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Abstract: The long-wave approximation of a falling film down an inclined plane with constant
temperature is used to investigate the volumetric averaged entropy production. The velocity and
temperature fields are numerically computed by the evolution equation at the deformable free
interface. The dynamics of a falling film have an important role in the entropy production. When the
layer shows an unstable evolution, the entropy production by fluid friction is much larger than that of
the film with a stable flat interface. As the heat transfers actively from the free surface to the ambient
air, the temperature gradient inside flowing films becomes large and the entropy generation by heat
transfer increases. The contribution of fluid friction on the volumetric averaged entropy production
is larger than that of heat transfer at moderate and high viscous dissipation parameters.

Keywords: falling film; entropy; long-wave approximation

1. Introduction

Gravity-driven flows have attracted a great deal of attention in industrial processes such as coating
processes, in which the instability of the flowing film is highly undesirable. Therefore, the stability
of a falling film down an inclined plane has been extensively studied. The linear stability analysis
was initiated by Yih [1], who used lubrication theory with a small parameter as the ratio of initial film
thickness to the characteristic wavelength. He derived and solved the Orr–Sommerfeld equations
to determine the critical Reynolds number above which the liquid film is unstable. Benny [2] and
Gjevik [3] expanded to the nonlinear regime and derived a nonlinear evolution equation for the film
height. Lin [4] investigated a weakly nonlinear analysis to study the side-band stability near neutral
curve. Chang [5] used the Hopf bifurcation theory to investigate the periodic waves near the upper
neutral curves. The isothermal solitary waves were numerically studied by Pumar et al. [6] and
Nakaya [7]. They showed that there are branch multiplicity and turning points depending on the
Reynolds number to decide the existence of solitary waves. The dynamics of thin film flows have
different characteristics depending on flow rates [8–10]. If a critical flow rate is the flow rate when
the maximum surface velocity is equal to the wave speed, the fluid below the critical flow rates has
the highest surface velocity at the crest. However, above the critical flow rate, circulating waves are
found due to the circulating eddy on the interfacial side, and this has an important effect on the
interfacial heat and mass transfer [11]. This circulating eddy comes from the splits and movements of
stagnation points, and increases the viscous dissipation. Dietze et al. carried out numerical studies on
three-dimensional flow structures for falling liquid films and compared with experimental works [12].
They found that the liquid layer can be developed as a thin residual layer without capillary waves.

When heat transfers to the film from the bottom plane, the volatile liquid film has instabilities
at the free surface such as thermocapillarity and vapor recoil. Thermocapillarity is induced by
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the temperature gradient of surface tension at the free surface and vapor recoil occurs due to the
difference of evaporation rate on an evaporating liquid surface. The long-wave approach was also
used to study the linear and nonlinear stability analysis of a liquid film on heated or cooled planes.
The destabilization with thermocapillarity was shown by Kelly et al. [13] and the instability of vapor
recoil was studied by Bankoff [14] and Burelbach et al. [15]. The evolution equations of heated falling
films was extensively studied by Joo et al. [16,17]. Rietz et al. conducted experiments on surface
topology in regular three-dimensional falling films with heat flux conditions [18]. They investigated
the interactions between hydrodynamics and thermocapillary forces and showed the formation of
rivulets and film thinning.

The motion of fluids is influenced by the boundary conditions at the plane. The constant
temperature condition can be considered as a plane of infinite thermal conductivity and heat capacity,
while the constant heat flux condition corresponds to a poorly conducting plane. The comparison
between the two boundary conditions was investigated for turbulent thermal convection [19,20].
Trevelyan et al. [10] constructed bifurcation diagrams for travelling solitary waves subjected to two
imposed boundary conditions of a heat flux and a specified temperature, assuming that the surface
tension was expressed as a temperature-dependent property. They derived the critical conditions for
the onset of the instability and the evolution equation for the deformable free interface for large Peclet
numbers. They computed the solitary waves depending on the boundary conditions and validated the
long-wave assumption to describe the recirculation zone below a solitary hump.

The entropy production of a Newtonian laminar falling film along an inclined plane was
investigated by Saouli and Aiboud-Saouli [21], where the flat interface was assumed to be free
and adiabatic and constant heat flux condition was applied to the bottom plane. The second law
analysis of a non-Newtonian laminar falling film down an inclined plane was studied by Gorla and
Pratt [22], where the power-law model was used and the constant heat flux condition was also used.
They analytically obtained the temperature fields with the separation of variables in two-dimensional
space, and showed that the entropy production rate and the irreversibility ratio in the transverse
direction decreased. Sahin [23,24] obtained the entropy generation rate of turbulent flows through
a circular pipe corresponding to constant wall temperature and constant heat flux, where viscosity
was dependent on temperature. He showed that viscosity variation with temperature allows a
significant contribution to the entropy production and pumping power. As an application for absorber
optimization, an absorptive falling film over a cooled horizontal tube absorber was exemplified to
determine the minimum mass flow rates [25].

The purpose of this study is to address the viscous dissipation effects in a non-volatile liquid
film flowing down an inclined heated plane with constant temperature. The novelty of this paper lies
in providing a way to compute the entropy production rate of falling films with a deformable free
interface. The key is to obtain the velocity and temperature fields from the evolution equation for the
perturbed free surface, where the long-wave expansion approach is used. The evolution of film height
with time is solved by the method of lines with the FFT (Fast Fourier transform).

2. Formulation

We consider the non-isothermal Newtonian flow down an inclined plane with an inclination angle
β with constant density ρ, viscosity µ, and thermal conductivity k, where the velocity field u is defined
by (u, v) in two-dimensional space. The layer is assumed to be an incompressible and non-volatile
liquid bounded by an ambient gas with pressure p0 and temperature T0, where the physical properties
of the liquid phase are considered much more than those of the gas phase. As shown in Figure 1,
the normal coordinate y is taken to be zero on the plane and the deformable free surface is expressed
by y = h(x, t), where x is the lateral coordinate and t is time. The temperature at the bottom wall keeps
at a constant value of TB.
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Figure 1. The physical configuration.

2.1. Governing Equations and Boundary Conditions

The continuity equation corresponding to u = (u, v) is

ux + vy = 0. (1)

Hereafter, the subscript indicates the derivative with respect to it (i.e., ux = ∂u/∂x). The equations of
motion in two-dimensional space are given by

ρ
(
ut + uux + vuy

)
= −px + µ

(
uxx + uyy

)
+ ρg sin β, (2)

ρ
(
vt + uvx + vvy

)
= −py + µ

(
vxx + vyy

)
− ρg cos β, (3)

where g is a gravitational acceleration constant. The energy equation is expressed by

Tt + uTx + vTy = κ
(
Txx + Tyy

)
, (4)

where κ is the thermal diffusivity defined by k/ρCp and Cp is the heat capacity.
The boundary conditions at the bottom plane are

u = 0 and T = TB. (5)

At the deformable free surface, the jump normal and shear stress conditions [16] are, respectively,

p− p0 −
2µ

(1 + h2
x)

(
h2

xux − hx(uy + vx) + vy

)
= − σhxx

(1 + h2
x)

3/2 , (6)

(uy + vx)(1− h2
x) + 2hx(vy − ux) = 0, (7)

where σ is a surface tension. Note that the normal vector n = (−hx, 1)/(1 + h2
x) is chosen as a vector

pointing from the liquid into the ambient air. Applying the Newton’s cooling law to the interface gives

k
1 + h2

x
(hxTx − Ty) = hN(T − T∞), (8)
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where hT is the heat transfer coefficient of the ambient air. The kinematic condition at the deformable
free surface gives

ht + uhx − v = 0. (9)

In order to get the dimensionless governing equations, the following relations are used:

(x, y, h)∗ =
(

x
L

,
y

εL
,

h
εL

)
, t∗ =

t
L/U

, (u, v)∗ =
( u

U
,

v
εU

)
,

p∗ =
p

ρU2 , and T∗ =
T − To

TB − To
.

(10)

Here, a long-wave parameter ε is defined by hN/L, L is the characteristic length, hN is the Nusselt flat
film depth, U is the maximum velocity of a flat film at the free surface defined by ρg sin βh2

N/2µ, and
To is the reference temperature far from the interface in the ambient fluid. The temperature is scaled by
the total temperature difference ∆T = TB − To. The superscript ∗ is neglected for simplicity.

The dimensionless governing equations are

ux + vy = 0, (11)

ε
(
ut + uux + vuy

)
= −εpx +

1
Re

(
ε2uxx + uyy

)
+

sin β

Fr2 , (12)

ε2 (vt + uvx + vvy
)
= −py +

ε

Re

(
ε2vxx + vyy

)
− cos β

Fr2 , (13)

ε
(
Tt + uTx + vTy

)
=

1
Pe

(
ε2Txx + Tyy

)
. (14)

Here, the Reynolods number Re, the Froude number Fr, and the Peclet number Pe are defined by

Re =
ρUhN

µ
, Fr =

U√
ghN

, and Pe =
UhN

κ
. (15)

The boundary conditions on the solid plane are

u = 0 and T = 1. (16)

The boundary conditions at the deformable free surface can be arranged as

p− p0 −
2ε

Re(1 + ε2h2
x)

(
ε2h2

xux − hx(uy + εvx) + vy

)
= − Whxx

(1 + ε2h2
x)

3/2 , (17)

(uy + ε2vx)(1− ε2h2
x) + 2ε2hx(vy − ux) = 0, (18)
1

1 + ε2h2
x

(
ε2hxTx − Ty

)
= BiT, (19)

where the Weber number We and the Biot number Bi are denoted by

We =
σ

ρU2hN
and Bi =

hThN
k

. (20)

Note that the modified Weber number W = ε2We and the Weber number We is assumed by O(ε−2).
Here, As the Bi approaches zero, the film can be considered as an adiabatic liquid film. The evolution
equation to describe the motion of film thickness can be obtained by the kinematic condition,

ht + uhx − v = 0. (21)
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2.2. Perturbed Solutions

Let u = u(0) + εu(1), p = p(0) + εp(1), and T = T(0) + εT(1). Substituting these relations into the
governing Equations (11)–(14) and the boundary conditions (16)–(19), the solutions for the leading
order can be obtained by

u(0) =
Re sin βh2

Fr2

[
y
h
− 1

2

(y
h

)]
= 2

(
hy− y2

2

)
, (22)

v(0) = −Re sin β

2Fr2 hxy2 = −hxy2, (23)

p(0) =
2 cot β

Re
(h− y) + p0 −Whxx, (24)

T(0) = 1− Bi
1 + Bih

y. (25)

It can be easily checed that the solution of u(0) shows the parabolic velocity profile and v(0) with
the flat interface is vanished inside the liquid layer. Note that the relation of Re sin β = 2Fr2 is used.
In the adiabatic case (i.e., Bi → 0), the leading order solution of the temperature field is reduced to
T(0) = 1. This represents that the whole liquid layer at steady state has the same temperature as the
bottom plate because there is no heat removal from the interface to the ambient fluid. When Bi→ ∞
(i.e., heat transfer works actively into the gas phase), the leading order solution of temperature field is
reduced to T(0) = 1− y/h and the temperature at the interface is always T(0) = 0, irrespective of the
interface shape. Substituting the solutions of velocity fields Equations (22) and (23) into Equation (21),
the kinematic condition for the leading order yields

ht = −2h2hx. (26)

The governing equations for the first order of O(ε) can be recast into

u(1)
x + v(1)y = 0, (27)

u(0)
t + u(0)u(0)

x + v(0)u(0)
y = −p(0)x +

1
Re

u(1)
yy , (28)

0 = −p(1)y +
1

Re
v(0)yy , (29)

T(0)
t + u(0)T(0)

x + v(0)T(0)
y =

1
Pe

T(1)
yy . (30)

The boundary conditions at the plane are

u(1) = 0 and T(1) = 0. (31)

At the deformable free surface, the boundary conditions are

p(1) − 2
Re

(
−hxu(0)

y + v(0)y

)
= 0, (32)

u(1)
y = 0, (33)

T(1)
y = 0. (34)

u(1) can be obtained by integrating Equation (28) with respect to y twice and using the boundary
conditions of Equations (31) and (33). Substituting the solution into Equation (27) with the no-slip
boundary condition Equation (31) yields the solution of v(1). p(1) can be solved by integrating
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Equation (29) and applying boundary condition Equation (32). Finally, the temperature field can be
directly acquired by Equations (30) and (34). Then, the solutions for O(ε) can be arranged as

u(1) = Re
(

hhx

6
y4 − 2h2hx

3
y3 +

Φ
2

y2 +
4h4hx

3
y−Φhy

)
, (35)

v(1) =Re
[
−
(

hhxx

30
+

h2
x

30

)
y5+

(
h2hxx

6
+

hh2
x

3

)
y4−Φx

6
y3

−
(

2h4hxx

3
+

8h3h2
x

3
− hΦx

2
−Φhx

2

)
y2
]

,
(36)

p(1) = −3hx

Re
(h + y), (37)

T(1) =
PeBi

(1 + Bih)2×[
−Bihx

20
y5+

(
hx

12
+

Bihhx

4

)
y4− Bih2hx

3
y3+

(
Bih4hx

4
− h3hx

3

)
y
]

,
(38)

where
Φ =

2 cot β

Re
hx −Whxxx. (39)

Note that the temperature is not included in the solutions of velocity fields, and this result can
be corrected by using the temperature-dependent physical properties such as viscosity, density,
and surface tension. Finally, the kinematic equation for the free surface up to O(ε) can be expressed by

ht = −
(

2
3

h3
)

x
+ ε

(
− 8

15
Reh6hx +

2 cot β

3
h3hx −

1
3

ReWh3hxxx

)
x

. (40)

The first term on the right-hand side of Equation (40) indicates the wave propagation. The second,
third, and fourth terms represent the effects of the mean flow, hydrostatic pressure, and surface
tension, respectively.

2.3. Linear Stability

When η is an infinitesimal disturbance against an initial flat film, it can be written as

h = 1 + δη, (41)

where δ is the initial amplitude of the disturbance. Inserting Equation (41) into Equation (40) and
linearizing in δ up to O(δ) gives

ηt = −2ηx + ε

(
− 8

15
Reηxx +

2 cot β

3
ηxx −

1
3

ReWηxxxx

)
+ O(δ2). (42)

Substituting η = exp[i(αx− ct)] as the normal mode analysis into Equation (42) yields

c = 2α + iεα2
[

8
15

Re− 2 cot β

3
− 1

3
ReWα2

]
, (43)

where α is the scaled wavenumber and c is the complex number indicating wave frequency. Since the
imaginary part of c represents the effective growth rate, Gr,

Gr = α2
[

8
15

Re− 2 cot β

3
− 1

3
ReWα2

]
. (44)

When Gr is a positive value, the amplitude of disturbance increases exponentially with time and
instability occurs. Note that the real part of c indicates a phase speed of waves and Re(c) = 2α.
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2.4. Entropy Production Rate

The local entropy generation normalized by k∆T2/h2
N can be written by

sgen = ε2T2
x + T2

y + VD

[
2ε2(u2

x + v2
y) + (ε2vx + uy)

2
]

, (45)

where the viscous dissipation parameter VD is denoted as

VD =
µU2

k∆T2 . (46)

The volumetric averaged entropy generation can be recast into

Sgen =

∫ L
0

∫ h
0 sgendydx∫ L

0

∫ h
0 dydx

= N1 + N2 + N3, (47)

where

N1 =
ε2

A

∫ L

0

∫ h

0
T2

x dydx ∼ ε2

A

∫ L

0

[
Bi4

3(1 + Bih)4 h3h2
x

]
dx + O(ε3), (48)

N2 =
1
A

∫ L

0

∫ h

0
T2

y dydx

=
1
A

∫ L

0

[
Bi2h

(1 + Bih)2 + ε
PeBi2h4hx

(1 + Bih)4

(
1
2
+

4
15

Bih− 7
30

Bi2h2
)

+ ε2 Pe2Bi2h7h2
x

(1 + Bih)4

(
1

14
− 367

5040
Bih +

107
5040

Bi2h2
)]

dx+O(ε3),

(49)

N3 =
VD
A

∫ L

0

∫ h

0

[
2ε2(u2

x + v2
y) + (ε2vx + uy)

2
]

dydx

∼ VD
A

∫ L

0

{
4
3

h3 + εRe
(

32
15

hxh6 − 4
3

Φh3
)

+ ε2
[
−1

3
h4hxx+

16
3

h3h2
x+Re2h3

(
272
315

h6h2
x−

16
15

Φhxh3+
1
3

Φ2
)]}

dx

+ O(ε3),

(50)

where A =
∫ L

0 hdx is a volume enclosed between the free surface and the x-axis with period L per
unit spanwidth. The derivations of Equations (48)–(50) are summarized in Appendix A. All terms
of Equation (47) are expanded in the order of ε and are arranged up to O(ε2). Note that N1 and N2

denote the volumetric averaged entropy produced by heat transfer in the lateral direction and in the
transverse direction, respectively, and N3 represents the volumetric averaged entropy generated by
the fluid friction.

When the flat free surface is considered, the solutions of the leading order with h = 1 can be
summarized as

u(0) = 2
(

y− y2

2

)
and v(0) = 0. (51)

Then, N3 with the flat free surface can be reduced to

N3 =
VD
A

∫ L

0

∫ h

0

(
u(0)

)2

y
dydx = VD

∫ 1

0

(
1− 2y + y2

)
dy =

4
3

VD. (52)

This result can be easily checked from Equation (50), neglecting all terms including the derivatives of x.
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Finally the irreversibility ratio Ψ is defined by

Ψ =
N3

N1 + N2
. (53)

When the viscous dissipation parameter increases, the magnitude of N3 and the irreversibility ratio
Ψ are also increased. Note that the irreversibility ratio denotes the relative magnitude of entropy
generation originated by fluid friction and heat transfer. When Ψ > 1, the fluid friction gives much
contribution to entropy production more than heat transfer.

3. Results

In this study, the falling film with an inclination angle β = π/4 and with period of L = 2π is
considered for the generation of entropy with time. The parameters of Pe = 1 and Bi = 10 were
used for temperature fields, unless otherwise specified. From Equation (44) as the results of the linear
stability analysis, both unstable and stable conditions with α = 1 were considered: (1) Gr > 0 with
Re = 10 and W = 1 and (2) Gr < 0 with Re = 1 and W = 5. In order to compute velocity and
temperature fields with time, it is necessary to obtain the evolution of film depth h. First, the evolution
of the film height for Equation (40) with periodic conditions was solved by employing the method of
lines (MOL), where the right hand side of Equation (40) with ε = 1/L is computed by FFT (Fast Fourier
transform) method. The resultant ordinary differential equation (ODE) is computed by means of the
MATLAB integrator ode113.m with tolerance of 10−13, where ODE113 is a solver to use a multistep
method with an algorithm of the Adams–Bashforth–Moulton method for ODE. The initial condition
for h is assumed by

h(x, 0) = 1 + 0.1 cos(x). (54)

The velocity and temperature fields for Equations (35), (36) and (38) can be obtained from the solutions
of h and its derivatives, where the derivatives of h are calculated by FFT based on each solution of
h at time t. Finally, the volumetric averaged entropy productions of N1, N2, and N3 are numerically
calculated by the Simpson rule.

The evolution of film depth with time up to t = 6 is shown in Figure 2 with Re = 10 and W = 1,
where each curve is overlapped with ∆t = 0.2. As time elapses, the amplitude of film height increases
and the evolution of the film shows instability with the expectation by the linear stability analysis.
Since the crest of the film moves faster than the trough of the film, the film with this instability will
experience a wave breaking.

Figure 3a with the same condition of Figure 2 shows the velocity fields in a vector plot. Here,
the velocity fields from Equations (22), (23), (35) and (36) are not affected by the temperature fields due
to constant physical properties such as viscosity and density. Temperature distribution with Bi = 10
within the film is represented in Figure 3b. In case of the adiabatic condition of Bi → 0, it can be
easily verified that T = 1 within the film flowing down an inclined plane at quasi-steady state from
Equations (25) and (38). When heat removes effectively through the interface to the ambient phase
(i.e., Bi→ ∞), the temperature distribution can be rearranged as

T(x, y, t) = 1− y
h
+ ε

Pe
h2

[
−hx

20
y5+

hhx

4
y4− h2hx

3
y3+

h4hx

4
y
]

. (55)

The temperature at the interface is reduced into T = 7εPehxh3/60 from Equation (55) and decreases
as Pe decreases.
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(a)

(b)

Figure 2. The evolution of film height with time with Re = 10, β = π/4, and W = 1: (a) 0 < t < 3 and
(b) 3.2 < t < 6. The time step between the curves is 0.2. Solid thick curves of (a,b) represent the film
height at t = 0 and at t = 6.

Figure 4 shows the volumetric averaged entropy production rate of N1, N2, and N3 with VD = 1.
As the amplitude of the film grows, it can be easily verified that entropy production increases. While N1

is exponentially increased as time goes, the magnitude of N1 is much less than those of N2 and N3.
As Bi goes to infinity, the entropy production by heat transfer (i.e., both of N1 and N2) increases, but the
irreversibility ratio Ψ decreases as illustrated in Figure 4d. Note that both of N1 and N2 will be zero as
Bi→ 0 from Equations (48) and (49) and N3 does not depend on Bi from Equation (50) due to constant
physical properties. As Bi→ ∞, the entropy production of N1 and N2 can be reduced as
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N1 ∼
ε2

A

∫ L

0

[
h2

x
3h

]
dx + O(ε3), (56)

N2 ∼
1
A

∫ L

0

[
1
h
− ε

7
30

Peh2 + ε2 107
5040

Pe2h5h2
x

]
+ O(ε3), (57)

(a)

(b)

Figure 3. The vector and contour plots at time t = 6 with Re = 10, β = π/4, and W = 1: (a) velocity fields
and (b) temperature fields. The solid thick curve represents the film height at t = 6.
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(a) (b)

(c) (d)

Figure 4. The entropy production rate of (a) N1, (b) N2, (c) N3, and (d) Ψ with Re = 10, β = π/4,
W = 1, and VD = 1.

The entropy production with the deformable free surface is compared with that of the flat free
surface in Figure 4c, where the dotted line denotes the entropy production with the non-deformable
free surface. From Equation (52) with VD = 1, it can be verified that N3 = 4/3.

In the case of stable film flow with Re = 1 and W = 5, the evolution of film depth with
time up to t = 6 is shown in Figure 5, where each curve is overlapped with ∆t = 0.2. As time
grows, the amplitude of film height decreases and asymptotically approaches flat. The velocity and
temperature fields are illustrated in Figure 6. The vector plot shows that the flow direction is nearly
parallel to the x-axis and the contour line of temperature fields are also almost flat. These stable
patterns make the entropy production in the lateral direction reduce significantly, as shown in Figure 7.
The variations of N2 and N3 are negligible and N3 is asymptotically reduced to the value with the flat
interface. Therefore, the value of the irreversibility ratio is nearly constant depending on Bi.
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(a)

(b)

Figure 5. The evolution of film height with time with Re = 1, β = π/4, and W = 5: (a) 0 < t < 3 and
(b) 3.2 < t < 6. The time step between the curves is 0.2. The solid thick curves of (a,b) represent the
film height at t = 0 and at t = 6, respectively.
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(a)

(b)

Figure 6. The vector and contour plots at time t = 6 with Re = 1, β = π/4, and W = 5: (a) velocity
fields and (b) temperature fields. The solid thick curve represents the film height at t = 6.
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(a) (b)

(c) (d)

Figure 7. The entropy production rate of (a) N1, (b) N2, (c) N3, and (d) Ψ with Re = 1, β = π/4, W = 5,
and VD = 1.

The parametric studies of Re and W were carried out with conditions of VD = 1, β = π/4,
and Bi = 10. Figure 8a illustrates the irreversibility ratio Ψ with Reynolds number. As the Reynolds
number increases, the value of Ψ is also increasing with time. The shape of film height at t = 3 is
displayed at Figure 8b. The amplitude of film height at high Reynolds number is much larger than that
of film thickness at low Reynolds number. These results are coincident with the linear stability analysis.
Above Re > 5, the growth rate Gr from Equation (44) is larger than zero. Figure 9 demonstrates the
effects of W at fixed Reynolds number Re = 5. When W = 1, it can be verified that the irreversibility
ratio and the amplitude of the film thickness increase slightly with time. As W as the stabilizing factor
grows, the dynamics of the film flow makes weak and reduces into the flat film.
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(a)

(b)

Figure 8. The irreversibility ratio and the evolution of film thickness with VD = 1, β = π/4, Bi = 10,
and W = 1: (a) Ψ within 0 < t < 3 and (b) the film height at t = 3.
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(a)

(b)

Figure 9. The irreversibility ratio and the evolution of film thickness with VD = 1, β = π/4, Bi = 10,
and Re = 5: (a) Ψ within 0 < t < 3 and (b) the film height at t = 3.

4. Discussion

The entropy production on a gravity-driven falling film along an inclined heated plane was
obtained by the long-wave approach. Here, the velocity and temperature fields were decided by the
evolution equation from the kinematic condition at the free interface. The instability of the flowing
film makes the entropy production increase because the gradient of velocity fields in the liquid layer
becomes large. The present work shows that Bi has an important role in the entropy production due to
heat transfer. In the case of adiabatic conditions (i.e., Bi goes to zero), the liquid layer has the same
temperature due to constant wall temperature condition. As Bi increases, the temperature variation
inside flowing films depends on Bi and this affects the entropy generation by heat transfer of N1 and
N3. The value of the irreversibility ratio also shows dependency on Bi. The contribution of fluid
friction on the volumetric averaged entropy production is larger than that of heat transfer at moderate
and high viscous dissipation parameters.
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The entropy production by fluid friction is not affected by heat transfer. This result is due to
constant physical properties such as density, viscosity, and surface tension. As an additional future
work, variable viscosity and surface tension will be included in next topics and the case of constant
heat flux will also be investigated.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

c complex number indicating wave frequency
Cp heat capacity
g gravitational acceleration constant
Gr effective growth rate
hN Nusselt fiat film thickness
hT heat transfer coefficient of the ambient phase
k liquid thermal conductivity
L characteristic length
N1 and N2 volumetric averaged entropy generation rate of heat transfer in the lateral and transverse directions
N3 volumetric averaged entropy generation rate by fluid friction
p and p0 pressure in liquid and gas phases
sgen local entropy generation rate
Sgen volumetric averaged entropy generation rate
T and T0 temperature in liquid and ambient phases
TB bottom temperature
U maximum velocity of the Nusselt film
VD viscous dissipation parameter defined by µU2/k∆T2

u = (u, v) velocity fields in liquid phase
Re Reynolds number defined by UhN/ν

Fr Froude number defined by U/
√

ghN
Pe Peclet number defined by UhN/κ

Bi Biot number defined by hThN/k
W and We the modified Weber number (ε2We) and Weber number defined by σ/ρU2hN
α scaled wavenumber
β inclination angle
δ initial amplitude of the disturbance
ε long-wave parameter defined by hN/L
κ thermal diffusivity defined by k/ρCp

η infinitesimal disturbance against an initial flat film
ν kinematic viscosity
ρ liquid density
µ liquid viscosity
Ψ irreversibility ratio defined by N3/(N1 + N2)

σ surface tension

Appendix A. Derivations of Equations (48)–(50)

Since T = T(0) + εT(1) with Equations (22), (23) and (38), Tx can be easily computed by

Tx =
Bi2

(1 + Bih)2 hxy + O(ε). (A1)

Then, the first term N1 up to O(ε3) is given by

N1 = ε2
∫ L

0

∫ h

0
T2

x dydx = ε2
∫ L

0

Bi4

3(1 + Bih)4 h3h2
xdx + O(ε3). (A2)
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Ty can be also summarized as

Ty = − Bi
1 + Bih

+
PeBi

(1 + Bih)2×[
−Bihx

4
y4 +

(
hx

3
+ Bihhx

)
y3 − Bih2hxy2 +

Bih4hx

4
− h3hx

3

]
.

(A3)

Substituting Equation (A3) into Equation (49) and arranging gives

N2 =
∫ L

0

∫ h

0
T2

y dydx

=
∫ L

0

[
Bi2h

(1 + Bih)2 + ε
PeBi2h4hx

(1 + Bih)4

(
1
2
+

4
15

Bih− 7
30

Bi2h2
)

+ ε2 Pe2h7h2
x

(1 + Bih)4

(
1
14
− 367

5040
Bih +

107
5040

Bi2h2
)]

dx + O(ε3).

(A4)

Since u = u(0) + εu(1) with Equations (22), (23), (35) and (36), N3 from Equation (50) with the
incompressibility condition (i.e., u2

x + v2
y = (ux + vy)2 − 2uxvy = −2uxvy) can be recast into

N3 =
∫ h

0

∫ L

0

[
2ε2(u2

x + v2
y) + (ε2vx + uy)

2
]

dxdy

=
∫ h

0

∫ L

0

[
−4ε2uxvy + (ε2vx + uy)

2
]

dxdy

∼
∫ L

0

{
4
3

h3 + εRe
(

32
15

hxh6 − 4
3

Φh3
)

+ε2
[
−1

3
h4hxx+

16
3

h3h2
x+Re2h3

(
272
315

h6h2
x−

16
15

Φhxh3+
1
3

Φ2
)]}

dx

+ O(ε3),

(A5)

where

ux = 2hxy + εRe

(
y4

6
(h2

x + hhxx)−
y3

3
(4hh2

x + 2h2hxx) +
y2

2
Φx

+
y
3
(16h3h2

x+4h4hxx)− (Φxh + Φhx)y
)

,

(A6)

uy = 2(h− y) + εRe

(
2
3

hh2
xy3 − 2h2hxy2 + Φy +

4h4hx

3
−Φh

)
, (A7)

vx =−hxxy2

+εRe
[
−(hhxxx+3hxhxx)

y5

30
+(6hhxhxxx+h2hxxx+2h3

x)
y4

6
−Φxx

6
y3

−
(

8h3hxhxx+
2
3

h4hxxx+8h2h3
x−hxΦx−

1
2

hΦxx+
1
2

Φhxx

)
y2
]

,

(A8)

vy = −2hxy + εRe
[
−
(

hhxx

6
+

h2
x

6

)
y4 + 4

(
h2hxx

6
+

hh2
x

3

)
y3

−Φx

2
y2−

(
4h4hxx

3
+

16h3h2
x

3
−hΦx−Φhx

)
y
]

.
(A9)
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