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Abstract: A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite
Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as
product states have no such correlation and every non product Gaussian state contains it. For any
bipartite Gaussian state ρAB, we always have 0 ≤ N (ρAB) < 1, where the upper bound 1 is sharp.
An explicit formula of N for (1 + 1)-mode Gaussian states and an estimate of N for (n + m)-mode
Gaussian states are presented. A criterion of entanglement is established in terms of this correlation.
The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian
geometric discord.

Keywords: quantum correlations; Gaussian states; Gaussian unitary operations; continuous-variable
systems

1. Introduction

The presence of correlations in bipartite quantum systems is one of the main features of quantum
mechanics. The most important one among such correlations is entanglement [1]. However, recently
much attention has been devoted to the study and the characterization of quantum correlations
that go beyond the paradigm of entanglement, being necessary but not sufficient for its presence.
Non-entangled quantum correlations also play important roles in various quantum communications
and quantum computing tasks [2–5].

For the last two decades, various methods have been proposed to quantify quantum correlations,
such as quantum discord (QD) [6,7], geometric quantum discord [8,9], measurement-induced
nonlocality (MIN) [10] and measurement-induced disturbance (MID) [11] for discrete-variable systems.
It is also important to develop new simple criteria for witnessing correlations beyond entanglement for
continuous-variable systems. In this direction, Giorda, Paris [12] and Adesso, Datta [13] independently
introduced the definition of Gaussian QD for Gaussian states and discussed its properties. Adesso
and Girolami in [14] proposed the concept of Gaussian geometric discord (GD) for Gaussian states.
Measurement-induced disturbance of Gaussian states was studied in [15], while MIN for Gaussian
states was discussed in [16]. For other related results, see [17,18] and the references therein. Note
that not every quantum correlation defined for discrete-variable systems has a Gaussian analogy for
continuous-variable systems [16]. On the other hand, the values of Gaussian QD and Gaussian GD are
very difficult to be computed and the known formulas are only for some (1 + 1)-mode Gaussian states.
Little information is revealed by Gaussian QD and GD. The purpose of this paper is to introduce a new
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measure of nonclassicality for (n + m)-mode quantum states in continuous-variable systems, which is
simpler to be computed and can be used with any (n + m)-mode Gaussian states.

Given a bipartite quantum state ρ acting on Hilbert space HA ⊗ HB, denote by ρA = TrB(ρ) the
reduced density operator in subsystem A. For the case of finite dimensional systems, the author
of [19] proposed a quantity dUA(ρ) defined by dUA(ρ) = 1√

2
‖ρ − (UA ⊗ I)ρ(UA ⊗ I)†‖F, where

‖A‖F =
√

Tr(A† A) denotes the Frobenius norm and UA is any unitary operator satisfying
[ρA, UA] = 0. This quantity demands that the reduced density matrix of the subsystem A is invariant
under this unitary transformation. However, the global density matrix may be changed after such
local unitary operation, and therefore dUA(ρ) may be non-zero for some UA. Then, Datta, Gharibian,
et al. discussed respectively in [20,21] the properties of dUA(ρ) and revealed that maxUA dUA(ρ) can be
used to investigate the nonclassical effect.

Motivated by the works in [19–21], we can consider an analogy for continuous-varable systems.
In the present paper, we introduce a quantity N in terms of local Gaussian unitary operations for
(n + m)-mode quantum states in Gaussian systems. Different from the finite dimensional case, besides
the local Gaussian unitary invariance property for quantum states, we also show that N (ρAB) = 0
if and only if ρAB is a Gaussian product state. This reveals that the quantity N is a kind of faithful
measure of the nonclassicality for Gaussian states that a state has this nonclassicality if and only
if it is not a product state. In addition, we show that 0 ≤ N (ρAB) < 1 for each (n + m)-mode
Gaussian state ρAB and the upper bound 1 is sharp. An estimate of N for any (n + m)-mode Gaussian
states is provided and an explicit formula of N for any (1 + 1)-mode Gaussian states is obtained.
As an application, a criterion of entanglement for (1 + 1)-mode Gaussian states is established in terms
of N by numerical approaches. Finally, we compare N with Gaussian QD and Gaussian GD to
illustrate that it is a better measure of the nonclassicality.

2. Gaussian States and Gaussian Unitary Operations

Recall that, for arbitrary state ρ in an n-mode continuous-variable system, its characteristic
function χρ is defined as

χρ(z) = Tr(ρW(z)),

where z = (x1, y1, · · · , xn, yn)T ∈ R2n with R the field of real numbers and (·)T the transposition,
and W(z) = exp(iRTz) is the Weyl operator. Let R = (R1, R2, · · · , R2n)

T = (Q̂1, P̂1, · · · , Q̂n, P̂n)T.
As usual, Q̂i and P̂i stand respectively for the position and momentum operators for each
i ∈ {1, 2, · · · , n}. They satisfy the Canonical Commutation Relation (CCR) in natural units (h̄ = 1)

[Q̂i, P̂j] = δijiI and [Q̂i, Q̂j] = [P̂i, P̂j] = 0,

i, j = 1, 2, . . . , n.
Gaussian states: ρ is called a Gaussian state if χρ(z) is of the form

χρ(z) = exp[−1
4

zTΓz + idTz],

where
d = (〈R̂1〉, 〈R̂2〉, . . . , 〈R̂2n〉)T

= (Tr(ρR1), Tr(ρR2), . . . , Tr(ρR2n))
T ∈ R2n

is called the mean or the displacement vector of ρ and Γ = (γkl) ∈ M2n(R) is the covariance matrix
(CM) of ρ defined by γkl = Tr[ρ(∆R̂k∆R̂l + ∆R̂l∆R̂k)] with ∆R̂k = R̂k − 〈R̂k〉 ([22–24]). Here, Ml×k(R)
stands for the set of all l-by-k real matrices and, when l = k, we write Ml×k(R) as Ml(R). Note
that the CM Γ of a state is symmetric and must satisfy the uncertainty principle Γ + i∆ ≥ 0, where

∆ = ⊕n
i=1∆i with ∆i =

(
0 1
−1 0

)
for each i. From the diagonal terms of the above inequality, one can
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easily derive the usual Heisenberg uncertainty relation for position and momentum V(Q̂i)V(P̂i) ≥ 1
with V(R̂i) = 〈(∆R̂i)

2〉 [25].
Now assume that ρAB is any (n + m)-mode Gaussian state. Then, the CM Γ of ρAB can be

written as

Γ =

(
A C

CT B

)
, (1)

where A ∈ M2n(R), B ∈ M2m(R) and C ∈ M2n×2m(R). Particularly, if n = m = 1 , by means of local
Gaussian unitary (symplectic at the CM level) operations, Γ has a standard form:

Γ0 =

(
A0 C0

CT
0 B0

)
, (2)

where A0 =

(
a 0
0 a

)
, B0 =

(
b 0
0 b

)
, C0 =

(
c 0
0 d

)
, Γ0 > 0, det Γ0 ≥ 1 and

det Γ0 + 1 ≥ det A0 + det B0 + 2 det C0 ([26–29]).
Gaussian unitary operations. Let us consider an n-mode continuous-variable system with

R = (Q̂1, P̂1, · · · , Q̂n, P̂n)T. For a unitary operator U, the unitary operation ρ 7→ UρU† is said to
be Gaussian if its output is a Gaussian state whenever its input is a Gaussian state, and such U is called
a Gaussian unitary operator. It is known that a unitary operator U is Gaussian if and only if

U†RU = SR + m,

for some vector m in R2n and some S ∈ Sp(2n,R), the symplectic group of all 2n× 2n real matrices S
that satisfy

S ∈ Sp(2n,R)⇔ S∆ST = ∆.

Thus, every Gaussian unitary operator U is determined by some affine symplectic map (S, m) acting
on the phase space, and can be denoted by U = US,m ([23,24]).

The following well-known facts for Gaussian states and Gaussian unitary operations are useful
for our purpose.

Lemma 1 ([23]). For any (n+m)-mode Gaussian state ρAB, write its CM Γ as in Equation (1). Then, the CMs
of the reduced states ρA = TrBρAB and ρB = TrAρAB are matrices A and B, respectively.

Denote by S(HA ⊗ HB) the set of all quantum states of HA ⊗ HB, where HA and HB are
respectively the state space for n-mode and m-mode continuous-variable systems.

Lemma 2 ([30]). If ρAB ∈ S(HA ⊗ HB) is an (n + m)-mode Gaussian state, then ρAB is a product state,
that is, ρAB = σA ⊗ σB for some σA ∈ S(HA) and σB ∈ S(HB), if and only if Γ = ΓA ⊕ ΓB, where Γ, ΓA and
ΓB are the CMs of ρAB, σA and σB, respectively.

Lemma 3 ([23,24]). Assume that ρ is any n-mode Gaussian state with CM Γ and displacement vector d,
and US,m is a Gaussian unitary operator. Then, the characteristic function of the Gaussian state σ = UρU† is
of the form exp(− 1

4 zTΓσz + idT
σz), where Γσ = SΓST and dσ = m + Sd.

3. Quantum Correlation Introduced by Gaussian Unitary Operations

Now, we introduce a quantum correlation N by local Gaussian unitary operations in the
continuous-variable system.
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Definition 1. For any (n + m)-mode quantum state ρAB ∈ S(HA ⊗ HB), the quantum correlation N (ρAB)

of ρAB by Gaussian unitary operations is defined by

N (ρAB) =
1
2

sup
U
‖ρAB − (I⊗U)ρAB(I⊗U†)‖2

2, (3)

where the supremum is taken over all Gaussian unitary operators U ∈ B(HB) satisfying UρBU† = ρB,
and ρB = TrA(ρAB) is the reduced state. Here, B(HB) is the set of all bounded linear operators acting on HB.

Observe that N (ρAB) = 0 holds for every product state. Thus, the product state contains no
such correlation.

Remark 1. For any Gaussian state ρAB, there exist many Gaussian unitary U so that UρBU† = ρB. This
ensures that the definition of the quantity N (ρAB) makes sense for each Gaussian state ρAB.

To see this, we need Williamson Theorem ([31]), which states that, for any n-mode Gaussian state
ρ ∈ S(H) with CM Γρ, there exists a 2n× 2n symplectic matrix S such that SΓρST = ⊕n

i=1vi I2 with
vi ≥ 1. The diagonal matrix ⊕n

i=1vi I2 and vis are called respectively the Williamson form and the
symplectic eigenvalues of Γρ. By the Williamson Theorem, there exists a Gaussian unitary operator
U = US,m = US,−Sd such that UρU† = ⊗n

i=1ρi, where ρi are thermal states. Let Sθ = ⊕n
i=1Sθi with

Sθi =

(
cos θi sin θi
− sin θi cos θi

)
, θi ∈ [0, π

2 ]. Then, Sθ is a symplectic matrix, and the corresponding

Gaussian unitary operator USθ ,0 = USθ
has the form USθ

= ⊗n
i=1USθi

= ⊗n
i=1 exp(θi â†

i âi). It is easily

checked that Sθ(⊕n
i=1vi I)ST

θ = ⊕n
i=1vi I, and so USθ

(⊗n
i=1ρi)U†

Sθ
= ⊗n

i=1ρi. Now, write W = U†USθ
U.

Obviously, W is Gaussian unitary and satisfies WρW† = U†USθ
UρU†U†

Sθ
U = ρ.

We first prove that N is local Gaussian unitary invariant for all quantum states.

Proposition 1 (Local Gaussian unitary invariance). If ρAB ∈ S(HA ⊗ HB) is an (n + m)-mode quantum
state, then N ((U ⊗ V)ρAB(U† ⊗ V†)) = N (ρAB) holds for any Gaussian unitary operators U ∈ B(HA)

and V ∈ B(HB).

Proof of Proposition 1. Let ρAB ∈ S(HA⊗HB) be an (n+m)-mode Gaussian state. For any Gaussian
unitary operators U ∈ B(HA) and V ∈ B(HB), denote σAB = (U ⊗ V)ρAB(U† ⊗ V†). Then,
σB = VρBV†. For any Gaussian unitary operator W ∈ B(HB) satisfying WσBW† = σB, we have
WVρBV†W† = VρBV†. Let W ′ = V†WV. Then, W ′ is also a Gaussian unitary operator and satisfies
W ′ρBW ′† = V†WVρBV†W†V = ρB. It is clear that W ′ runs over all Gaussian unitary operators that
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commutes with ρB when W runs over all Gaussian unitary operators commuting with σB. Hence,
by Equation (3), we have

N (σAB)

=
1
2

sup
W
‖σAB − (I ⊗W)σAB(I ⊗W)‖2

2

=
1
2

sup
W
‖(U ⊗V)ρAB(U† ⊗V†)− (I ⊗W)(U ⊗V)ρAB(U† ⊗V†)(I ⊗W)‖2

2

= sup
W
{Tr(ρ2

AB)− Tr(ρAB(I ⊗V†WV)ρAB(I ⊗V†W†V))}

= sup
W ′
{Tr(ρ2

AB)− Tr(ρAB(I ⊗W ′)ρAB(I ⊗W ′†))}

=
1
2

sup
W ′
‖ρAB − (I ⊗W ′)ρAB(I ⊗W ′†)‖2

2

=N (ρAB)

as desired.

The next theorem shows that N (ρAB) is a faithful nonclassicality measure for Gaussian states.

Theorem 1. For any (n + m)-mode Gaussian state ρAB ∈ S(HA ⊗ HB), N (ρAB) = 0 if and only if ρAB is a
product state.

Proof of Theorem 1. By Definition 1, the “if” part is apparent. Let us check the “only if” part. Since the
mean of any Gaussian state can be transformed to zero under some local Gaussian unitary operation,
it is sufficient to consider those Gaussian states whose means are zero by Proposition 1. In the sequel,

assume that ρAB is an (n + m)-mode Gaussian state with zero mean vector and CM Γ =

(
A C

CT B

)
as in Equation (1), so that N (ρAB) = 0.

By Lemma 1, the CM of ρB is B. According to the Williamson Theorem, there exists a
symplectic matrix S0 such that S0BST

0 = ⊕m
i=1vi I and U0ρBU†

0 = ⊗m
i=1ρi, where U0 = US0,0 and

ρi are of the thermal states. Write σAB = (I ⊗U0)ρAB(I ⊗U†
0 ). It follows from Proposition 1 that

N (σAB) = N (ρAB) = 0. Obviously, σAB has the CM of form:

Γ′ =

(
A′ C′

C′T ⊕m
i vi I

)
and the mean 0.

For any θi ∈ [0, π
2 ] for i = 1, 2, · · · , m, let Sθ be the symplectic matrix as in Remark 1. Then,

Sθ(⊕m
i=1vi I)ST

θ = ⊕m
i=1vi I and USθ ,0σBU†

Sθ ,0 = σB = TrA(σAB). As N (σAB) = 0, by Equation (3),
σAB = (I ⊗USθ ,0)σAB(I ⊗U†

Sθ ,0), and hence they must have the same CMs, that is,(
A′ C′

C′T ⊕m
i=1vi I

)
=

(
A′ C′ST

θ

SθC′T ⊕m
i=1vi I

)
.

Note that I − ST
θ is an invertible matrix if we take θi ∈ (0, π

2 ) for each i. Then, it follows from
C′ = C′ST

θ that we must have C′ = 0. Thus, σAB is a product state by Lemma 2, and, consequently,
ρAB = (I ⊗U†

0 )σAB(I ⊗U0) is also a product state.

We can give an analytic formula of N (ρAB) for (1+1)-mode Gaussian state ρAB. Since N is locally
Gaussian unitary invariant, it is enough to assume that the mean vector of ρAB is zero and the CM
is standard.
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Theorem 2. For any (1+ 1)-mode Gaussian state ρAB with CM Γ whose standard form is Γ0 =

(
A0 C0

CT
0 B0

)
as in Equation (2), we have

N (ρAB) =
1√

(ab− c2)(ab− d2)
− 1√

(ab− c2

2 )(ab− d2

2 )
. (4)

Particularly, N (ρAB) = 1−
√

2
2−c2d2+ab(c2+d2)

whenever ρAB is pure.

Proof of Theorem 2. By Proposition 1, we may assume that the mean vector of ρAB is zero. Let US,m
be a Gaussian unitary operator such that US,mρBU†

S,m = ρB. Then, S and m meet the conditions
SB0ST = B0 and SdB + m = dB = 0. It follows that m = 0. Thus, we can denote US,m by US.

As S∆ST = ∆, there exists some θ ∈ [0, π
2 ] such that S = Sθ =

(
cos θ sin θ

− sin θ cos θ

)
. Thus, the CM of

Gaussian state (I ⊗US)ρAB(I ⊗U†
S) is

Γθ =


a 0 c cos θ −c sin θ

0 a d sin θ d cos θ

c cos θ d sin θ b 0
−c sin θ d cos θ 0 b

 ,

and the mean of (I ⊗US)ρAB(I ⊗U†
S) is (I ⊕ S)d + 0 ⊕ 0 = 0 as d = 0. Hence, by Equations (3)

and (4), one gets

N (ρAB)

=
1
2

sup
US,m

‖ρAB − (I ⊗U)ρAB(I ⊗U†
S,m)‖2

2

= sup
US,m

{Tr(ρ2
AB)− Tr(ρAB(I ⊗US,m)ρAB(I ⊗U†

S,m))}

= sup
θ∈[0, π

2 ]

{ 1√
det Γ

− 1√
det[(Γ + Γθ)/2]

}

= max
θ∈[0, π

2 ]
{ 1√

a2b2 + c2d2 − ab(c2 + d2)

− 1√
[ab− c2(1 + cos θ)/2][ab− d2(1 + cos θ)/2]

}

=
1√

(ab− c2)(ab− d2)
− 1√

(ab− c2/2)(ab− d2/2)
.

Hence, Equation (4) is true.
Particularly, if ρAB is a pure state, then, by [29], we have 1 = Tr(ρ2) = 1√

detΓ
= 1√

(ab−c2)(ab−d2)
.

This entails that N (ρAB) = 1−
√

2
2−c2d2+ab(c2+d2)

.

For the general (n + m)-mode case, it is difficult to give an analytic formula of N (ρAB) for all
(n + m)-mode Gaussian states ρAB. However, we are able to give an estimate of N (ρAB).
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Theorem 3. For any (n + m)-mode Gaussian state ρAB with CM Γ =

(
A C

CT B

)
as in Equation (1),

we have

0 ≤ N (ρAB) ≤
1√

det Γ
− 1√

(det A)(det B)
< 1. (5)

Particularly, when ρAB is pure, N (ρAB) ≤ 1− 1√
(det A)(det B)

. Moreover, the upper bound 1 in the inequality

(5) is sharp, that is, we have
sup
ρAB

N (ρAB) = 1.

Proof of Theorem 3. By Proposition 1, without loss of generality, we may assume that the mean of
ρAB is 0. Let US,m be a Gaussian unitary operator such that US,mρBU†

S,m = ρB. Then, the CM and the

mean of the Gaussian state (I ⊗US,m)ρAB(I ⊗U†
S,m) are ΓU =

(
A CST

SCT B

)
and 0, respectively.

Note that, for any n-mode Gaussian states ρ, σ with CMs Vρ, Vσ and means dρ, dσ, respectively, it is
shown in [32] that

Tr(ρσ) =
1√

det[(Vρ + Vσ)/2]
exp[−1

2
δ〈d〉T det[(Vρ + Vσ)/2]−1δ〈d〉], where δ〈d〉 = dρ − dσ. (6)

Hence,

N (ρAB) =
1
2

sup
U
‖ρAB − (I⊗U)ρAB(I⊗U†)‖2

2

= sup
U
{Tr(ρ2

AB)− Tr(ρAB(I ⊗U)ρAB(I ⊗U†))}

= sup
S
{ 1√

det Γ
− 1√

det[(Γ + ΓU)/2]
}.

Since A > 0, B > 0 and Γ+ΓU
2 =

(
A C+CST

2
CT+SCT

2 B

)
, by Fischer’s inequality (p. 506, [33]), we have

det Γ+ΓU
2 ≤ (det A)(det B). Thus, we get N (ρAB) ≤ 1√

det Γ
− 1√

(det A)(det B)
. If ρAB is a pure state, then

1 = Tr(ρ2
AB) =

1√
det Γ

, which gives N (ρAB) ≤ 1− 1√
(det A)(det B)

.

Notice that, by Equation (6), we have 1
det Γ = Tr(ρ2

AB)
2 ≤ 1. This implies that

N (ρAB) ≤ 1√
det Γ
− 1√

(det A)(det B)
< 1 since det A > 0 and det B > 0, that is, the inequality (5) is true.

To see that the upper bound 1 is sharp, consider the two-mode squeezed vacuum state
ρ(r) = S(r)|00〉〈00|S†(r), where S(r) = exp(−râ1 â2 + râ†

1 â†
2) is the two-mode squeezing

operator with squeezed number r ≥ 0 and |00〉 is the vacuum state ([24]). The CM

of ρ(r) is 1
2

(
A0 B0

B0 A0

)
, where A0 =

(
exp(−2r) + exp(2r) 0

0 exp(−2r) + exp(2r)

)
and

B0 =

(
− exp(−2r) + exp(2r) 0

0 exp(−2r)− exp(2r)

)
. By Theorem 2, it is easily calculated that

N (ρ(r)) = 1− 8
6 + exp(−4r) + exp(4r)

.

Clearly, N (ρ(r))→ 1 as r → ∞, thus
sup

r
N (ρ(r)) = 1,
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completeing the proof.

4. Comparison with Other Quantum Correlations

Entanglement is one of the most important quantum correlations, being central in most quantum
information protocols [1]. However, it is an extremely difficult task to verify whether a given quantum
state is entangled or not. Recall that a quantum state ρAB ∈ S(HA ⊗ HB) is said to be separable if
it belongs to the closed convex hull of the set of all product states ρA ⊗ ρB ∈ S(HA ⊗ HB). Note
that a state ρAB is separable if and only if it admits a representation ρAB =

∫
X ρA(x)⊗ ρB(x)π(dx),

where π(dx) is a Borel probability measure and ρA(B)(x) is a Borel S(HA(B))-valued function on some
complete, separable metric space X [34]. One of the most useful separability criteria is the positive
partial transpose (PPT) criterion, which can be found in [35,36]. The PPT criterion states that if a
state is separable, then its partial transposition is positive. For discrete systems, the positivity of the
partial transposition of a state is necessary and sufficient for its separability in the 2⊗ 2 and 2⊗ 3
cases. However, it is not true for higher dimensional systems [36]. For continuous systems, in [27,37],
the authors extended the PPT criterion to (n + m) -mode continuous systems. It is remarkable that,
for any (1 + n)-mode Gaussian state, it has PPT if and only if it is separable. Furthermore, for the
(1+ 1)-mode case, it is shown that a (1+ 1)-mode Gaussian state ρAB is separable if and only if v̄− ≥ 1,
where v̄− is the smallest symplectic eigenvalue of the CM of the partial transpose ρTB

AB [24,29].
Comparing N with the entanglement, we conjecture that there exists some positive number d < 1

such that N (ρAB) ≤ d for any (n + m)-mode separable Gaussian state ρAB, that is,

sup
ρAB is separable

N (ρAB) ≤ d < 1.

If this is true, then ρAB is entangled when N (ρAB) > d. This will give a criterion of entanglement
for (n + m)-mode Gaussian states in terms of correlation N . Though we can not give a mathematical
proof, we show that this is true for (1 + 1)-mode separable Gaussian states with d ≤ 1

10 by a
numerical approach (Firstly, we randomly generated one million, five million, ten million, fifty million,
one hundred million, five hundred million separable Gaussian states with a, b, |c|, |d| ranging from 1
to 2, respectively. We found that the maximum of N is smaller than 0.09. Secondly, we used the same
method and extended the range to 5. Then, the maximum of N is smaller than 0.1. Thirdly, using the
same method and extending the range to 10, 100, 1000, 10000, respectively, we found that the maximum
of N is still smaller than 0.1. We repeated the above computations ten times, and the result is just
the same).

Proposition 2. N (ρAB) ≤ 0.1 for any (1 + 1)-mode separable Gaussian state ρAB.

It is followed from Theorem 1 that the quantum correlation N exists in all entangled Gaussian
states and almost all separable Gaussian states except product states. In addition, Proposition 2 can be
viewed as a sufficient condition for the entanglement of two-mode Gaussian states: if N (ρAB) > 0.1,
then ρAB is entangled.

To have an insight into the behavior of this quantum correlation by N and to compare it with the
entanglement and the discords, we consider a class of physically relevant states–squeezed thermal
state (STS). This kind of Gaussian state is used by many authors to illustrate the behavior of several
interesting quantum correlations [12,13]. Recall that a two-mode Gaussian state ρAB is an STS if

ρAB = S(r)ν1(n̄1)⊗ ν2(n̄2)S(r)†, where νi(n̄i) = ∑k
n̄k

i
(1+n̄i)k+1 |k〉〈k| is the thermal state with thermal

photon number n̄i (i = 1, 2) and S(r) = exp{r(â†
1 â†

2 − â1 â2)} is the two-mode squeezing operator.
Particularly, when n̄1 = n̄2 = 0, ρAB is a pure two-mode squeezed vacuum state, also known as an
Einstein–Podolski–Rosen (EPR) state [24]. When n̄1 > 0 or n̄2 > 0, ρAB is a mixed Gaussian state.
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For fixed r, ρAB is separable (not in product form) for large enough n̄1, n̄2. Notice that if ρ is a STS with
the CM Γ0 in the standard form in Equation (2), then c = −d. In this case, by Theorem 2, we have

N (ρAB) =
1

ab− c2 −
1

ab− c2/2
. (7)

Using this parametrization, one can get a = 2n̄r + 1+ 2n̄1(1+ n̄r) + 2n̄2n̄r, b = 2n̄r + 1+ 2n̄2(1+ n̄r) +

2n̄1n̄r and c = −d = 2(1 + n̄1 + n̄2)
√

n̄r(1 + n̄r), where n̄r = sinh2 r ([12]). Especially, if n̄1 = n̄2 = n̄,
then ρAB is called a symmetric squeezed thermal state (SSTS). Now assume that ρAB is a SSTS. Then,
ρAB is a mixed state if and only if n̄ > 0. The global purity of ρAB is µ = Tr(ρ2

AB) =
1

(1+2n̄)2 and the

smallest symplectic eigenvalue v̄− of CM of ρTB
AB is v̄− = 1+2n̄

exp (2r) . Moreover, ρAB is entangled if and
only if v̄− < 1.

We first discuss the relation between N and the entanglement by considering SSTS. Regard
N (ρAB) as a function of µ and v̄−. From Figure 1a, for separable states, we see that the value N at the
separable SSTS is always smaller than 0.06, which supports positively Proposition 2. From Figure 1b,
for fixed purity µ, N turns out to be a decreasing function of v̄−. However, for fixed v̄−, N tends to 0
when µ increases.

1.0

1.2

1.5

2.0

0.2 0.4 0.6 0.8 1.0
μ

0.01

0.02

0.03

0.04

0.05

0.06

 ρAB)

b

Figure 1. (a) N (ρAB) for separable SSTSs as a function of µ and v̄−; (b) from top to bottom,
v̄− = 1.0, 1.2, 1.5, 2.0.

For the entangled SSTS, one sees from Figure 2a,b that the value of N is from 0 to 1. This reveals
that, for some entangled SSTSs, N can be smaller than 1

10 . Thus, Proposition 2 is only a necessary
condition for a Gaussian state to be separable. For fixed purity µ, from Figure 1b and 2b, N (ρAB)

increases when entanglement increases (that is, v̄− → 0) and limµ→1,v̄−→0N = 1. However, for fixed
v̄−, the behavior of N on µ is more complex.

0.2 0.4 0.6 0.8 1.0
μ

0.2

0.4

0.6

0.8

 ρAB)
b

0.1

0.2

0.5

0.8

Figure 2. (a) N (ρAB) for entangled SSTS as a function of µ and v̄−; (b) from top to bottom,
v̄− = 0.1, 0.2, 0.5, 0.8.
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Regarding N as a function of r and n̄, Figure 3 shows that N (ρAB) is an increasing function of
r and a decreasing function of n̄, respectively. The value of N (ρAB) always gains the maximum at
n̄ = 0, that is, at pure states. Figure 3b also shows that N (ρAB) almost depends only on n̄ when r is
large enough because the curves for r = 5, 10, 20 are almost the same.

1 2 3 4 5
r

0.2

0.4

0.6

0.8

1.0

 ρAB)
a

0

0.5

1

2

3

0.2 0.4 0.6 0.8 1.0 1.2
n

0.2

0.4

0.6

0.8

1.0

 ρAB)
b

0.5

1

5

10

20

Figure 3. N (ρAB) for SSTS as a function of n̄ and r. (a) from top to bottom n̄ = 0, 0.5, 1, 2, 3; (b) from
top to bottom r = 0.5, 1, 5, 10, 20.

Recall that an n-mode Gaussian positive operator-valued measure (GPOVM) is a collection
of positive operators Π = {Π(z)} satisfying

∫
z Π(z)dz = I, where Π(z) = W(z)ωW†(z), z ∈ R2n

with W(z) the Weyl operators and ω an n-mode Gaussian state, which is called the seed of the
GPOVM Π [38,39]. Let ρAB be a (n + m)-mode Gaussian state and Π = {Π(z)} be a GPOVM of the
subsystem B. Denote by ρA(z) = 1

p(z)TrB(ρAB I ⊗Π(z)) the reduced state of the system A after the
GPOVM Π performed on the system B, where p(z) = Tr(ρAB I ⊗Π(z)). Write the von Neumann
entropy of a state ρ as S(ρ), that is, S(ρ) = −Tr(ρ log ρ). Then, the Gaussian QD of ρAB is defined as
D(ρAB) = S(ρB)− S(ρAB)+ infΠ

∫
dzp(z)S(ρA(z)) [12,13], where the infimum takes over all GPOVMs

Π performed on the system B. It is known that a (1 + 1)-mode Gaussian state has zero Gaussian QD if
and only if it is a product state; in addition, for all separable (1+ 1)-mode Gaussian states, D(ρAB) ≤ 1;
if the standard form of the CM of a (1 + 1)-mode Gaussian state ρAB is as in Equation (2), then

D(ρAB) = f (
√

det B0) + f (v−) + f (v+) + f (
√

inf
ω

det Eω), (8)

where the infimum takes over all one-mode Gaussian states ω, f (x) = x+1
2 log x+1

2 −
x−1

2 log x−1
2 , v−

and v+ are the symplectic eigenvalues of the CM of ρAB, Eω = A0 − C0(B0 + Γω)−1CT
0 with Γω the

CM of ω. Let α = det A0, β = det B0, γ = det C0, δ = det Γ0, then we have [13]

inf
ω

det Eω =


2γ2+(β−1)(δ−α)+2|γ|

√
γ2+(β−1)(δ−α)

(β−1)2 if (δ− αβ)2 ≤ (1 + β)γ2(α + δ),
αβ−γ2+δ−

√
γ4+(δ−αβ)2−2γ2(αβ+δ)

2β otherwise.
(9)

In [14], the quantum GD DG is proposed. Consider an (n + m)-mode Gaussian state ρAB,
its Gaussian GD is defined by DG(ρAB) = infΠ ||ρAB − Π(ρAB)||22, where the infimum takes
over all GPOVM Π performed on system B, ||· ||2 stands for the Hilbert–Schmidt norm and
Π(ρAB) =

∫
dz(I ⊗

√
Π(z))ρAB(I ⊗

√
Π(z)). If ρAB is a (1 + 1)-mode Gaussian state with the CM Γ

as in Equation (1) and Π is an one-mode Gaussian POVM performed on mode B with seed ωB, then
Π(ρAB) = ωA ⊗ωB, where ωA is a Gaussian state of which the CM ΓωA = A + C(B + ΓB)

−1CT with
ΓωB the CM of ωB. It is known from [14] that

DG(ρ) = inf
ωB
||ρAB −ωA ⊗ωB||22. (10)
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Now it is clear that, for (1 + 1)-mode Gaussian state ρAB, DG(ρAB) = 0 if and only if ρAB is a
product state.

By Theorem 1 and the results mentioned above, D, DG and N describe the same quantum
correlation for (1 + 1)-mode Gaussian states. However, from the definitions, D, DG use all GPOVMs,
while N only employs Gaussian unitary operations, which is simpler and may consume less physical
resources. Moreover, though an analytical formula of D is given for two-mode Gaussian states, the
expression is more complex and more difficult to calculate (Equations (8) and (9)). DG is not handled
in general and there is no analytical formula for all (1 + 1)-mode Gaussian states (Equation (10)).
As far as we know, there are no results obtained on D, DG for general (n + m)-mode case.

To have a better insight into the behavior of N and DG, we compare them in scale with the help
of two-mode STS. Note that DG of any two-mode STS ρAB is given by [14]

DG(ρAB) =
1

ab− c2 −
9

(
√

4ab− 3c2 +
√

ab)2
. (11)

Clearly, our formula (7) for N is simpler then formula (11) for DG.
Figures 4 and 5 are plotted in terms of photo number n̄ and squeezing parameter r. Figure 4 shows

that, for the case of SSTS and for 0 < r ≤ 2.5, we have DG(ρAB) < N (ρAB). This means that N is
better than DG when they are used to detect the correlation that they describe in the SSTS with r < 2.5.
Figure 5a reveals that, for the case of nonsymmetric STS and for r = 0.5, we have DG(ρAB) < N (ρAB);
that is, N is better in this situation too. However, for r = 5, N and DG can not be compared with each
other globally, which suggests that one may use max{N (ρAB), DG(ρAB)} to detect the correlation.

DG( )

(ρAB)

Figure 4. Comparison with DG(ρAB) for SSTS.

DG( )

(ρAB)

DG( )

(ρAB)

Figure 5. Comparison with DG(ρAB) for nonsymmetric STS. (a) and (b) are correspond to nonsymmetric STS with
r = 0.5, 5, respectively.
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5. Conclusions

In conclusion, we introduce a measure of quantum correlation by N for bipartite quantum states
in continuous-variable systems. This measure is introduced by performing Gaussian unitary operations
to a subsystem and the value of it is invariant for all quantum states under local Gaussian unitary
operations. N exists in all (n + m)-mode Gaussian states except product ones. In addition, N takes
values in [0, 1) and the upper bound 1 is sharp. An analytical formula of N for any (1 + 1)-mode
Gaussian states is obtained. Moreover, for any (n + m)-mode Gaussian states, an estimate of N
is established in terms of its covariance matrix. Numerical evidence shows that the inequality
N (ρAB) ≤ 0.1 holds for any (1 + 1)-mode separable Gaussian states ρAB, which can be viewed as a
criterion of entanglement. It is worth noting that Gaussian QD, Gaussian GD andN measure the same
quantum correlation for (1 + 1)-mode Gaussian states. However, N is easer to calculate and can be
applied to any (n + m)-mode Gaussian states.

Acknowledgments: The authors would like to thank the anonymous referees for helpful comments and
suggestions that improved the original paper. This work is partially supported by the Natural Science Foundation
of China (11671006, 11671294) and the Outstanding Youth Foundation of Shanxi Province (201701D211001).

Author Contributions: Yangyang Wang completed the proofs of main theorems. The rest work of this paper was
accomplished by Xiaofei Qi and Jinchuan Hou.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009,
81, 865.
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