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Abstract: The features of a logically sound approach to a theory of statistical reasoning are discussed.
A particular approach that satisfies these criteria is reviewed. This is seen to involve selection of
a model, model checking, elicitation of a prior, checking the prior for bias, checking for prior-data
conflict and estimation and hypothesis assessment inferences based on a measure of evidence.
A long-standing anomalous example is resolved by this approach to inference and an application is
made to a practical problem of considerable importance, which, among other novel aspects of the
analysis, involves the development of a relevant elicitation algorithm.
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1. Introduction

It is relevant to ask what characteristics should be required of a theory of statistical reasoning.
The phrase statistical reasoning is used here, as opposed to statistical inference, because there is a logical
separation between how the ingredients to a statistical problem are chosen and checked for their
validity, and the inference step that involves the application of the rules of a theory of inference to
the ingredients. Thus, it is argued in Section 2 that there are two aspects to a theory of statistical
reasoning: (i) specifying methodology for choosing and checking the ingredients to a statistical analysis
beyond the data and (ii) specifying a theory of inference using these ingredients that is based on a
measure of statistical evidence. These components correspond to the premises and the argument in
logical reasoning.

In Section 3, a specific theory of statistical reasoning, as described in [1], that satisfies the criteria
developed in Section 2 is reviewed. It is shown that an application of the theory of relative belief
inference resolves difficulties in a problem that has led to anomalous results for other theories. It is
to be noted that a number of additional examples have been published demonstrating that relative
belief inference can lead to more satisfactory results than other approaches (see [2–6]). Particularly
noteworthy is the Jeffreys–Lindley paradox where an increasingly diffuse prior typically leads to
overwhelming evidence in favor of a hypothesis even when it seems contradicted by the data.
The discussion of this paradox in [1] shows that the relative belief approach to inference leads to
a clear resolution. A goal of this paper is to argue in favor of the relative belief approach to statistical
inference based on its logical coherence and its utility in applications.
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In Section 4, the theory of statistical reasoning is applied to an important practical problem where
some inferential difficulties have arisen, namely, the problem of determining whether or not there is a
relationship between a binary-valued response variable and predictors. For this, response y ∈ {0, 1} is
related to k quantitative predictors x = (x1, . . . , xk) via y ∼ Bernoulli(p(x)) with

p(x) = G(β1x1 + · · ·+ βkxk), (1)

where G is a known cdf and βββ = (β1, . . . , βk) ∈ Rk is unknown. This can be regarded as a case-study
for the overall approach and a number of novel results are obtained. Perhaps the biggest challenge
with this model is determining a suitable prior and in Section 4.1 an elicitation algorithm is developed
that improves on earlier efforts. The bias in the prior is measured in Section 4.2. Model checking is
essential, namely, determining if (1) holds at least approximately. Since this is dealt with in [7], this
approach is used here without much discussion. The check for prior-data conflict is developed in
Section 4.3, together with an approach to modifying the prior when necessary, and relative belief
inferences are applied in Section 4.4.

The main theme of the approach discussed here for (ii) centers around being clear about how
statistical evidence is to be measured and, as will be seen, this has implications for (i) as well.
Certainly, the concept of statistical evidence plays a key role in the development of the subject,
but, as discussed in Chapter 3 of [1], it can be argued that there is a general failure of most approaches
to deal adequately with this concept. There have, however, been a number of measures of evidence
proposed in the philosophical and statistical literature and many of these are related to the relative
belief ratio. For example, the Bayes factor is one such measure, but the relative belief ratio can be
considered as more basic (see Section 3), and this comment applies to a number of other measures
as well as discussed in Chapter 4 of [1]. The relative belief ratio is certainly not a new measure of
evidence as [8] refers to the log of this quantity as the information and there are some references to
Keynes calling it the association factor. As far as we know, however, there have been no attempts to
use this quantity as the central concept in derivation of a theory of statistical inference. This leads to a
number of unique characteristics for the theory outlined in Section 3.

There are many others who have also focused on treating statistical evidence and its measurement
as a central concept in the subject. Jeffreys’ earliest papers focus on this (see also [9]), and the paper [10]
provides excellent coverage of this history. In addition, the paper [11] summarizes developments by
these authors that is certainly in the same spirit as what is being advocated here for (ii). The philosophy
of science literature on the topic of evidence is vast and we point to [12] as a nice introduction with [13]
being a more detailed discussion. The work of [14] is also particularly noteworthy in this regard.

2. The Foundations of Statistical Reasoning

When concerned with the foundations of statistics, it is reasonable to ask: what is the purpose
of statistics as a subject or what is its role in science? To answer this, consider a context where an
investigator has interest in some quantity and either wants to know (E) the value of this quantity or
has a theory that leads to a specific value for the quantity and so wants to know (H) if this value is
indeed correct and so test the theory. In addition, the investigator has available data d, produced in
some fashion, which it is believed contains evidence concerning answers to (E) and (H). The purpose
of statistical theory is to provide a reasoning process that can be applied to d to determine what
the evidence has to say about (E) or (H), namely, produce an estimate of the quantity based on the
evidence or assess whether there is evidence either in favor of or against the hypothesized value.
In addition, as is widely recognized, estimation and hypothesis assessment should also produce a
measure of the accuracy of the estimate and a measure of the strength of the evidence for or against
the hypothesis. Answering (E) and/or (H) is called statistical inference and a sound, logical theory of
statistical inference, which contained the minimal ingredients possible, can be viewed as a major goal
of the subject.
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Any theory that does not lead to specific answers to (E) and (H) or is dependent on ingredients
or rules of reasoning that are not well-justified is unsatisfactory. In the end, the believability of the
inferences drawn is entirely dependent on the soundness of the theory that produced them. Thus,
statistics is not an empirical subject like physics, where conclusions can also be assessed against the
empirical world, but is more like an extension of purely logical reasoning to contexts where the data
does not lead to categorical answers to (E) and (H) and so produces uncertainty. The view is taken
here that we want to maintain a close relationship between a theory of statistical reasoning and the
theory of logical reasoning. This has a number of consequences with perhaps the most important being
that it implies a separation of the assessment of the appropriateness of the ingredients specified to a
statistical analysis beyond the data, and the theory producing the inferences. The ingredients play the
role of the premises and the theory of statistical inference takes the role of the rules of inference used
in a logical argument. The separation of these aspects of a logical argument has been understood since
Aristotle (see [15]).

There are two main theses of the argument developed here: (I) all ingredients to a statistical
analysis must be checkable against the data and (II) the theory of inference must be based on a measure
of statistical evidence. The rationale for (I) and (II) are now considered with (II) discussed first, as it
plays a key role.

The concept of the evidence in the data is clearly of utmost importance to statistical reasoning.
There is no need, however, to provide a measure of the total evidence contained in the data, for the
measure of evidence only has to deal with (E) and (H) for the quantity of interest. The measure
of evidence must clearly indicate whether there is evidence for or against any specific value of the
quantity of interest being the true value. This follows from the desired relationship with logic, as the
rules of logical inference assume the truth of the premises, so the theory of statistical inference has to
be based on the truth of the ingredients and this implies that one of the possible values for the quantity
of interest is true. A theory of logical reasoning that could only determine falsity and never truth is not
useful and similarly any valid measure of evidence must be able to indicate evidence in favor as well
as evidence against.

Once a measure of statistical evidence is determined, an estimate of the quantity of interest is
necessarily the value that maximizes the measure of evidence and the accuracy of the estimate can
be assessed by looking at the size of the set of values that has evidence in their favor. The measure
of evidence similarly necessarily determines whether there is evidence for or against a hypothesized
value and the strength of this evidence can be assessed by comparison with the evidence associated
with the other possible values for the quantity of interest.

Consider now requirement (I). If a satisfactory measure of evidence could be determined from the
data alone, then this would be ideal, but currently this is not available and it is questionable whether it
is even possible. It is assumed hereafter that the data x ∈ X can be regarded as having been produced
by some probability distribution on the set X with unknown density f . If the data was collected via
random sampling, then this assumption seems justified, but it is always an assumption. The density
f is unknown and it is assumed that, once f is known, then this completely determines the answers
to (E) and (H). The ingredients are then as follows: it is assumed that f ∈ { fθ : θ ∈ Θ}, a collection
of densities on X indexed by the parameter θ ∈ Θ called the statistical model, and it is assumed that
there is a probability measure Π with density π on Θ that represents beliefs of the investigator about
the true value of θ ∈ Θ and called the prior. The ingredients correspond to the premises of a logical
argument and these may be true or false.

It can be questioned as to whether both the model and prior are necessary for the development of
a satisfactory theory and certainly minimizing the ingredients is desirable. However, as discussed in
Section 3, it seems that a valid definition of a measure of evidence requires both and again the challenge
is open to develop a satisfactory measure of evidence that uses fewer ingredients. In particular, the use
of a prior is often claimed to be inappropriate as it is subjective in nature and, as the goal of a scientific
investigation is to be as objective as possible, the prior seems contrary to that. It needs to be recognized,
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however, that all ingredients to a statistical analysis beyond the data are subjective as they are chosen
by the statistician. As discussed in Section 3.2, it is possible to check both the model and the prior
against the (objective) data to determine whether or not reasonable choices have been made. This
can be considered as analogous to checking the consistency of the premises in a logical argument.
In addition, it is possible to check whether or not the chosen ingredients have biased the results so that
the inferences obtained are in fact foregone conclusions, namely, could have been made without even
looking at the data. It is our view that checking for bias and checking for conflict with the data go a
long way towards answering criticisms concerning the subjectivity inherent in a statistical analysis.
Another implication from (I) is that no ingredient can be added to a statistical analysis unless it can be
checked against the data and, as such, this rules out the use of loss functions.

It is not clear how the ingredients are to be chosen and guidance needs to be provided for this.
Not much has been written about how the model is to be chosen, but certainly something needs to
be said to justify a specific choice as part of the statistical reasoning argument. Much more has been
written about the selection of the prior and the position is adopted here that it is necessary to base
this on a clearly stated elicitation algorithm, namely, a prescription for how an expert can translate
knowledge into beliefs as expressed via the prior.

In summary, the desiderata for a theory of statistical reasoning include the following:
a methodology for choosing a model, an elicitation algorithm for selecting a prior, methodology
for assessing the bias in the ingredients chosen, model checking and checking for prior-data conflict
procedures and a theory of inference based upon a measure of statistical evidence.

3. A Theory of Statistical Reasoning

Choosing and checking the ingredients logically comes before inference, but it is convenient to
discuss these in reverse order.

3.1. Relative Belief Inferences

Consider now a statistical problem with ingredients the data d, a model { fθ : θ ∈ Θ}, a prior π and
interest is in making inference about ψ = Ψ(θ) for Ψ : Θ→ Ψ where no distinction is made between
the function and its range to save notation. Initially, suppose that all the probability distributions are
discrete. This is not really a restriction in the discussion, however, as if something works for inference
in the discrete case but does not work in the continuous case, then it is our view that the concept is not
being applied correctly or the mathematical context is just too general. For us, the continuous case is
always to be thought of as an approximation to a fundamentally discrete context, as measurements
are always made to finite accuracy, and the approximation arises via taking limits. Some additional
comments on the continuous case are made subsequently.

As discussed in Section 2, the basic object of inference is the measure of evidence and what is
wanted is a measure of the evidence that any particular value ψ ∈ Ψ is true. Based on the ingredients
specified, there are two probabilities associated with this value, namely, the prior probability πΨ(ψ),
as given here by the marginal prior density evaluated at ψ, and the posterior probability πΨ(ψ | d),
as given here by the marginal posterior density evaluated at ψ. In certain treatments of inference,
πΨ(ψ | d) is taken as a measure of the evidence that ψ is the true value, but, for a wide variety of
reasons, this is not felt to be correct and Example 1 provides a specific case where this fails. In addition,
this measure suffers from the same basic problem of p-values, namely, there is no obvious dividing
line between evidence for and evidence against. Moreover, it is to be noted that probabilities measure
belief and not evidence. If we start with a large prior belief in ψ, then, unless there is a large amount of
data, there will still be a large posterior belief even if it is false and, similarly, if we started with a small
amount of belief. There is agreement, however, to use the principle of conditional probability to update
beliefs after receiving information or data and this is to be regarded as the first principle of the theory
of relative belief.
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Thus, what is the evidence that ψ is the true value to be measured? Basic to this is the principle of
evidence: if πΨ(ψ | d) > πΨ(ψ), there is evidence in favor, as belief has increased, if πΨ(ψ | d) < πΨ(ψ),
there is evidence against as belief has decreased and if, πΨ(ψ | d) = πΨ(ψ), there is no evidence
either way. This principle has a long history in the philosophical literature concerning evidence. This
principle does not provide a specific measure of evidence but at least it indicates clearly when there is
evidence for or against, independent of the size of initial beliefs, and it does suggest that any reasonable
measure of the evidence depends on the difference, in some sense, between πΨ(ψ) and πΨ(ψ | d),
namely, evidence is measured by change in belief rather than belief. A number of measures of this
change have been proposed (see [1] for a discussion), but, by far, the simplest and the one that has the
nicest properties is the relative belief ratio

RBΨ(ψ | d) = πΨ(ψ | d)/πΨ(ψ). (2)

Thus, if RBΨ(ψ | d) > 1, there is evidence for ψ being the true value, if RBΨ(ψ | d) < 1, there is evidence
against ψ being the true value and no evidence either way if RBΨ(ψ | d) = 1. The use of the relative
belief ratio to measure the evidence is the third and final principle of the theory, which we call the
principle of relative belief. The relative belief ratio can also be written as RBΨ(ψ | d) = m(d |ψ)/m(d),
where m is the prior predictive density of the data and m(· |ψ) is the conditional prior predictive
density of the data given Ψ(θ) = ψ.

Another natural candidate for a measure of evidence is the Bayes factor BFΨ(ψ | d) as this satisfies
the principle of evidence, namely, BF(ψ | d) > (<,=) 1 when there is evidence for (against, neither)
ψ being the true value. The Bayes factor can be defined in terms of the relative belief ratio as
BFΨ(ψ | d) = RBΨ(ψ | d)/RBΨ({ψ}c | d) but not conversely. Note that the relative belief ratio of a set
A ⊂ Ψ is RBΨ(A | d) = ΠΨ(A | d)/ΠΨ(A), where ΠΨ, ΠΨ(· | d) are the prior and posterior probability
measures of Ψ, respectively. It might appear that BFΨ(ψ | d) is a comparison between the evidence
for ψ being true with the evidence for ψ being false, but it is provable that RBΨ(A | d) > 1 implies
RBΨ(Ac | d) < 1 and conversely, so this is not the case. In addition, as subsequently discussed, in the
continuous case, it is natural to take BFΨ(ψ | d) = RBΨ(ψ | d).

The principle of relative belief leads to an ordering of the possible values for ψ as ψ1 is preferred to
ψ2 whenever RBΨ(ψ1 | d) > RBΨ(ψ2 | d) since there is more evidence for ψ1 than ψ2. When Ψ(θ) = θ,
this agrees with the likelihood ordering, but likelihood fails to provide such an ordering for general
ψ. It is common to use the profile likelihood ordering even though this is not a likelihood ordering
and this does not agree with the relative belief ordering. It is noteworthy that the relative belief idea is
consistent in the sense that inferences for all ψ = Ψ(θ) are based on a measure of the change in prior to
posterior probabilities.

The relative belief ordering leads immediately to a theory of estimation. Basing inferences on
the evidence requires that the relative belief estimate be a value ψ(d) that maximizes RBΨ(ψ | d) and
typically such a value is unique so ψ(d) = arg supψ∈Ψ RBΨ(ψ | d). It is also necessary to say something
about the accuracy of this estimate in an application. For this, a set of values containing ψ(d) is quoted
and the “size” of the set is taken as the measure of accuracy. Again, following the ordering based
on the evidence, it is necessary that the set take the form {ψ : RBΨ(ψ | d) > c} for some constant
c ≤ supψ∈Ψ RBΨ(ψ | d) since, if RBΨ(ψ1 | d) ≤ RBΨ(ψ2 | d), then ψ2 must be included whenever ψ1 is.
However, what c should be used? It is perhaps natural to chose c so that {ψ : RBΨ(ψ | d) > c} contains
some prescribed amount of posterior probability, so the set is a γ-credible region. However, there are
several problems with this approach. For what γ should be chosen? Even if one is content with some
particular γ, say γ = 0.95, there is the problem that the set may contain values ψ with RBΨ(ψ | d) < 1
and such a value has been ruled out since there is evidence against such a ψ being true. It is argued
in [1] that the plausibility set PlΨ(d) = {ψ : RBΨ(ψ | d) > 1} be used as PlΨ(d) contains all the values
for which there is evidence in favor of it being the true value. In general circumstances, it is provable
that RBΨ(ψ(d) | d) > 1 so PlΨ(x) 6= φ. There are several possible measures of size, and certainly the
posterior content ΠΨ(PlΨ(d) | d) is one as this measures the belief that the true value is in PlΨ(d), but
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also some measure such as length or cardinality is relevant. If PlΨ(d) is small and ΠΨ(PlΨ(d) | d) large,
then ψ(d) can be judged to be an accurate estimate of ψ.

It is immediate that RBΨ(ψ0 | d) is the evidence concerning H0 : Ψ(θ) = ψ0. The evidential
ordering implies that the smaller RBΨ(ψ0 | d) is than 1, the stronger is the evidence against H0 and the
bigger it is than 1, the stronger is the evidence in favor H0, but how is one to measure this strength?
In [16], it is proposed to measure the strength of the evidence via

ΠΨ (RBΨ(ψ | d) ≤ RBΨ(ψ0 | d) | d) , (3)

which is the posterior probability that the true value of ψ has evidence no greater than that obtained
for the hypothesized value ψ0. When RBΨ(ψ0 | d) < 1 and (3) is small, then there is strong evidence
against H0 since there is a large posterior probability that the true value of ψ has a larger relative
belief ratio. Similarly, if RBΨ(ψ0 | d) > 1 and (3) is large, then there is strong evidence that the
true value of ψ is given by ψ0 since there is a large posterior probability that the true value is
in {ψ : RBΨ(ψ | x) ≤ RBΨ(ψ0 | d)} and ψ0 maximizes the evidence in this set. Additional results
concerning RBΨ(ψ0 | d) as a measure of evidence and (3) can be found in [1,16].

For continuous parameters, it is natural to define RBΨ(ψ | d) = limε→0 RBΨ(Nε(ψ) | d), where
Nε(ψ) is a sequence of sets converging nicely to {ψ} as ε→ 0. When the densities are continuous at ψ,
then this limit equals (2) so this is a measure of evidence in general circumstances. In addition, it is
natural to define the Bayes factor by BFΨ(ψ | d) = limε→0 BFΨ(Nε(ψ) | d) and, when the densities are
continuous at ψ, then BFΨ(ψ | d) = RBΨ(ψ | d).

A variety of consistency results, as the amount of data increases, are proved in [1] concerning the
estimation and hypothesis assessment procedures. In particular, when H0 is false, then (2) converges
to 0 as does (3). When H0 is true, then (2) converges to its largest possible value (greater than 1 and
often ∞) and, in the discrete case (3) converges to 1. In the continuous case, however, when H0 is
true, then (3) typically converges to a U(0, 1) random variable. This simply reflects the approximate
nature of the inferences and is easily resolved by requiring that a deviation δ > 0 be specified such that
if dist(ψ1, ψ2) < δ, where dist is some measure of distance determined by the application, then this
difference is to be regarded as immaterial. This leads to redefining H0 as H0 = {ψ :dist(ψ, ψ0) < δ} and
typically a natural discretization of Ψ exists with H0 as one of its elements. With this modification (3)
converges to 1 as the amount of data increases when H0 is true. Given that data is always measured
to finite accuracy, the value of a typical continuous-valued parameter can only be known to a certain
finite accuracy no matter how much data is collected. Thus, such a δ always exists and it is part of an
application to determine the relevant value (see Example 7 here, Al-Labadi, Baskurt and Evans [7]
and Evans, Guttman and Li [17] for developments on determining δ). These results establish that,
as the amount of data increases, relative belief inferences will inevitably produce the correct answers
to estimation and hypothesis assessment problems.

It is immediate that relative belief inferences have some excellent properties. For example,
any 1-1 increasing function of RBΨ(· | d), such as log RBΨ(· | d), can be used to measure evidence
as the inferences are invariant to this choice. In addition, RBΨ(· | d) is invariant under smooth
reparameterizations and so all relative belief inferences possess this invariance property. For example,
MAP (maximum a posteriori) inferences are not invariant and this leads to considerable doubt about
their validity (see also Example 1). In [1], results from a number of papers are summarized establishing
optimality results for relative belief inferences in the collection of all Bayesian inferences. For example,
Al-Labadi and Evans [18] establish that relative belief inferences for ψ have optimal robustness to
the prior πΨ properties. In addition, as discussed in Section 3.2, since the inferences are based on a
measure of evidence a key criticism of Bayesian methodology can be addressed, namely, the extent to
which the inferences are biased can be measured.

Relative belief prediction inferences for future data are naturally produced by using the ratio
of the posterior to prior predictive densities for the quantity in question. The following example
illustrates this and demonstrates significant advantages for relative belief.
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Example 1. Prediction for Bernoulli sampling.

Consider an example discussed in Chapter 6 of [19] who further reference [9]. A tack is flipped
with x = 1 indicating the tack finishes point up and x = 0 otherwise, so x ∼ Bernoulli(θ). Suppose
the prior is θ ∼ U(0, 1) and the goal is to predict f future observations (y1, . . . , y f ) having observed n
independent tosses (x1, . . . , xn). The posterior of θ is beta(nx̄ + 1, n(1− x̄) + 1), the prior predictive
density of (x1, . . . , xn) is mn(x1, . . . , xn) = 1/(n + 1)( n

nx̄) and the posterior predictive density for
(y1, . . . , y f ) is

mn, f ((y1, . . . , y f ) | (x1, . . . , xn)) =
(n + 1)( n

nx̄)

(n + f + 1)(
n+ f

(n+ f )
[

n
n+ f x̄+ f

n+ f ȳ
]) , (4)

which is constant for all (y1, . . . , y f ) with the same value of ȳ. Maximizing (4) gives the MAP
predictor of (y1, . . . , y f ). If nx̄/(n + f ) > 1/2, then the maximum occurs at (y1, . . . , y f ) with ȳ = 1,
namely, (y1, . . . , y f ) = (1, . . . , 1). If nx̄/(n + f ) < 1/2, then the maximum occurs at (y1, . . . , y f )

with ȳ = 0, namely, (y1, . . . , y f ) = (0, . . . , 0). If nx̄/(n + f ) = 1/2, then a maximum occurs at both
(y1, . . . , y f ) = (0, . . . , 0) and (y1, . . . , y f ) = (1, . . . , 1). Thus, using MAP gives the absurd result that
(y1, . . . , y f ) is always predicted to be either all 0s or all 1s. Clearly, there is a problem here with
using MAP.

Now suppose (x1, . . . , xn) = (0, . . . , 0) so the prediction is all 0s and

mn, f ((y1, . . . , y f ) | (0, . . . , 0)) = (n + 1)/(n + f + 1)
(

n + f
f ȳ

)
.

For fixed f , then mn, f ((y1, . . . , y f ) | (0, . . . , 0)) → 0 as n → ∞ whenever ȳ 6= 0 and
converges to 1 when ȳ = 0. Diaconis and Skyrms [19] note, however, that when f = n, then
mn,n((0, . . . , 0) | (0, . . . , 0))→ 1/2 as n→ ∞ and make the comment “If this is an unwelcome surprise,
then perhaps the uniform prior is suspect.” They also refer to some attempts to modify the prior to
avoid this phenomenon, which clearly violates an essential component of the Bayesian approach. In
our view, there is nothing wrong with the uniform prior, rather the problem lies with using posterior
probabilities implicitly as measures of evidence, both to determine the predictor and to assess its
reliability.

The relative belief ratio for (y1, . . . , y f ) is

RB((y1, . . . , y f ) | (x1, . . . , xn)) =
(n + 1)( n

nx̄)( f + 1)( f
f ȳ)

(n + f + 1)(
n+ f

(n+ f )
[

n
n+ f x̄+ f

n+ f ȳ
]) . (5)

With n = f = 20 and nx̄ = 6, Figure 1 gives the plot of (5) as a function of nȳ. The best relative
belief predictor of (y1, . . . , y f ) is any sample with f ȳ = 6 and Pln(x1, . . . , xn) = {(y1, . . . , y f ) : f ȳ =

2, 3, . . . , 10} has posterior content 0.893. Thus, there is reasonable belief that the plausibility set contains
the “true” future sample but certainly there are many such samples. By contrast with MAP, a sensible
prediction is made using relative belief.

For the case when f = n and (x1, . . . , xn) = (0, . . . , 0), then

RB((y1, . . . , yn) | (0, . . . , 0)) =
(n + 1)2

(2n + 1)

( n
nȳ)

(2n
nȳ)

=
(n + 1)2

(2n + 1)∏n−1
i=0

{
2− ȳ− i/n
(2− i/n)

}
,
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which is decreasing in ȳ and so is maximized for the sample with ȳ = 0. Similarly, when x̄ = 1,
the predictor is the sample with ȳ = 1. Thus, at the extremes, the predictions based on MAP and
relative belief are the same, but otherwise there is a sharp disagreement. In addition,

Pln(0, . . . , 0) = {(y1, . . . , yn) : RB((y1, . . . , yn) | (0, . . . , 0)) > 1}

always contains (y1, . . . , yn) = (0, . . . , 0) and for any c ∈ (0, 1] such that ȳ ≥ c,

RB((y1, . . . , yn) | (0, . . . , 0)) = {(n + 1)2/(2n + 1)}∏n−1
j=0 (1− ȳ/(2− j/n))

≤ {(n + 1)2/(2n + 1)} (1− c/2)n → 0

as n → ∞. Therefore, for any c ∈ (0, 1], there is an N, such that for all n > N, then Pln(0, . . . , 0)
contains no (y1, . . . , yn) having a proportion of 1s that is c or greater. Thus, Pln(0, . . . , 0) is shrinking
as n increases in the sense that it contains only samples with smaller and smaller proportion of 1s as
n increases.
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Figure 1. Plot of the relative belief ratio when n = 20, nx̄ = 6 in Example 1.

The posterior content of the plausibility region equals

∑
{nȳ:RB((y1,...,yn) | (0,...,0))>1}

mn, f ((y1, . . . , y f ) | (0, . . . , 0))
(

n
nȳ

)
, (6)

which equals the sum over all the summands that are greater than 1/(n + 1)and

mn, f ((y1, . . . , y f ) | (0, . . . , 0))
(

n
nȳ

)
=

(n + 1)
(2n + 1)∏n−1

i=0

{
2− ȳ− i/n
(2− i/n)

}

=
(n + 1)
(2n + 1)



1 ȳ = 0
1
2 ȳ = 1

n
1
2

1−1/n
2−1/n ȳ = 2

n
...

...
1
2

1−1/n
2−1/n · · ·

1−(k−1)/n
2−(k−1)/n ȳ = k

n
...

...

.
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When ȳ = k/n, the corresponding term converges to (1/2)k+1. Thus, for all n large enough, the sum (6)
contains the terms for ȳ = 0, 1/n, . . . , k/n. Therefore, for ε > 0 and all n large enough, (6) is greater
than (1/2)[1 + 1/2 + · · ·+ (1/2)k]− ε = 1− (1/2)k+1 − ε and the posterior content of Pln(0, . . . , 0)
converges to 1.

Thus, relative belief also behaves appropriately when f = n and x̄ = 0 while MAP does not.
The failure of MAP might be attributed to the requirement that the entire sample (y1, . . . , yn) be
predicted. If instead it was required only to predict the value nȳ, then the prior predictive of this
quantity is uniform on {0, 1, . . . , f }, the posterior of nȳ equals RB((y1, . . . , y f ) | (x1, . . . , xn))/( f + 1)
and the relative belief ratio for nȳ equals RB((y1, . . . , y f ) | (x1, . . . , xn)). Thus, as is often the case when
the quantity in question has a uniform prior, MAP and relative belief estimates are the same. However,
even in this case, there is no natural cut-off for MAP inferences to say when there is evidence for or
against a particular value. The fact that it is necessary to modify the problem in this way to get a
reasonable inference is, in our view, a substantial failing of MAP. It seems reasonable to suggest that,
when an inference approach is shown to perform poorly on such examples, that it not be generally
recommended. Additional examples of poor performance of MAP are discussed in [1].

It is notable that, while the relative belief approach to inference has been described here using
statistical models and priors, in reality, everything can be cast in terms of a single probability model
however such an object arises. Thus, if P is a probability measure on a sample space Ω and A ⊂ Ω is
an event whose truth value is unknown but C ⊂ Ω is known to be true, then the evidence concerning
the truth of A is given by RB(A |C) = P(A |C)/P(A), with this defined by the appropriate limit when
either A or C is a null event. As discussed in [1], the relative belief approach to inference can be seen
as essentially probability theory together with the principles of evidence and relative belief.

3.2. Choosing and Checking the Ingredients

The first choice that must be made is the model and there are a number of standard models
used in practice. There is not a lot written about this step, however, and yet it is perhaps the most
important step in solving a statistical problem. It is generally accepted that the correct way to choose a
prior is through elicitation. This means that a methodology is prescribed that directs an expert in the
application area on how to translate their knowledge into a prior. There are various default priors in
use that avoid this elicitation step, but it is far better to recommend that sufficient time and energy be
allocated for the elicitation of a proper prior. Staying within the context of probability suggests that a
variety of paradoxes and illogicalities are avoided.

Given the ingredients, the relative belief inferences may be applied correctly, but it is still
reasonable to ask if these ingredients are appropriate for the particular application. If not, then
the inferences drawn cannot be considered valid. There are at least two questions about the ingredients
that need to be answered, namely, is there bias inherent in the choice of ingredients and are the
ingredients contradicted by the data?

The concern for bias is best understood in terms of assessing the hypothesis H0 : Ψ(θ) = ψ0.
Let M(· |ψ) denote the prior predictive distribution of the data given that Ψ(θ) = ψ. Bias against H0

means that the ingredients are such that, with high probability, evidence will not be obtained in favor
of H0 even when it is true. Bias against is thus measured by

M(RBΨ(ψ0 |D) ≤ 1 |ψ0). (7)

If (7) is large, then obtaining evidence against H0 seems like a foregone conclusion. For bias in favor of
H0, consider M(RBΨ(ψ0 |D) ≥ 1 |ψ∗) where dist(ψ∗, ψ0) = δ, so ψ∗ is a value that just differs from
the hypothesized value by a meaningful amount. Bias in favor of H0 is then measured by

sup
ψ∗∈{ψ: dist(ψ,ψ0)=δ}

M(RBΨ(ψ0 |D) ≥ 1 |ψ∗). (8)
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If (8) is large, then obtaining evidence in favor of H0 seems like a foregone conclusion. Typically,
M(RBΨ(ψ0 |D) ≥ 1 |ψ∗) increases as dist(ψ∗, ψ0) increases so (8) is an appropriate measure of bias in
favor of H0. The choice of the prior can be used somewhat to control bias but typically a prior that
makes one bias lower just results in making the other bias higher. It is established in [1] that, under
quite general circumstances, both biases converge to 0 as the amount of data increases. Thus, bias can
be controlled by design a priori.

The model needs to be checked against the data for, if the data d lies in the tails of every distribution
in the model, then this suggests model failure. There are a wide variety of approaches to assessing this
and these are not reviewed here. One relevant comment is that, at this time, there do not seem to exist
general methodologies for modifying a model when model failure is encountered.

The prior can also be checked for conflict with the data. A conflict means that the observed data
are in the tails of all those distributions in the model where the prior primarily places its mass. For a
minimal sufficient statistic T for the model, Evans and Moshonov [20] used the tail probability

MT(mT(t) ≤ mT(T(d))) (9)

to assess prior-data conflict where (9) small indicates prior-data conflict. In [21], it is shown that, under
general circumstances, (9) converges to Π(π(θ) ≤ π(θtrue)) as the amount of data increases. There
are a variety of refinements of (9) that allow for looking at particular components of a prior to isolate
where a problem with the prior may be. In [22], a method is developed for replacing a prior when a
prior-data conflict has been detected. This does not mean simply replacing a prior by one that is more
diffuse, however, as is demonstrated in Section 4.1.

4. Binary-Valued Response Regression Models

The following example, based on real data, is used to illustrate each aspect of the approach to
statistical reasoning recommended here.

Example 2. Bioassay experiment.

Table 1 gives the results of exposing animals to various levels in g/mL of a dosage of a toxin, where
x2 is the log-dosage and the number of deaths is recorded at each dosage (see [23]). The dosages range
from e−0.86 = 0.423 to e0.73 = 2.075 g/mL. The logistic regression model p(x1, x2) = G(β1 + β2x2) is
considered for this data, so x1 ≡ 1, G(z) = ez/(1 + ez), (β1, β2) ∈ R2 and p(1, x2) is the probability of
death at dosage x2. The counts T = (t1, t2, t3, t4) at the dosages comprise a minimal sufficient statistic
for this problem with observed value (0, 1, 3, 5). The conditional distribution of T given (β1, β2) is a
product of binomials.

In [7], a goodness-of-fit test based on this data was applied for this model using a uniform
prior on the space [0, 1]4 of all probabilities. Relative belief was used to assess the hypothesis that
the model is correct and overwhelming evidence in favor of this model was obtained and so model
correctness is assumed here. One goal is the estimation of (β1, β2) and another is the assessment of the
hypothesis H0 : β2 = 0. Acceptance of H0 implies that there is no relationship between the response
and the predictor.

Table 1. Data in Example 1.

x2 No. of Animals No. of Deaths

−0.86 5 0
−0.30 5 1
−0.05 5 3
0.73 5 5
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4.1. Eliciting the Prior

Elicitation of a prior can be difficult when the interpretation of the parameters is unclear.
For example, with model (1), it is not clear what the βi represents in contrast to linear models, where
they represent either location parameters or rates of change with respect to predictors. This leads
to attempts to put default priors on these quantities and there are problems with this approach.
For example, suppose p(1, x) = G(β1 + β2x), where G is the standard logistic cdf and the prior is
given by the βi being i.i.d. N(0, σ2), where σ2 is chosen large to reflect little information about these
values. In Figure 2, we have plotted the prior this induces on p(1, 1) when σ = 20. This reflects the
fact that as σ grows all the prior probability for p(1, x) piles up at 0 and 1 and so this is clearly a poor
choice and it is certainly not noninformative.

Figure 2. Prior density of of p(1, x) = G(β1 + β2x), G is the standard logistic cdf, β1, β2 ∼ N(0, 202)

and x = 1.

The strange behavior of diffuse normal priors has been noted by others. Bedrick, Christensen and
Johnson [24,25], based on [26], make the recommendation that priors should instead be placed on the
p(xi), as these are parameters for which there is typically prior information. Their recommendation is
that k of the xi values be selected and then beta(α1i, α2i) priors be placed on the corresponding p(xi) via
eliciting prior quantiles. This results in more sensible priors but depends on the choice of the observed
predictors, and it is unclear what kind of priors this induces on the βi.

Following [24,25], priors here are elicited for the probabilities, but the approach is different. First,
it is not required that the elicitation be carried out at observed values of the predictors. Rather, it is
supposed that there is a set of linearly independent predictor vectors w1, . . . , wk where bounds can
be placed on the probabilities in the sense that l(wi) ≤ p(wi) ≤ u(wi) for i = 1, . . . , k with virtual
certainty. By virtual certainty, it is meant that, for prior probability measure Π, then

Π(l(wi) ≤ p(wi) ≤ u(wi) for i = 1, . . . , k) ≥ γ, (10)

where γ is chosen to be close to 1. For example, γ = 0.99 certainly seems satisfactory for many
applications, but a higher or lower standard can be chosen. The motivation for this is that typically
information will be available for the probabilities such as it is known that p(wi) is very small (or very
large) or almost certainly that p(wi) is in some specific range. Of course, for some of the wi, virtually
nothing may be known about p(wi) and in that case taking [l(wi), u(wi)] = [0, 1] is appropriate.
One implication of this is that when the choice is made [l(wi), u(wi)] = [0, 1] for every i, then the
elicitation procedure should lead to a Π that is at least approximately uniform on the probabilities.
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The approach to elicitation, via stating bounds on parameter values that hold with virtual certainty,
has been successfully employed in [2] to determine a prior for the multivariate normal model, and [17]
to determine a prior for the multinomial model.

Another reason for allowing the elicitation procedure to be independent of the observed xi is that
prior beliefs about p(xi) may apply equally well about p(xj) for some j simply because xi and xj are
close, and then it seems that the correlation between the beliefs should be part of the prior. Modelling
such correlations is harder and hopefully can be avoided by choosing the wi carefully. For example,
requiring the wi to be mutually orthogonal seems like an appropriate way of achieving independence
in many contexts.

The second way in which our approach differs from previous developments is that Π is restricted
to the family of multivariate normal priors on βββ as this allows us to see directly how (10) translates
into information about βββ. Note that (10) is equivalent to

Π(G−1(l(wi)) ≤ G−1(p(wi)) ≤ G−1(u(wi)) for i = 1, . . . , k)

= Π(G−1(l(wi)) ≤ w′iβββ ≤ G−1(u(wi)) for i = 1, . . . , k)

= Π(G−1(l(W)) ≤ Wβββ ≤ G−1(u(W))) ≥ γ, (11)

where W = (w1 . . . wk)
′ ∈ Rk×k, l(W) = (l(w1), . . . , l(wk))

′ ∈ Rk, u(W) = (u(w1), . . . , u(wk))
′ ∈ Rk.

Thus, if Wβββ ∼ Nk(µµµ0, Σ0), then βββ ∼ Nk(W
−1µµµ0, W−1Σ0(W−1)′) and it is clear what this says about βββ.

The task then is to determine (µµµ0, Σ0) so that (11) is satisfied. A natural choice for µµµ0 is to
put µµµ0 = G−1(c(W)) where c(W) = (l(W) + u(W))/2 is the centroid of the k-cell [l(W), u(W)].
For example, when [l(W), u(W)] = [0, 1]k, then c(W) = 1k/2, where 1k is the k-dimensional vector of
ones, which implies µµµ0 = 0. Other choices for µµµ0 can be made if there are good reasons for this.

Given that the wi have been chosen so that prior beliefs about the probabilities p(wi) are
independent, this implies that the coordinates of Wβββ are independent and so Σ0 =diag(σ2

1 , . . . , σ2
k )

for some choice of the prior variances σ2
i . There are, however, typically many choices satisfying (11).

For example, taking σ2
i = 0 for all i achieves this, but clearly this choice does not reflect what is actually

known about the probabilities. As might be expected, the choice of the σ2
i is critical and dependent on

G. Furthermore, as Figure 1 demonstrates, an injudicious choice results in absurdities.
Since G−1(u(wi)) − µ0i > 0 and G−1(l(wi)) − µ0i < 0, both these values are infinite iff

[l(wi), u(wi)] = [0, 1] and so no information is being introduced via the prior. In such a case,
a uniform[0, 1] prior on the probability results and the appropriate normal distribution is determined
by approximating the distribution function G by a normal cdf (see Examples 3–5). Suppose then that
at least one of G−1(u(wi)) and G−1(l(wi)) is finite and so σi satisfies

Φ
(

G−1(u(wi))− µ0i
σi

)
−Φ

(
G−1(l(wi))− µ0i

σi

)
≥ γ1/k, (12)

as then independence ensures that (11) is satisfied. When both G−1(u(wi)) and G−1(l(wi)) are finite,
the left side of (12) has the value 1, when σi = 0, is strictly decreasing to the value 0 as σi → ∞
and so there are always values of σi ≥ 0 satisfying (12). When both G−1(u(wi)) and G−1(l(wi)) are
finite, there is a unique largest solution to (12), which is the preferred solution as it best represents
the prior information, and it is easily found numerically by bisection. If u(wi) = 1 and l(wi) ∈ (0, 1),
then σi = (G−1(l(wi))− µ0i)/Φ−1(1− γ1/k) is the solution provided γ > (1/2)k, which is a very
weak requirement as recall that γ represents virtual certainty. If u(wi) ∈ (0, 1) and l(wi) = 0, then
σi = (G−1(u(wi))− µ0i)/Φ−1(γ1/k) is the solution again provided γ > (1/2)k.

The following examples consider the situation l(wi)) = 0, u(wi) = 1. In this case, µ0i = 0 and
G−1(p(wi)) will be distributed with cdf G when p(wi) ∼ U(0, 1). Generally, this leads to a need to
approximate G by a normal cdf to obtain a normal prior, although no approximation is required in
Example 3.
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Example 3. Probit regression.

Here, G = Φ and so G−1(p(wi)) ∼ N(0, 1) when p(wi) ∼ U(0, 1). As such, σi = 1 and the
standard normal distribution on G−1(p(wi)) corresponds to no information about p(wi). When there
is no information about any of the p(wi), then βββ ∼ Nk(0, W−1(W−1)′), which equals the Nk(0, I)
distribution whenever W is an orthogonal matrix. In general, however, a lack of information about
the probabilities leads to a prior on βββ that is dependent on W, namely, dependent on the values of
predictor variables corresponding to the probabilities.

Example 4. Logistic regression.

In this case, G is the standard logistic cdf and so w′iβββ = G−1(p(wi)) is distributed standard logistic
when p(wi) ∼ U(0, 1). A well-known N(0, λ2) approximation to the standard logistic distribution, as
discussed in [27], leads to normal priors that are much easier to work with. The optimal choice of λ, in
the sense that it minimizes maxx∈R1 |Φ(x/λ)− ex/(1 + ex)| is given by λ = 1.702, and this leads to a
maximum difference less than 0.009. Clearly, this error will generally be irrelevant when considering
priors for the probabilities in a logistic regression problem. Thus, when w′iβββ ∼ N(0, 1.7022), then p(wi)

is approximately distributed U(0, 1) with the same maximum error. Figure 3 contains plots of the
density of p = ez/(1 + ez) when z ∼ N(0, λ2) for various choices of λ, and it is indeed approximately
uniform when λ = 1.702. Using normal probabilities rather than logistic probabilities leads to relatively
small differences, so it seems reasonable to use a normal prior on βββ in a logistic regression.

Figure 3. Plots of the density of p = ez/(1 + ez) when z ∼ N(0, λ2) and λ = 0.5 (–), λ = 1.0 (- -),
and λ = −1.702 (...).

Example 5. t regression.

Suppose that G is taken to be the cdf of t with υ degrees of freedom. Table 2 presents the optimal
choice of λ for a N(0, λ2) approximation to the t(υ) cdf together with the maximum error. There does
not appear to be much difference in using tυ probabilities instead of normal ones unless υ is quite low.
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Table 2. Optimal choice of a N(0, λ2) distribution to approximate a t(ν) distribution.

υ 30 20 10 5 2 1

λ 1.022 1.034 1.069 1.144 1.407 1.980
max error 0.002 0.003 0.006 0.013 0.031 0.058

Consider now an application of the elicitation algorithm.

Example 6. Bioassay experiment (Example 2 continued).

In this example, k = 2. To determine the prior, it is necessary to choose W = (w1 w2) ∈ R2×2

and [l(W), u(W)]. The authors are not experts in bioassay, but, given the range of dosages applied
in the experiment, it is reasonable to suppose that an expert might be willing to put bounds on the
probabilities that hold with prior probability γ = 0.99 when x2 = −0.50 and x2 = 0.50 leading to

W =

(
1 −1/2
1 1/2

)
.

Let us suppose that an expert believes with virtual certainty that the true probabilities lie in
the intervals [0.15, 0.75], when x2 = −0.50, and in [0.25, 0.95], when x2 = 0.50. Thus, the centroid
of the 2-cell [0.15, 0.75] × [0.25, 0.95] is given by (0.45, 0.60) and since G−1(p) = log(p/(1 − p))
for logistic regression, this implies µ0 = (G−1(0.45), G−1(0.60)) = (−0.20, 0.41). In addition,
[G−1(0.15), G−1(0.75] = [−1.735, 1.099] and [G−1(0.25), G−1(0.95)] = [−1.099, 2.944] so, using
(12), the largest values of σ1 and σ2 satisfying Φ (1.299/σ1) − Φ (−1.535/σ1) ≥ (0.99)1/2 and
Φ (2.534/σ2)−Φ (−1.509/σ2) ≥ (0.99)1/2 are given by σ1 = 0.490 and σ2 = 0.580. Therefore, the prior
on βββ is

βββ ∼ N2(W−1(−0.20, 0.41)′, W−1diag(0.4902, 0.5802)(W=1)′)

= N2

((
0.105
0.610

)
,

(
0.144 0.048
0.048 0.577

))
. (13)

Figure 4 contains histograms of large samples from the priors on two extreme probabilities. The shape
of the prior is similar for other values of x2.
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Figure 4. Density histograms of p(1,−0.8) (left) and p(1, 0.8) (right) based on a sample of 105 from the
elicited prior in Example 6.
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4.2. Measuring the Bias in a Prior

Consider applying the approach discussed in Section 3.2 to measuring bias in the prior derived in
Section 4.1 for the bioassay example.

Example 7. Bioassay experiment (Example 2 continued).

Consider whether or not there is bias induced by the prior in Example 6 with respect to the
hypothesis H0 : β2 = 0. It is necessary to compute MT(RB2(0 | T) ≤ 1 | β2 = 0), to measure bias
against, and supβ2∈{−δ,δ} MT(RB2(0 | T) ≥ 1 | β2), to measure bias in favor, where RB2(· | T) is the
relative belief ratio function for β2 based on data T and δ > 0 is such that, if |β2| < δ, then practically
speaking H0 is considered true. To determine δ, the more general problem of what changes in both
β1 and β2 are deemed irrelevant is considered. Given the settings used in this experiment, it seems
reasonable to consider x2 as restricted to the interval [−1, 1]. Then, whenever |β1 − β′1| < δ and
|β2 − β′2| < δ, the difference in log odds satisfies |β1 + β2x2 − (β′1 + β′2x2)| ≤ 2δ, which implies that
the ratio of the odds lies in (e−2δ, e2δ), which for small δ is approximately equal to (1− 2δ, 1 + 2δ). This
in turn implies that the difference in the probabilities is less than 2δ. In this example, we take δ = 0.01.

Now, RB(β1, β2 | T) = {∏4
i=1(

5
ti
)pti (1, x2i)(1− p(1, x2i))

5−ti}/mT(T) where

mT(T) =
∫ ∞

−∞

∫ ∞

−∞
{∏4

i=1

(
5
ti

)
pti (1, x2i)(1− p(1, x2i))

5−ti}π(β) dβ.

The relative belief ratio for β2 is RB2(β2 | T) =
∫ ∞
−∞ RB(β1, β2 | T)π1(β1 | β2) dβ1 =

mT(T | β2)/mT(T), where π1(· | β2) is the conditional prior density of β1 given β2, which (13) implies
is the N(0.105 + 0.083(β2 − 0.610), 0.140) distribution.

For given T = (t1, t2, t3, t4), the numerator and denominator in RB2(0 | T) can be estimated via
simulation but to calculate the biases we need to do this for many T. Consider the calculation of
MT(RB2(0 | T) ≤ 1 | β2 = 0) via the following Algorithm 1 and note that there are only 64 = 1296
values of (t1, t2, t3, t4) ∈ {0, 1, . . . , 5}4.

Algorithm 1: Algorithm

(i) simultaneously estimate the values mT(t1, t2, t3, t4) for each (t1, t2, t3, t4) via a large sample
from (13) and store these in a table,

(ii) simultaneously estimate the values mT(t1, t2, t3, t4 | β2 = 0) for each (t1, t2, t3, t4) via a large
sample from π1(· | 0) and store these in a table,

(iii) using the values in these two tables estimate RB2(0 | T) for all values of T and then estimate
MT(RB2(0 | T) ≤ 1 | β2 = 0) by summing the mT(t1, t2, t3, t4 | β2 = 0) for those (t1, t2, t3, t4)

for which RB2(0 | T) ≤ 1.

The bias in favor can be estimated at ±δ in exactly the same way but in step (ii) replace π1(· | 0)
by π1(· | − δ) and by π1(· | δ). These computations were carried out and resulted in the bias against
equaling 0.22 and the bias in favor equaling 0.77 at −δ and 0.78 at δ. Thus, there is some bias against
H0 with this prior, but there is appreciable bias in favor of H0, at least when interest is in detecting
deviations of size δ = 0.01. For β2 = 5, however, the bias in favor of H0 is 0.006, so there is in reality no
bias in favor for large values of this parameter. One could contemplate modifying the prior to reduce
the bias in favor at δ = 0.01, but typically this just results in trading bias in favor with bias against.
The real cure for excessive bias of either variety is to collect more data.

In general problems, the approach to the computations used here will not be feasible and so
alternative methods are required. In certain examples, some aspects of the computations can be done
exactly, but, in general, approximations such as those discussed in [28] will be necessary.
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4.3. Checking and Modifying a Prior

Consider now checking the prior derived in Section 4.1 for the bioassay example.

Example 8. Bioassay experiment (Example 2 continued).

The tail probability for checking the prior is given by

MT(mT(t1, t2, t3, t4) ≤ mT(0, 1, 3, 5)). (14)

As part of the algorithm discussed in Section 4.2, the values of mT(t1, t2, t3, t4) have been estimated
and the proportion of values of mT(t1, t2, t3, t4) that satisfies the inequality gives the estimate of (14).
In this example, (14) equals 0.41 so there is no prior-data conflict.

If prior-data conflict exists, the methods discussed in [21] are available to obtain a more weakly
informative prior. In this case, it is necessary to be careful as it has been shown in Section 4.1 that
simply increasing the variance of the prior will not necessarily accomplish this. On the other hand,
there is the satisfying result that the N2(0, 1.7022 I2) prior, where I2 is the identity matrix, will avoid
prior-data conflict, so modifying the elicited prior to be closer to this prior is the appropriate thing to
do when a conflict exists.

4.4. Inferences

Now, consider estimation and hypothesis assessment for the bioassay example.

Example 9. Bioassay experiment (Example 2 continued).

Consider first the assessment of the hypothesis H0 : β2 = 0. From the algorithm, the quantity
RB2(0 | (0, 1, 3, 5)) is available and this indicates whether there is evidence in favor of or against H0.
In this case, RB2(0 | (0, 1, 3, 5)) = 0.021 so there is evidence against H0. A calculation described below
gives the value 0.001 for the strength, so it seems there is strong evidence against H0.

To obtain the joint relative belief estimate of (β1, β2), it is necessary to maximize RB(β1, β2 | T) as
a function of (β1, β2), which is the same as the MLE. The plausibility region for this estimate is then
{(β1, β2) : RB(β1, β2 | T) > 1} and the size and posterior content of this set provide a measure of the
accuracy with which the coordinates of β can be simultaneously known. However, it is worth noting
that the i-th coordinate of this joint estimate is not necessarily the value that has the greatest evidence
in its favor, rather this is obtained by maximizing RBi(βi | T) as a function of βi with plausibility region
{βi : RBi(βi |D) > 1}. Thus, the evidence approach dictates that βi be estimated by maximizing
RBi(βi | T). In problems where components of a multidimensional parameter are related by some
constraint, then it is clearly necessary to estimate the components simultaneously, but this is not the
case here.

The value of RBi(βi | T) needs to be estimated and since this cannot be done for every value of
βi, its value is estimated on a finite grid. For this, let [Li, Ui] be the effective prior support for βi, say
containing 0.995 of the probability, and form the grid Gi = {Li, Li + δ, Li + 2δ, . . . , Ui − δ, Ui}. For each
β1 ∈ G1 estimate mT(0, 1, 3, 5 | β1) using a large sample from π2(· | β1) gives RB1(β1 | (0, 1, 3, 5)) =

mT(0, 1, 3, 5 | β1)/mT(0, 1, 3, 5). It is then easy to obtain the relative belief estimate β1(0, 1, 3, 5) and
plausibility region {β1 : RB1(β1 | (0, 1, 3, 5)) > 1}. The true relative belief estimate will differ from this
estimate by at most δ, but this difference has been deemed irrelevant. A similar procedure is carried
out for β2 but now sampling from π1(· | β2) to estimate mT(0, 1, 3, 5 | β2). The posterior density for βi
satisfies πi(βi | (0, 1, 3, 5)) = RBi(βi | (0, 1, 3, 5))πi(βi) and, since RBi(· | (0, 1, 3, 5)) has been computed
on the grids, these values can be used to approximate the contents of the plausibility regions via an
obvious quadrature. Similarly, the strengths can be estimated and the strength quoted above equals
∑β2∈S π2(β2 | (0, 1, 3, 5))δ, where S = G2 ∩ {β2 : RB2(β2 | (0, 1, 3, 5)) ≤ RB2(0 | (0, 1, 3, 5))}.
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Implementing this for β1, the estimate β1(0, 1, 3, 5) = 0.11 was obtained with plausibility region
[−0.21, 0.49] having posterior content 0.35. Thus, the range of plausible values for β1 is not large, but
there is not a high belief that the true value is in this interval. Figure 5 is a plot of RB1(· | (0, 1, 3, 5)).
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Figure 5. A plot of RB1(· | (0, 1, 3, 5)) over the effective support of the prior in Example 9.

An interesting phenomenon occurs when considering the estimation of β2. In Figure 6, the left
panel plots RB2(· | (0, 1, 3, 5)) over the effective support of the marginal prior π2 for β2. From this, it is
clear that the relative belief estimate of β2 lies outside this range. Recall, however, that the chosen prior
passed the check for prior-data conflict. The check for prior-data conflict only tells us, however, that
the observed data is consistent with at least some of the probabilities determined by where the prior
places its mass. The right panel of Figure 6 is a plot of RB2(· | (0, 1, 3, 5)) over a much wider range.
Note too that there is an important robustness property as shown in [18] for RB2(· | (0, 1, 3, 5)) as it
is only weakly dependent on π2. In this case, π2 does not place mass where it appears it should, but
there is not enough data to detect the conflict. The relative belief estimate of β2 is β2(0, 1, 3, 5) = 7.31
and the plausibility region for β2 is [1.14, 30.48] with posterior content 0.83. As such, there is a great
deal of uncertainty concerning the true value of β2.
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Figure 6. Plot of RB2(· | (0, 1, 3, 5)) over the effective support of the prior (left panel) and over a full
range of possible values (right panel) in Example 9.
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As long as it is possible to sample from the posterior for a 1-dimensional parameter, then the
computations necessary for the inferences for such a parameter are feasible. As such, the Gibbs
sampling algorithm of [29] is particularly relevant, although it is not needed in Example 9. The harder
computations are those involving the various prior predictives, but these do not need to be highly
accurate, as even one decimal place will indicate whether there is bias or prior-data conflict.

5. Conclusions

Criteria for a satisfactory theory of statistical reasoning have been developed. Perhaps more
should be required, but it seems that those stated are necessary. In particular, the separation of
the choosing and checking of the ingredients from the inference step has been emphasized as a
key aspect based upon maintaining a desirable relationship with logical reasoning. An approach
to statistical reasoning that satisfies these criteria has been presented. Application to a well-known
example has shown that this approach can resolve anomalies/paradoxes that arise via commonly
used methodology. Many other such instances of resolving inferential difficulties as well as results
establishing optimal performance have been documented in [1]. An application of the approach to the
problem of binary-valued response regression has been carried out, and it has been shown to lead to a
number of novel insights and, in particular, a new elicitation algorithm has been developed for this
problem.
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