii) It remains to show that κn → 1 as n→ ∞. In fact, if κn 6→ 1, since κn ≥ 1, there exist a δ > 0

and a subsequence {nk} such that κnk ≥ 1 + δ, which implies

µnk+2

µnk+1
=

nk

∏
i=0

κi ≥ (1 + δ)k → ∞ as k→ ∞. (6)

However,
µnk+2
µnk+1

≤ ‖ f ‖ < ∞, which contradicts (6).

Theorem 3. For f ∈ F ′ with infinite ∗-order such that {µnµn+2µ−2
n+1 : n ≥ 1} is a bounded sequence,

then the following statements are equivalent:

(i*) f n∗ P−→ 1;
(ii) For all r > 0, f n∗ Lr−→ 1;
(iii) µnµn+2µ−2

n+1 → 1 as n→ ∞.

Proof of Theorem 3. It suffices to show that (i*) implies (iii). Recall that κn = µnµn+2µ−2
n+1. For each

subsequence {κnk}, there exists a converging sub-subsequence {κnki
} such that κnki

→ b as i → ∞.
It remains to show that b = 1. To this end, for δ > 1, we have∫ 1

0

∣∣∣ f (nki
+1)∗(x)− 1

∣∣∣ 1{∣∣∣∣ f (nki
+1)∗

(x)−1
∣∣∣∣≤δ

}dx

=
1

κnki

∫ 1

0

∣∣∣ f (nki
)∗(x)− κnki

∣∣∣ f (nki
)∗(x)1{∣∣∣∣ f (nki

)∗
(x)−κnki

∣∣∣∣≤δκnki

}dx. (7)

(i*) ensures that∣∣∣ f (nki
+1)∗ − 1

∣∣∣ P−→ 0, f (nki
)∗
∣∣∣ f (nki

)∗ − κnki

∣∣∣ P−→ |1− b|, 1{∣∣∣∣ f (nki
)∗
(x)−κnki

∣∣∣∣≤δκnki

} P−→ 1

as i → ∞, so applying the bounded convergence theorem to both sides of (7) to get 0 = |1/b− 1|,
i.e., b = 1.

Remark 4. We note that not all distributions are of infinite ∗-order so the fixed point theorems are only
applicable to a proper subclass of all distributions.
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3.2. Examples of Convergence to Uniformity

The main results in Section 3.1 cover all the standard distributions with infinite ∗-order in [22,23].
In fact, as observed in the Remark after Theorem 1 that the convergence to uniformity is purely
determined by the moments of f ∗(U) with U ∼ U , we have failed to construct a density such that
{ f n∗ : n ≥ 1} does not converge to the uniform distribution. Here, we give a few examples to show
that the main results in Section 3.1 are indeed very convenient to use.

Example 1. Power function family.
From Table 1, the Power(b) family has density fb(x) = bxb−1, 0 < x < 1, so it is of infinite ∗-order if

and only if b ≥ 1. As fb is bounded for b ≥ 1, Theorem 2 ensures that f n∗
b converges to the uniform in Lr for

any r > 0.

Example 2. Exponential distribution.
Suppose f (x) = ex, x < 0. f is bounded, so Theorem 2 says that f n∗ converges to the uniform

distribution as n→ ∞. By symmetry, the same result holds for f (x) = e−x, x > 0.

Example 3. Pareto distribution.
The Pareto(a) family, with a > 0, has fa(x) = ax−a−1 for x > 1, which is bounded, so an application of

Theorem 2 yields that the sequence { f n∗
a }n≥1 converges to the uniform distribution as n→ ∞.

Example 4. Cauchy distribution.
The pdQ of the Cauchy density is given by f ∗(u) = 2 sin2(πu), 0 < u < 1, see Table 1; it retains the

bell shape of f . It follows that F∗(t) = t − sin(2πt)/(2π), for 0 < t < 1. It seems impossible to obtain
an analytical form of f n∗ for n ≥ 2. However, as f is bounded, using Theorem 2, we can conclude that f n∗

converges to the uniform distribution as n→ ∞.

Example 5. Skew-normal.
A skew-normal distribution [17,24] has the density of the form

f (x) = 2φ(x)Φ(αx), x ∈ R,

where α ∈ R is a parameter, φ and Φ, as before, are the density and cdf of the standard normal distribution.
When α = 0, f is reduced to the standard normal so it is possible to obtain its { f n∗} by induction and then derive
directly that f n∗ converges to the uniform distribution as n→ ∞. However, the general form of skew-normal
densities is a lot harder to handle and one can easily see that the density is bounded and so Theorem 2 can be
employed to conclude that f n∗ converges to the uniform distribution as n→ ∞.

Example 6. Let f (x) = − ln x, x ∈ (0, 1). Then, µn = n! and κn = n+2
n+1 → 1 as n → ∞, so we have from

Theorem 1 that, for any r > 0, f n∗ converges in Lr norm to constant 1 as n→ ∞.

4. Discussion

The pdQ, transformation from a density function f to f ∗ extracts the important information of
f such as its asymmetry and tail behaviour and ignores the less critical information such as gaps,
location and scale, and thus provides a powerful tool in studying the shapes of density functions.
We found the directed divergences from uniformity of the pdQs of many standard location-scale
families and used them to make a map locating each shape family relative to others and giving its
distance from uniformity. It would be of interest to find the pdQs of other shape families, such as
the skew-normal of Example 5; however, a simple expression for this pdQ appears unlikely given
the complicated nature of its quantile function. Nevertheless, the [25] skew-normal family should
be amenable in this regard because there are explicit formulae for both its density and quantile
functions. To obtain the information conserved in the pdQ transformation, we repeatedly applied
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the transformation and found the limiting behaviour of repeated applications of the pdQ mapping.
When the density function f is bounded, we showed that each application lowers its modal height
and hence the resulting density function f ∗ is closer to the uniform density than f . Furthermore,
we established a necessary and sufficient condition for f n∗ converging in L2 norm to the uniform
density, giving a positive answer to a conjecture raised in [1]. In particular, if f is bounded, we proved
that f n∗ converges in Lr norm to the uniform density for any r > 0. The fixed point theorems can be
interpreted as follows. As we repeatedly apply the pdQ transformation, we keep losing information
about the shape of the original f and will eventually exhaust the information, leaving nothing in the
limit, as represented by the uniform density, which means no points carry more information than
other points. Thus, the pdQ transformation plays a similar role to the difference operator in time series
analysis where repeated applications of the difference operator to a time series with a polynomial
component lead to a white noise with a constant power spectral density ([26], p. 19). We conjecture
that every almost surely positive density g on [0, 1] is a pdQ of a density function, hence uniquely
representing a location-scale family. This is equivalent to saying that there exists a density function f
such that g = f ∗. When g satisfies

∫ 1
0

1
g(t)dt < ∞, one can show that the cdf F of f can be uniquely (up

to location-scale parameters) represented as F(x) = H−1(H(1)x), where H(x) =
∫ x

0
1

g(t)dt (Professor

A.D. Barbour, personal communication). The condition
∫ 1

0
1

g(t)dt < ∞ is equivalent to saying that f
has bounded support and it is certainly not necessary, e.g., g(x) = 2x for x ∈ [0, 1] and f (x) = ex for
x < 0 (see Example 2 in Section 3.2).

5. Conclusions

In summary, the study of shapes of probability densities is facilitated by composing them
with their own quantile functions, which puts them on the same finite support where they are
absolutely continuous with respect to Lebesgue measure, and thus amenable to metric and semi-metric
comparisons. In addition, we showed that further applications of this transformation, which intuitively
reduces information and increases the relative entropy, is generally valid but requires a non-standard
approach for proof. Similar results are likely to be obtainable in the multivariate case. Further research
could investigate the relationship between relative entropy and tail-weight or distance from the class
of symmetric pdQs.

Supplementary Materials: An R script entitled StaudteXiaSupp.R, which is available online at
www.mdpi.com/1099-4300/20/5/317/s1, enables the reader to plot successive iterates of the
pdQ transformation on any standard probability distribution available in R.

Author Contributions: Section 2 is mostly due to Robert Staudte and Section 3 is mostly due to Aihua Xia.
Both authors contributed equally to the other three sections.

Acknowledgments: The authors thank the three reviewers for their critiques and many positive suggestions.
The authors also thank Peter J. Brockwell for helpful commentary on an earlier version of this manuscript.
The research by Aihua Xia is supported by an Australian Research Council Discovery Grant DP150101459.
The authors have not received funds for covering the costs to publish in open access.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Staudte, R. The shapes of things to come: Probability density quantiles. Statistics 2017, 51, 782–800.
[CrossRef]

2. Parzen, E. Nonparametric statistical data modeling. J. Am. Stat. Assoc. 1979, 7, 105–131. [CrossRef]
3. Kullback, S.; Leibler, R. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
4. Kullback, S. Information Theory and Statistics; Dover: Mineola, NY, USA, 1968.
5. Abbas, A.; Cadenbach, A.; Salimi, E. A Kullback–Leibler View of Maximum Entropy and Maximum

Log-Probability Methods. Entropy 2017, 19, 232. [CrossRef]

www.mdpi.com/1099-4300/20/5/317/s1
http://dx.doi.org/10.1080/02331888.2016.1277225
http://dx.doi.org/10.1080/01621459.1979.10481621
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.3390/e19050232


Entropy 2018, 20, 317 10 of 10

6. Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. A 1946,
186, 453–461. [CrossRef]

7. Freimer, M.; Kollia, G.; Mudholkar, G.; Lin, C. A study of the generalized Tukey lambda family. Commun. Stat.
Theory Methods 1988, 17, 3547–3567. [CrossRef]

8. Stephens, M. Uniformity, Tests of. In Encyclopedia of Statistical Sciences; John Wiley & Sons: Hoboken,
NJ, USA, 2006; Volume 53, pp. 1–8, doi:10.1002/0471667196.ess2810.pub2.

9. Lockhart, R.; O’Reilly, F.; Stephens, M. Tests of Fit Based on Normalized Spacings. J. R. Stat. Soc. B 1986,
48, 344–352.

10. Schader, M.; Schmid, F. Power of tests for uniformity when limits are unknown. J. Appl. Stat. 1997,
24, 193–205. [CrossRef]

11. Prendergast, L.; Staudte, R. Exploiting the quantile optimality ratio in finding confidence Intervals for
a quantile. Stat 2016, 5, 70–81. [CrossRef]

12. Dudewicz, E.; Van Der Meulen, E. Entropy-Based Tests of Uniformity. J. Am. Stat. Assoc. 1981, 76, 967–974.
[CrossRef]

13. Bowman, A. Density based tests for goodness-of-fit. J. Stat. Comput. Simul. 1992, 40, 1–13. [CrossRef]
14. Fan, Y. Testing the Goodness of Fit of a Parametric Density Function by Kernel Method. Econ. Theory 1994,

10, 316–356. [CrossRef]
15. Pavia, J. Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel. J. Stat. Softw. 2015, 66, 1–27.

[CrossRef]
16. Noughabi, H. Entropy-based tests of uniformity: A Monte Carlo power comparison. Commun. Stat.

Simul. Comput. 2017, 46, 1266–1279. [CrossRef]
17. Arellano-Valle, R.; Contreras-Reyes, J.; Stehlik, M. Generalized Skew-Normal Negentropy and Its Application

to Fish Condition Factor Time Series. Entropy 2017, 19, 528. [CrossRef]
18. R Core Team. R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2008; ISBN 3-900051-07-0.
19. Luenberger, D. Optimization by Vector Space Methods; Wiley: New York, NY, USA, 1969.
20. Bessenyei, M.; Páles, Z. A contraction principle in semimetric spaces. J. Nonlinear Convex Anal. 2017,

18, 515–524.
21. Feller, W. An Introduction to Probability Theory and Its Applications; John Wiley & Sons: New York, NY, USA,

1971; Volume 2.
22. Johnson, N.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; John Wiley & Sons: New York,

NY, USA, 1994; Volume 1.
23. Johnson, N.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; John Wiley & Sons: New York,

NY, USA, 1995; Volume 2, ISBN 0-471-58494-0.
24. Azzalini, A. A Class of Distributions which Includes the Normal Ones. Scand. J. Stat. 1985, 12, 171–178.
25. Jones, M.; Pewsey, A. Sinh-arcsinh distributions. Biometrika 2009, 96, 761–780. [CrossRef]
26. Brockwell, P.; Davis, R. Time Series: Theory and Methods; Springer: New York, NY, USA, 2009.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1098/rspa.1946.0056
http://dx.doi.org/10.1080/03610928808829820
http://dx.doi.org/10.1080/02664769723800
http://dx.doi.org/10.1002/sta4.105
http://dx.doi.org/10.1080/01621459.1981.10477750
http://dx.doi.org/10.1080/00949659208811361
http://dx.doi.org/10.1017/S0266466600008434
http://dx.doi.org/10.18637/jss.v066.c01
http://dx.doi.org/10.1080/03610918.2014.999086
http://dx.doi.org/10.3390/e19100528
http://dx.doi.org/10.1093/biomet/asp053
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Divergences between Probability Density Quantiles
	Definitions
	Divergence Map
	Uniformity Testing

	Convergence of Density Shapes to Uniformity via Fixed Point Theorems
	Conditions for Convergence to Uniformity
	Examples of Convergence to Uniformity

	Discussion
	Conclusions
	References

